Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix

. 2016 Sep 15 ; 7 () : 12879. [epub] 20160915

Status odvoláno Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace

Perzistentní odkaz   https://www.medvik.cz/link/pmid27628898

Superparamagnetism is a phenomenon caused by quantum effects in magnetic nanomaterials. Zero-valent metals with diameters below 5 nm have been suggested as superior alternatives to superparamagnetic metal oxides, having greater superspin magnitudes and lower levels of magnetic disorder. However, synthesis of such nanometals has been hindered by their chemical instability. Here we present a method for preparing air-stable superparamagnetic iron nanoparticles trapped between thermally reduced graphene oxide nanosheets and exhibiting ring-like or core-shell morphologies depending on iron concentration. Importantly, these hybrids show superparamagnetism at room temperature and retain it even at 5 K. The corrected saturation magnetization of 185 Am(2) kg(-1) is among the highest values reported for iron-based superparamagnets. The synthetic concept is generalized exploiting functional groups of graphene oxide to stabilize and entrap cobalt, nickel and gold nanoparticles, potentially opening doors for targeted delivery, magnetic separation and imaging applications.

Erratum v

PubMed

Odvolání publikace

PubMed

Zobrazit více v PubMed

Batlle X. & Labarta A. Finite-size effects in fine particles: magnetic and transport properties. J. Phys. D: Appl. Phys. 35, R15–R42 (2002).

Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Geophys. 5, 99–136 (1949).

Bean C. P. & Livingston J. D. Superparamagnetism. J. Appl. Phys. 30, S120–S129 (1959).

Brown W. F. Jr Relaxation behavior of fine magnetic particles. J. Appl. Phys. 30, S130–S132 (1959).

Dormann J. L., Fiorani D. & Tronc E. in Advances in Chemical Physics Vol. 98 (eds Prigogine, I. & Rice, S. A.) 283–494 (John Wiley & Sons, 1997).

Bedanta S. & Kleemann W. Supermagnetism. J. Phys. D: Appl. Phys 42, 013001 (2009).

Hai P. N., Ohya S., Tanaka M., Barnes S. E. & Maekawa S. Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature 458, 489–492 (2009). PubMed

Erb R. M., Libanori R., Rothfuchs N. & Studart A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 335, 199–204 (2012). PubMed

Ge J. P., Hu Y. X. & Yin Y. D. Highly tunable superparamagnetic colloidal photonic crystals. Angew. Chem. Int. Ed. 46, 7428–7431 (2007). PubMed

Ge J. P. et al. Magnetochromatic microspheres: rotating photonic crystals. J. Am. Chem. Soc. 131, 15687–15694 (2009). PubMed

Thomas L. et al. Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

Reddy L. H., Arias J. L., Nicolas J. & Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 112, 5818–5878 (2012). PubMed

Laurent S. et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108, 2064–2110 (2008). PubMed

Gupta A. K. & Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005). PubMed

Lu A. H., Salabas E. L. & Schuth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 46, 1222–1244 (2007). PubMed

Gao J. H., Gu H. W. & Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc. Chem. Res. 42, 1097–1107 (2009). PubMed

Hola K., Markova Z., Zoppellaro G., Tucek J. & Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol. Adv. 33, 1162–1176 (2015). PubMed

Ulbrich K. et al. Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 116, 5338–5431 (2016). PubMed

Ranber S. Unexpected magnetism in nanomaterials. J. Magn. Magn. Mater. 346, 58–73 (2013).

Leslie Pelecky D. L. & Rieke R. D. Magnetic properties of nanostructured materials. Chem. Mater. 8, 1770–1783 (1996).

Skumryev V. et al. Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003). PubMed

Dreyer D. R., Park S., Bielawski C. W. & Ruoff R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228–240 (2010). PubMed

Zhu Y. W. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010). PubMed

Georgakilas V. et al. Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112, 6156–6214 (2012). PubMed

Yoo J. M., Kang J. H. & Hong B. H. Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 44, 4835–4852 (2015). PubMed

Yang K. et al. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 10, 3318–3323 (2010). PubMed

Zhang L. M., Xia J. G., Zhao Q. H., Liu L. W. & Zhang Z. J. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537–544 (2010). PubMed

Yang X. Y. et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 112, 17554–17558 (2008).

Yang K., Feng L. Z., Shi X. Z. & Liu Z. Nano-graphene in biomedicine: theranostic applications. Chem. Soc. Rev. 42, 530–547 (2013). PubMed

Tucek J., Kemp K. C., Kim K. S. & Zboril R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS Nano 8, 7571–7612 (2014). PubMed

Uthaisar C., Barone V. & Fahlman B. D. On the chemical nature of thermally reduced graphene oxide and its electrochemical Li intake capacity. Carbon 61, 558–567 (2013).

Shavel A., Rodriguez-Gonzalez B., Spasova M., Farle M. & Liz-Marzan L. M. Synthesis and characterization of iron/iron oxide core/shell nanotubes. Adv. Funct. Mater. 17, 3870–3876 (2007).

Ferrari A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006). PubMed

Chourpa I. et al. Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy. Analyst 130, 1395–1403 (2012). PubMed

Bodker F., Morup S. & Linderoth S. Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282–285 (1994). PubMed

Margeat O., Respaud M., Amiens C., Lecante P. & Chaudret B. Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism. Beilstein J. Nanotechnol. 1, 108–118 (2010). PubMed PMC

Lacroix L. M. et al. Ultrasmall iron nanoparticles: effect of size reduction on anisotropy and magnetization. J. Appl. Phys. 103, 07D521 (2008).

Machala L., Zboril R. & Gedanken A. Amorphous iron(III) oxide—a review. J. Phys. Chem. B 111, 4003–4018 (2007). PubMed

Machala L., Tucek J. & Zboril R. Polymorphous transformations of nanometric iron(III) oxide: a review. Chem. Mater. 23, 3255–3272 (2011).

Baletto F. & Ferrando R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Modern Phys. 77, 371–423 (2005).

Knickelbein M. B. Magnetic moments of bare and benzene-capped cobalt clusters. J. Chem. Phys. 125, 044308 (2006). PubMed

Rohrer M., Bauer H., Mintorovitch J., Requardt M. & Weinmann H. J. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005). PubMed

Na H. B., Song I. C. & Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv. Mater. 21, 2133–2148 (2009).

Lee J. H. et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007). PubMed

Seo W. S. et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 6, 971–976 (2006). PubMed

Prochazka R. et al. Statistical analysis and digital processing of the Mössbauer spectra. Meas. Sci. Technol. 21, 025107 (2010).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Magnetic tunneling with CNT-based metamaterial

. 2019 Feb 22 ; 9 (1) : 2551. [epub] 20190222

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...