A Tunguska sized airburst destroyed Tall el-Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea

. 2021 Sep 20 ; 11 (1) : 18632. [epub] 20210920

Status odvoláno Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, odvolaná publikace

Perzistentní odkaz   https://www.medvik.cz/link/pmid34545151
Odkazy

PubMed 34545151
PubMed Central PMC8452666
DOI 10.1038/s41598-021-97778-3
PII: 10.1038/s41598-021-97778-3
Knihovny.cz E-zdroje

We present evidence that in ~ 1650 BCE (~ 3600 years ago), a cosmic airburst destroyed Tall el-Hammam, a Middle-Bronze-Age city in the southern Jordan Valley northeast of the Dead Sea. The proposed airburst was larger than the 1908 explosion over Tunguska, Russia, where a ~ 50-m-wide bolide detonated with ~ 1000× more energy than the Hiroshima atomic bomb. A city-wide ~ 1.5-m-thick carbon-and-ash-rich destruction layer contains peak concentrations of shocked quartz (~ 5-10 GPa); melted pottery and mudbricks; diamond-like carbon; soot; Fe- and Si-rich spherules; CaCO3 spherules from melted plaster; and melted platinum, iridium, nickel, gold, silver, zircon, chromite, and quartz. Heating experiments indicate temperatures exceeded 2000 °C. Amid city-side devastation, the airburst demolished 12+ m of the 4-to-5-story palace complex and the massive 4-m-thick mudbrick rampart, while causing extreme disarticulation and skeletal fragmentation in nearby humans. An airburst-related influx of salt (~ 4 wt.%) produced hypersalinity, inhibited agriculture, and caused a ~ 300-600-year-long abandonment of ~ 120 regional settlements within a > 25-km radius. Tall el-Hammam may be the second oldest city/town destroyed by a cosmic airburst/impact, after Abu Hureyra, Syria, and possibly the earliest site with an oral tradition that was written down (Genesis). Tunguska-scale airbursts can devastate entire cities/regions and thus, pose a severe modern-day hazard.

Analytical Instrumentation Facility North Carolina State University Raleigh NC 27695 USA

CAMCOR University of Oregon 1443 E 13th Ave Eugene OR 97403 USA

Center of Excellence in Remote Sensing Education and Research Elizabeth City State University Elizabeth City NC 27909 USA

College of Archaeology Trinity Southwest University Albuquerque NM 87109 USA

Comet Research Group Prescott AZ 86301 USA

Department of Chemistry and Biochemistry DePaul University Chicago IL 60614 USA

Department of Earth Science and Marine Science Institute University of California Santa Barbara CA 93106 USA

Department of Geological Sciences East Carolina University Greenville NC 27858 USA

Department of Natural Sciences Elizabeth City State University Elizabeth City NC 27909 USA

EAG Laboratories Eurofins Materials Science Raleigh NC 27606 USA

Faculty of Science Charles University Albertov 6 Prague 12843 Czech Republic

Geology Program School of Earth and Sustainability Northern Arizona University Flagstaff AZ 86011 USA

Geophysical Institute University of Alaska Fairbanks 903 Koyukuk Drive College AK 99775 USA

Los Alamos National Laboratory Los Alamos NM 87545 USA

Materials and Metallurgical Engineering New Mexico Institute On Mining and Technology Socorro NM 87801 USA

Restoration Systems L L C Raleigh NC 27604 USA

Savannah River Archaeological Research Program South Carolina Institute of Archaeology and Anthropology University of South Carolina New Ellenton SC 29809 USA

Southern Research Institute 757 Tom Martin Drive Birmingham AL 35211 USA

US Navy NAVFAC Mid Atlantic Region NS Norfolk VA 23511 USA

Erratum v

PubMed

Komentář v

PubMed

Erratum v

PubMed

Komentář v

PubMed

Odvolání publikace

PubMed

Zobrazit více v PubMed

Collins, S., Kobs, C. M. & Luddeni, M. C. The Tall al-Hammam Excavations, Volume 1: An Introduction to Tall al-Hammam: Seven Seasons (2005–2011) of Ceramics and Eight Seasons (2005–2012) of Artifacts from Tall al-Hammam. (Penn State Press, 2015).

Silvia, P. J. The Middle Bronze Age civilization-ending destruction of the Middle Ghor. Ph.D. thesis, Trinity Southwest University (2015).

Collins, S., Byers, G. A. & Kobs, C. M. The Tall al-Hammam Excavation Project, Season Fourteen 2019 Report: Excavation, Interpretations, and Insights (Department of Antiquities of Jordan, Amman, Jordan, 2019).

Collins, S., Byers, G. A. & Kobs, C. M. The Tall al-Ḥammām Excavation Project, Season Ten 2015 Report: Excavation, Interpretations, and Insights (Department of Antiquities of Jordan, Amman, Jordan, 2015).

Collins, S., Byers, G. A. & Kobs, C. M. The Tall al-Ḥammām Excavation Project, Season Eleven 2016 Report: Excavation, Interpretations, and Insights (Department of Antiquities of Jordan, Amman, Jordan, 2016).

Collins, S., Byers, G. A. & Kobs, C. M. The Tall al-Ḥammām Excavation Project, Season Twelve 2017 Report: Excavation, Interpretations, and Insights (Department of Antiquities of Jordan, Amman, Jordan, 2017).

Collins, S., Byers, G. A. & Kobs, C. M. The Tall al-Ḥammām Excavation Project, Season Thirteen 2018 Report: Excavation, Interpretations, and Insights (Department of Antiquities of Jordan, Amman, Jordan, 2018).

Galli, P. Active tectonics along the Wadi Araba-Jordan Valley transform fault. J. Geophys. Res. Solid Earth104, 2777–2796. 10.1029/1998JB900013 (1999).

Abed, A. M. An overview of the geology and evolution of Wadi Mujib. J. Nat. Hist.4, 6–28 (2017).

Neev, D. & Emery, K. O. The Destruction of Sodom, Gomorrah, and Jericho: Geological, climatological, and archaeological background. 192 (Oxford University Press, 1995).

Frumkin, A. & Elitzur, Y. Historic Dead Sea level fluctuations calibrated with geological and archaeological evidence. Quatern. Res.57, 334–342 (2002).

Kagan, E. J., Langgut, D., Boaretto, E., Neumann, F. H. & Stein, M. Dead Sea levels during the Bronze and Iron ages. Radiocarbon57, 237–252 (2015).

Hennessy, J. B. Preliminary report on a first season of excavations at Teleilat Ghassul. Levant1, 1–24 (1969).

Flanagan, J. W. & McCreery, D. W. First Preliminary Report of the 1989 Tell Nimrin Project. Annu. Dept. Antiquit. Jordan34, 131–152 (1990).

Marchetti, N., Nigro, L. & Sarie, I. Preliminary report on the first season of excavations of the Italian–Palestinian expedition at Tell es-Sultan/Jericho, April–May 1997. Palest. Explor. Q.130, 121–144 (1998).

Collins, S. et al. Tall al-Ḥammām: Preliminary report on four seasons of excavation (2006–2009). ADAJ53, 385–414 (2009).

Moore, A. M. T. et al. Evidence of cosmic impact at Abu Hureyra, Syria at the younger Dryas Onset (~12.8 ka): High-temperature melting at > 2200 °C. Sci. Rep.4185 (2020). PubMed PMC

Ramsey, B. C. Bayesian analysis of radiocarbon dates. Radiocarbon51, 337–360 (2009).

Ramsey, B. C. Probability and dating. Radiocarbon40, 461–474 (1997).

Reimer, P. J. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon62, 725–757. 10.1017/RDC.2020.41 (2020).

Telford, R. J., Heegaard, E. & Birks, H. J. B. All age–depth models are wrong: but how badly?. Quatern. Sci. Rev.23, 1–5 (2004).

Kennett, J. P. et al. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents. Proc. Natl. Acad. Sci.112, E4344–4353 (2015). PubMed PMC

Schiffer, M. B. Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. J. Archaeol. Sci.13, 13–30 (1986).

Kenyon, K. M. Excavations at Jericho, 1952. Palest. Explor. Q.84, 62–82 (1952).

Nigro, L. The Italian-Palestinian expedition to tell es-Sultan, Ancient Jericho (1997–2015): Archaeology and valorisation of material and immaterial heritage 175–214 (Archaeopress, 2020).

Marchetti, N. A century of excavations on the Spring Hill at Tell es-Sultan, ancient Jericho: A reconstruction of its stratigraphy. (University of Rome; Palestinian Dept. of Antiquities, 2000).

Kenyon, K. M. Excavations at Jericho/Vol. 3, The architecture and stratigraphy of the Tell Plates. (Brit. School of Archeology in Jerusalem, 1981).

Flanagan, J. W., McCreery, D. W., Yāsīn, H. A. N. & Kehrberg, I. Tall Nimrin: Preliminary report on the 1995 excavation and geological survey. Annu. Dept. Antiquit. Jordan40, 271–292 (1996).

Carlisle, D. B. & Braman, D. R. Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta. Nature352, 708–709 (1991).

Hough, R. M., Gilmour, I. & Pillinger, C. T. Carbon isotope study of impact diamonds in Chicxulub ejecta at Cretaceous-Tertiary boundary sites in Mexico and the Western Interior of the United States in Large Meteorite Impacts and Planetary Evolution II, Special Paper Vol. 339 (eds B.O. Dressler & V.L. Sharpton) 215–222 (1999).

Kinzie, C. R. et al. Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. J Geol122, 475–506 (2014).

Schoell, M. & Carlson, R. M. Diamondoids and oil are not forever. Nature399, 15–16 (1999).

Bruce, L. F., Kopylova, M. G., Longo, M., Ryder, J. & Dobrzhinetskaya, L. F. Luminescence of diamonds from metamorphic rocks. Am. Miner.96, 14–22 (2011).

De Araujo, P. L. B., Mansoori, G. A. & De Araujo, E. S. Diamondoids: Occurrence in fossil fuels, applications in petroleum exploration and fouling in petroleum production. A review paper. Int. J. Oil Gas Coal Technol.5, 316–367 (2012).

Omotoyinbo, J. A. & Oluwole, O. Working properties of some selected refractory clay deposits in South Western Nigeria. (2008).

Haccuria, E., Crivits, T., Hayes, P. C. & Jak, E. Selected phase equilibria studies in the Al2O3–CaO–SiO2 system. J. Am. Ceram. Soc.99, 691–704 (2016).

Kletetschka, G. & Wieczorek, M. A. Fundamental relations of mineral specific magnetic carriers for paleointensity determination. Phys. Earth Planet Inter.272, 44–49 (2017).

Klokočník, J. et al. Support for two subglacial impact craters in northwest Greenland from Earth gravity model EIGEN 6C4 and other data. Tectonophysics, 228396 (2020).

Kletetschka, G., Kohout, T. & Wasilewski, P. J. Magnetic remanence in the Murchison meteorite. Meteorit. Planet Sci.38, 399–405 (2003).

Kletetschka, G., Uria, A. O., Zila, V. & Elbra, T. Electric discharge evidence found in a new class of material in the Chicxulub ejecta. Sci. Rep.10, 1–11 (2020). PubMed PMC

Kletetschka, G. et al. Cosmic-impact event in lake sediments from Central Europe postdates the Laacher See eruption and marks onset of the Younger Dryas. J. Geol.126, 561–575 (2018).

Wasilewski, P. & Kletetschka, G. Lodestone: Natures only permanent magnet—What it is and how it gets charged. Geophys. Res. Lett.26, 2275–2278 (1999).

Osinski, G. R. et al. The Dakhleh Glass: Product of an impact airburst or cratering event in the Western Desert of Egypt?. Meteorit. Planet Sci.43, 2089–2106 (2008).

Piperno, D. R. Phytoliths: A comprehensive guide for archaeologists and paleoecologists. 248 (AltaMira Press, 2006).

Yost, C. Phytolith analysis of feature fill samples from the el Dornajo site, Ecuador. 17 (Paleo Research Institute Golden, Colorado, 2008).

Humphreys, G. S. et al. Some effects of fire on the regolith in Advances in Regolith (ed. I. C. Roach) 216–220 (CRC LEME, 2008).

Bunch, T. E. A study of shock-induced microstructures and solid state transformations of several minerals from explosion craters Ph.D. thesis, University of Pittsburgh (1966).

Leroux, H., Reimold, W. U. & Doukhan, J.-C. A TEM investigation of shock metamorphism in quartz from the Vredefort dome, South Africa. Tectonophysics230, 223–239 (1994).

Stöffler, D. & Langenhorst, F. Shock metamorphism of quartz in nature and experiment: I Basic observation and theory. Meteoritics29, 155–181 (1994).

French, B. M. Traces of catastrophe: A handbook of shock-metamorphic effects in terrestrial meteorite impact structures, 120 (Lunar and Planetary Institute, 1998).

Feignon, J. G., FerriÈre, L., Leroux, H. & Koeberl, C. Characterization of shocked quartz grains from Chicxulub peak ring granites and shock pressure estimates. Meteorit. Planet. Sci.55, 2206–2223 (2020).

Koeberl, C. Impact cratering: the mineralogical and geochemical evidence. Oklahoma Geol. Surv. Circul.100, 30–54 (1997).

Voorn, M. A new way to confirm meteorite impact produced planar features in quartz: Combining Universal Stage and Electron Backscatter Diffraction techniques (2010).

Langenhorst, F. Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bull. Czech Geol. Surv.77, 265–282 (2002).

Huber, M. S., Ferriere, L., Losiak, A. & Koeberl, C. ANIE: A mathematical algorithm for automated indexing of planar deformation features in quartz grains. Meteorit. Planet. Sci.46, 1418–1424. 10.1111/j.1945-5100.2011.01234.x (2011).

Trepmann, C. A. & Spray, J. G. Shock-induced crystal-plastic deformation and post-shock annealing of quartz: Microstructural evidence from crystalline target rocks of the Charlevoix impact structure, Canada. Eur. J. Mineral.18, 161–173 (2006).

Carter, N. L. Basal quartz deformation lamellae; A criterion for recognition of impactites. Am. J. Sci.263, 786–806 (1965).

Poelchau, M. A Look at Unindexed PDFs: How high should the value be for shocked rocks? in Lunar and Planetary Science Conference. 2473.

Hamers, M. & Drury, M. Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. Meteorit. Planet. Sci.46, 1814–1831 (2011).

Hamers, M., Pennock, G. & Drury, M. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz. Phys. Chem. Miner.44, 263–275 (2017).

Hamers, M. F. Identifying shock microstructures in quartz from terrestrial impacts: New scanning electron microscopy methods. (UU Department of Earth Sciences, 2013).

Gieré, R. et al. Lightning-induced shock lamellae in quartz. Am. Miner.100, 1645–1648 (2015).

Gratz, A. J., Fisler, D. K. & Bohor, B. F. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching. Earth Planet. Sci. Lett.142, 513–521 (1996).

Eby, G. N. et al. Trinitite redux: Mineralogy and petrology. Am. Miner.100, 427–441 (2015).

Florenskiy, K. Preliminary results from the 1961 combined Tunguska meteorite expedition MeteoriticaXXIII, 3–37 (1965).

Scarlett, H. A. Nuclear Weapons Testing (Past). (Los Alamos National Lab. (LANL), Los Alamos, NM (United States), 2020).

Vannucchi, P., Morgan, J. P., Della Lunga, D., Andronicos, C. L. & Morgan, W. J. Direct evidence of ancient shock metamorphism at the site of the 1908 Tunguska event. Earth Planet. Sci. Lett.409, 168–174 (2015).

Lussier, A. J., Rouvimov, S., Burns, P. C. & Simonetti, A. Nuclear-blast induced nanotextures in quartz and zircon within Trinitite. Am. Miner.102, 445–460 (2017).

Kletetschka, G., Radana, K. & Hakan, U. Evidence of shock-generated plasma’s demagnetization in the shock-exposed rocks. Sci. Rep. (2021).

Thy, P., Willcox, G., Barfod, G. H. & Fuller, D. Q. Anthropogenic origin of siliceous scoria droplets from Pleistocene and Holocene archaeological sites in northern Syria. J. Archaeol. Sci.54, 193–209 (2015).

Thy, P., Segobye, A. K. & Ming, D. W. Implications of prehistoric glassy biomass slag from east-central Botswana. J. Archaeol Sci.22, 629–637 (1995).

Firestone, R. B. et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc. Natl. Acad. Sci.104, 16016–16021 (2007). PubMed PMC

Firestone, R. B. et al. Analysis of the Younger Dryas impact layer. J. Siber. Fed. Univ.1, 30–62 (2010).

Hagstrum, J. T., Firestone, R. B., West, A., Weaver, J. C. & Bunch, T. E. Impact-related microspherules in Late Pleistocene Alaskan and Yukon “muck” deposits signify recurrent episodes of catastrophic emplacement. Sci. Rep.7, 1–15. 10.1038/s41598-017-16958-2 (2017). PubMed PMC

Israde-Alcántara, I. et al. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proc. Natl. Acad. Sci.109, E738–E747 (2012). PubMed PMC

LeCompte, M. A. et al. Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proc. Natl. Acad. Sci.109, E2960-2969 (2012). PubMed PMC

LeCompte, M. A. et al. The Bowser Road Mastodon and the Younger Dryas Impact Hypothesis, Appendix 3 in The archaeological Recovery of the Bowser Road Mastodon, Orange County NY (ed RM Gramly) (Persimmon Press, 2017).

Pino, M. et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci. Rep.9, 4413 (2019). PubMed PMC

Teller, J. et al. A multi-proxy study of changing environmental conditions in a Younger Dryas sequence in southwestern Manitoba, Canada, and evidence for an extraterrestrial event. Quatern. Res.93, 1–28 (2019).

Wu, Y., Sharma, M., LeCompte, M. A., Demitroff, M. N. & Landis, J. D. Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proc. Natl. Acad. Sci.110, E3557-3566 (2013). PubMed PMC

Bunch, T. E. et al. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc. Natl. Acad. Sci.109, E1903–E1912 (2012). PubMed PMC

Wittke, J. H. et al. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proc. Natl. Acad. Sci.110, E2088–E2097 (2013). PubMed PMC

Harris, R. & Schultz, P. Are Ti-Rich Particles in Late Pleistocene Sediments from Patagonia Distal Ejecta from an Atacama Airburst? in Lunar and Planetary Science Conference. 2526 (2019).

Baker, G. A. Tektites. (National Museum of Victoria, 1959).

Sharygin, V., Sokol, E. & Belakovskii, D. Fayalite-sekaninaite paralava from the Ravat coal fire (central Tajikistan). Russ. Geol. Geophys.50, 703–721 (2009).

Baker, G. Micro-forms of hay-silica glass and of volcanic glass. Mineral. Mag. J. Mineral. Soc.36, 1012–1023 (1968).

Pauketat, T. R. et al. The residues of feasting and public ritual at early Cahokia. Am. Antiq.67, 257–279 (2002).

Friend, C., Dye, J. & Fowler, M. New field and geochemical evidence from vitrified forts in South Morar and Moidart, NW Scotland: further insight into melting and the process of vitrification. J. Archaeol. Sci.34, 1685–1701 (2007).

Johnston, S. et al. The experimental building, burning and excavation of a two-storey Trypillia house. PAST (Newsletter of the Prehistoric Society)89, 13–15 (2018).

Orton, D. C., Nottingham, J., Rainsford-Betts, G., Hosking, K. & Millard, A. Animal bones [from Nebelivka] in Early Urbanism in Europe (ed G. Bisserka) 383–404 (De Gruyter Open Ltd., 2020).

Dever, W. G. Preliminary Excavation Reports: Sardis, Idalion, and Tell El-Handaquq North. Vol. 53 (American Schools of Oriental Research, 1996).

Bikai, P. M. & Egan, V. Archaeology in Jordan. Am. J. Archaeol.100, 507–535 (1996).

Yates, C. J. C. Beyond the mound: Locating complexity in Northern Mesopotamia during the" Second Urban Revolution", Boston University, (2014).

Senior, L. M. Time and technological change: Ceramic production, labor, and economic transformation in a third millennium complex society (Tell Leilan, Syria). (The University of Arizona, 1998).

Weiss, H. et al. Revising the contours of history at Tell Leilan in Annales archeologiques arabes syriennes. 59.

Courty, M.-A. The soil record of an exceptional event at 4000 BP in the Middle East in Natural Catastrophes During Bronze Age Civilisations: Archaeological, Geological, Astronomical and Cultural Perspectives. 93.

Grissom, C. A. Conservation of Neolithic lime plaster statues from ’Ain Ghazal. Stud. Conserv.41, 70–75. 10.1179/sic.1996.41.Supplement-1.70 (1996).

Osinski, G., Bunch, T. & Wittke, J. Evidence for the shock melting of carbonates from Meteor Crater, Arizona. Meteorit. Planet. Sci. Suppl.38, 5070 (2003).

Osinski, G., Bunch, T. & Wittke, J. Impact melt generation at Meteor Crater, Arizona: Implications for impacts into volatile-rich target rocks. Meteorit. Planet. Sci. Suppl.42, 5110 (2007).

Boslough, M. et al. Arguments and evidence against a Younger Dryas impact event in Climates, landscapes, civilizations, Geophysical Monograph Series Vol. 198 (eds L. Giosan et al.) 13–26 (Am Geophys Union, 2012).

Boslough, M. & Crawford, D. A. Low-altitude airbursts and the impact threat. Int. J. Impact Eng.35, 1441–1448 (2008).

Wakita, S., Johnson, B. C., Denton, C. A. & Davison, T. M. Jetting during oblique impacts of spherical impactors. Icarus360, 114365 (2021).

Butterman, W. C. & Foster, W. R. Zircon stability and the Zr02–Si02 phase diagram. Am. Mineral. J. Earth Planet. Mater.52, 880–885 (1967).

Bohor, B., Betterton, W. & Krogh, T. Impact-shocked zircons: discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth Planet. Sci. Lett.119, 419–424 (1993).

Patterson, M. C. L. Development of a coalesced arc plasma reactor for minerals processing (University of Cambridge, 1986).

Rochow, E. G. The Chemistry of Silicon: Pergamon International Library of Science, Technology, Engineering and Social Studies. Vol. 9 (Elsevier, 2013).

Glass, B. P. & Simonson, B. M. Mesozoic Spherule/Impact Ejecta Layers in Distal Impact Ejecta Layers 245–320 (Springer, 2013).

Chen, M., Shu, J., Mao, H.-K., Xie, X. & Hemley, R. J. Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proc. Natl. Acad. Sci.100, 14651–14654 (2003). PubMed PMC

Economou-Eliopoulos, M., Eliopoulos, D. G. & Tsoupas, G. On the diversity of the PGE content in chromitites hosted in ophiolites and in porphyry-Cu systems: Controlling factors. Ore Geol. Rev.88, 156–173 (2017).

Cabri, L. J., Harris, D. C. & Weiser, T. W. Mineralogy and distribution of platinum-group mineral (PGM) placer deposits of the world. Explor. Min. Geol.2, 73–167 (1996).

Uysal, I. Platinum-Group Minerals (PGM) and other solid inclusions in the Elbistan-Kahramanmaraş mantle-hosted ophiolitic chromitites, South-eastern Turkey: their petrogenetic significance. Turk. J. Earth Sci.17, 729–740 (2008).

Jansen, M. et al. Platinum group placer minerals in ancient gold artifacts–Geochemistry and osmium isotopes of inclusions in Early Bronze Age gold from Ur/Mesopotamia. J. Archaeol. Sci.68, 12–23 (2016).

Tolstykh, N. D., Sidorov, E. G., Laajoki, K. V., Krivenko, A. P. & Podlipskiy, M. The association of platinum-group minerals in placers of the Pustaya River, Kamchatka, Russia. Can. Mineral.38, 1251–1264 (2000).

Okrugin, A. Mineral parageneses and the origin of isoferroplatinum nuggets from the Ignali placer deposit (Siberian platform). (2001).

Zaccarini, F. et al. Platinum-group minerals (PGM) nuggets from alluvial–eluvial placer deposits in the concentrically zoned mafic-ultramafic Uktus complex (Central Urals, Russia). Eur. J. Mineral.25, 519–531 (2013).

Barkov, A., Martin, R., Fleet, M., Nixon, G. & Levson, V. New data on associations of platinum-group minerals in placer deposits of British Columbia, Canada. Mineral. Petrol.92, 9–29 (2008).

Tolstykh, N. D., Foley, J. Y., Sidorov, E. G. & Laajoki, K. V. Composition of the platinum-group minerals in the Salmon River placer deposit, Goodnews Bay, Alaska. Can. Mineral.40, 463–471 (2002).

Fedortchouk, Y. et al. Major-and trace-element composition of platinum group minerals and their inclusions from several Yukon placers. Yukon Explor. Geol. 185–196 (2009).

Harries, D., Berg, T., Langenhorst, F. & Palme, H. Structural clues to the origin of refractory metal alloys as condensates of the solar nebula. Meteorit. Planet. Sci.47, 2148–2159 (2012).

Daly, L. et al. In situ analysis of Refractory Metal Nuggets in carbonaceous chondrites. Geochim. Cosmochim. Acta216, 61–81 (2017).

Schwander, D. Extraktion und nanoanalytische Charakterisierung refraktärer Nanometallpartikel frühester solarer Materie und Synthese metallischer Nanopartikel aus dotierten Ca–Mg–Al–Si-Schmelzen, Universitätsbibliothek Mainz (2014).

Bonté, P., Jehanno, C., Maurette, M. & Brownlee, D. Platinum metals and microstructure in magnetic deep sea cosmic spherules. J. Geophys. Res. Solid Earth92, E641–E648 (1987).

Rudraswami, N., Parashar, K. & Shyam Prasad, M. Micrometer‐and nanometer‐sized platinum group nuggets in micrometeorites from deep‐sea sediments of the Indian Ocean. Meteorit. Planet. Sci.46, 470–491 (2011).

Rudraswami, N. et al. Refractory metal nuggets in different types of cosmic spherules. Geochim. Cosmochim. Acta131, 247–266 (2014).

Brownlee, D., Bates, B. & Wheelock, M. Extraterrestrial platinum group nuggets in deep-sea sediments. Nature309, 693–695 (1984).

Joswiak, D., Brownlee, D., Nguyen, A. & Messenger, S. Refractory materials in comet samples. Meteorit. Planet. Sci.52, 1612–1648 (2017).

Anders, E. & Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta53, 197–214 (1989).

Berg, T. et al. Direct evidence for condensation in the early solar system and implications for nebular cooling rates. Astrophys. J. Lett.702, L172 (2009).

Palme, H., Hutcheon, I. & Spettel, B. Composition and origin of refractory-metal-rich assemblages in a Ca, Al-rich Allende inclusion. Geochim. Cosmochim. Acta58, 495–513 (1994).

Schwander, D., Berg, T., Harries, D., Schönhense, G. & Ott, U. Composition and clues to the origin of refractory metal nuggets extracted from chondritic meteorites. Meteorit. Planet. Sci.49, 1888–1901 (2014).

Wark, D. & Lovering, J. Refractory/platinum metal grains in Allende calcium–aluminium-rich clasts (CARC's): possible exotic presolar material? in Lunar and Planetary Science Conference.

Nazarov, M. et al. Phosphorus-bearing sulfides and their associations in CM chondrites. Petrology17, 101–123 (2009).

Flynn, G. J. et al. Elemental compositions of comet 81P/Wild 2 samples collected by Stardust. Science314, 1731–1735 (2006). PubMed

Makvandi, S., Beaudoin, G., McClenaghan, B. M. & Layton-Matthews, D. The surface texture and morphology of magnetite from the Izok Lake volcanogenic massive sulfide deposit and local glacial sediments, Nunavut, Canada: Application to mineral exploration. J. Geochem. Explor.150, 84–103 (2015).

Knipping, J. L. et al. Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim. Cosmochim. Acta171, 15–38 (2015).

Knipping, J. L. et al. In-situ iron isotope analyses reveal igneous and magmatic-hydrothermal growth of magnetite at the Los Colorados Kiruna-type iron oxide-apatite deposit, Chile. Am. Mineral. J. Earth Planet. Mater.104, 471–484 (2019).

Britvin, S., Murashko, M., Vapnik, E., Polekhovsky, Y. S. & Krivovichev, S. Barringerite Fe 2 P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol. Ore Depos.59, 619–625 (2017).

Harris, R. & Schultz, P. Evidence of multiple cometary airbursts during the pleistocene from Pica (Chile), Dakhleh (Egypt), and Edeowie (Australia) Glasses in Lunar and Planetary Science Conference. 2229.

Collins, S. & Aljarrah, H. Tall el-Hammam Season Six, 2011: Excavation, Survey, Interpretations and Insights. (Department of Antiquities of Jordan, Amman, Jordan, 2011).

Knüsel, C. J. Crouching in fear: Terms of engagement for funerary remains. J. Soc. Archaeol.14, 26–58 (2014).

Rubio, L. et al. Spectrophotometric color measurement to assess temperature of exposure in cortical and medullar heated human bones: A preliminary study. Diagnostics10, 979 (2020). PubMed PMC

Jenniskens, P., Popova, O. P., Glazachev, D. O., Podobnaya, E. D. & Kartashova, A. P. Tunguska eyewitness accounts, injuries, and casualties. Icarus327, 4–18 (2019).

Collins, S., Byers, G. A., Kobs, C. M. & Silvia, P. J. Tall el-Hammam Season Nine, 2014: Excavation, Survey, Interpretations and Insights. (Department of Antiquities of Jordan, Amman, Jordan, 2014).

Ibrahim, M., Sauer, J. A. & Yassine, K. The east Jordan valley survey 1976 (Part two). Archaeology of Jordan: essays and reports. University of Jordan, Amman, 189–207 (1988).

Ibrahim, M. A., Sauer, J. A. & Yassine, K. The East Jordan Valley Survey, 1975. Bull. Am. Sch. Orient. Res.222, 41–66 (1976).

Yassine, K. Tell Nimrin: An Archaeological Exploration. (University of Jordan, 2011).

Flanagan, J. W., McCreery, D. W. & Yāsīn, H. a. N. Preliminary report of the 1990 excavation at Tell Nimrin. Annu. Dept. Antiquit. Jordan36, 89–111 (1992).

Collins, S. Tall el-Hammam is Sodom: Billington’s Heshbon identification suffers from numerous fatal flaws. Biblical Res. Bull.XII (2012).

Al-Rifaee, M. K. Jordan Valley in Salinity management workshop for the CGIAR Research Program on Water, Land, and Ecosystem (WLE) (Jordan, 2013).

Ammari, T. et al. Soil salinity changes in the Jordan Valley potentially threaten sustainable irrigated agriculture. Pedosphere23, 376–384 (2013).

Singer, A. Saline and alkaline soils in Israel. Soils Israel 231–248 (2007).

Ayers, R. S. & Westcot, D. W. Water quality for agriculture. Vol. 29 (Food and Agriculture Organization of the United Nations Rome, 1985).

USDA. Crop tolerance and yield potential of selected crops as influenced by irrigation water salinity (ECw) or soil salinity (ECe). (USDA, Washington, DC, 2011).

Kenyon, K. M. Excavations at Jericho, 1955. Palest. Explor. Q.87, 108–117 (1955).

Kenyon, K. M. Digging up Jericho. (1957).

Nigro, L. & Taha, H. Renewed excavations and restorations at Tell es-Sultan/ancient Jericho, Fifth season-march-april 2009. Renewed excavations and restorations at Tell es-Sultan/ancient Jericho, Fifth season-march-april 2009, 731–744 (2009).

Nigro, L. & Taha, H. Results of the Italian–Palestinian expedition to Tell es-Sultan: At the dawn of urbanization in Palestine in Tell es-Sultan/Jericho in the Context of the Jordan Valley: Site Management, Conservation and Sustainable Development, Proceedings of the International Workshop (Ariha 2005). 1–40.

Kenyon, K. M. Some notes on the history of Jericho in the second millennium BC. Palest. Explor. Q.83, 101–138 (1951).

Nigro, L., Sala, M., Taha, H. & Yassine, J. The Bronze Age Palace and Fortifications at Tell Es-Sultan/Jericho: the 6th–7th seasons (2010–2011) by Rome La Sapienza University and the Palestinian Mota-Dach. The Bronze Age Palace and Fortifications at Tell Es-Sultan/Jericho: the 6th-7th seasons (2010–2011) by Rome La SapienzaUniversity and the Palestinian Mota-Dach, 571–597 (2011).

Migowski, C., Agnon, A., Bookman, R., Negendank, J. F. & Stein, M. Recurrence pattern of Holocene earthquakes along the Dead Sea transform revealed by varve-counting and radiocarbon dating of lacustrine sediments. Earth Planet. Sci. Lett.222, 301–314 (2004).

Svetsov, V. Total ablation of the debris from the 1908 Tunguska explosion. Nature383, 697–699 (1996).

Svetsov, V. B. Thermal radiation on the ground from large aerial bursts caused by Tunguska-like impacts in Lunar and Planetary Science XXXVII. 1–2 (2006).

Kirova, O. Scattered matter from the area of fall of the Tunguska cometary meteorite. Ann. N. Y. Acad. Sci.119, 235–242 (1965).

Beretta, M. The alchemy of glass: counterfeit, imitation, and transmutation in ancient glassmaking. (Science History Publications/USA, 2017).

Museum_of_London. What happened in the Great Fire of London?, https://www.museumoflondon.org.uk/application/files/6514/5511/5493/what-happened-great-fire-london.pdf (2019).

Hopkins, R. P. The Historiography of the Allied Bombing Campaign of Germany. (2008).

Connolly, B. D. HSE and Re-Os systematics of the 3.3 Ga Weltevreden komatiites from the Barberton Greenstone Belt, South Africa: Implications for early Earth’s mantle evolution. (2011).

de Silva, S. & Sharpton, V. Explosive volcanism, shock metamorphism and the KT boundary in Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. 38 (1988).

Ramsey, C. B., Manning, S. W. & Galimberti, M. Dating the volcanic eruption at Thera. Radiocarbon46, 325–344 (2004).

Collins, S. The Search for Sodom & Gomorrah. (Trinity Southwest University Press, 2006).

Sigurdsson, H., Carey, S. & Devine, J. Assessment of mass, dynamics and environmental effects of the Minoan eruption of Santorini volcano in Thera and the Aegean world III Vol. 2 100–112 (1990).

Moore, A., Hillman, G. & Legge, A. Village on the Euphrates: From foraging to farming at Abu Hureyra. 585 (Oxford University Press, 2000).

Moore, A. & Kennett, D. Cosmic impact, the Younger Dryas, Abu Hureyra, and the inception of agriculture in Western Asia. Eurasian Prehist10, 57–66 (2013).

Hanson, S. K. et al. Measurements of extinct fission products in nuclear bomb debris: Determination of the yield of the Trinity nuclear test 70 y later. Proc. Natl. Acad. Sci.113, 8104–8108 (2016). PubMed PMC

Glasstone, S. & Dolan, P. J. The Effects of Nuclear Weapons. Third edn, 653 (US Dept of Defense, U.S. Government Printing Office, 1977).

Wheeler, L. F. & Mathias, D. L. Probabilistic assessment of Tunguska-scale asteroid impacts. Icarus327, 83–96 (2019).

Hermes, R. E. & Strickfaden, W. B. A New Look at Trinitite. Nucl Weap J2, 2–7 (2005).

Brazo, M. W. & Austin, S. A. The Tunguska explosion of 1908. Origins9, 82–93 (1982).

Wolbach, W. S. et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. J. Geol.126, 185–205 (2018).

Robertson, D. K. & Mathias, D. L. Hydrocode simulations of asteroid airbursts and constraints for Tunguska. Icarus327, 36–47. 10.1016/j.icarus.2018.10.017 (2019).

Kletetschka, G., Procházka, V., Fantucci, R. & Trojek, T. Survival response of Larix sibirica to the Tunguska explosion. Tree-ring Res.73, 75–90 (2017).

Zlobin, A. E. Discovery of probably Tunguska meteorites at the bottom of Khushmo river's shoal. arXiv preprint arXiv:1304.8070 (2013).

Kirova, O. & Zaslavskaya, N. Data characterizing the dispersed matter as recovered from the area of fall of the Tunguska meteorite. Meteoritika27, 119–127 (1966).

Vishnevsky, S. & Raitala, J. Impact diamonds as indicators of shock metamorphism in strongly-reworked Pre-Cambrian impactites in Impacts and the Early Earth 229–247 (Springer, 2000).

Kvasnitsa, V. et al. High-pressure carbon polymorphs in the peats of Tunguska catastrophe region. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 999–1004 (1979).

Hryanina, L. The bouquet of the meteorite craters in the epicentre of Tunguska Impact 1908 year in Lunar and Planetary Science Conference. 1186 (1999).

Korina, M. et al. Iridium distribution in the peat layers from area of Tunguska event in Lunar and Planetary Science Conference.

LeMaire, T. R. Stones from the stars: the unresolved mysteries of meteorites. (Prentice Hall, 1980).

Collins, G. S., Melosh, H. J. & Marcus, R. Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit Planet Sci40, 817–840 (2005).

Collins, G. S., Melosh, H. J. & Marcus, R. Earth impact effects program. https://impact.ese.ic.ac.uk/ImpactEarth/ (2005).

Clifton, J. R. & Davis, F. L. Mechanical properties of adobe Vol. 13 (National Bureau of Standards, 1979).

Torrealva, D., Cerrón, C. & Espinoza, Y. Shear and out of plane bending strength of adobe walls externally reinforced with polypropylene grids in The 14th World conference on earthquake engineering, Beijing. 12–17.

Silveira, D. et al. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater.28, 36–44 (2012).

Zipf, R. & Cashdollar, K. Explosions and Refuge Chambers: Effects of blast pressure on structures and the human body. Retrieved April1 (2010).

Alekseev, V., Konkashbaev, I. & Konkashbaev, I. Possible explanation of total ablation of the 1908 Tunguska Asteroid. (1998).

Boslough, M. Computational modeling of low-altitude airbursts in AGU Fall Meeting Abstracts, #U21E-03.

Boslough, M. Airburst Modeling in First International Workshop on Potentially Hazardous Asteroids Characterization, Atmospheric Entry and Risk Assessment. (Sandia National Lab.(SNL-NM), Albuquerque, NM (United States)).

Gustafsson, Ö. et al. Evaluation of a protocol for the quantification of black carbon in sediments. Glob. Biogeochem. Cycl.15, 881–890 (2001).

Wolbach, W. S., Gilmour, I. & Anders, E. Major wildfires at the Cretaceous/Tertiary boundary. Geol. Soc. Am. Spec. Pap.247, 391–400 (1990).

Wolbach, W. S., Lewis, R. S. & Anders, E. Cretaceous extinctions: Evidence for wildfires and search for meteoritic material. Science230, 167–170 (1985). PubMed

Wolbach, W. S. et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. J. Geol.126, 165–184 (2018).

Wolbach, W. S., Gilmour, I., Anders, E., Orth, C. J. & Brooks, R. R. Global fire at the Cretaceous-Tertiary boundary. Nature334, 665–669 (1988).

Ramsey, C. B. Analysis Operations and Models. http://c14.arch.ox.ac.uk/oxcalhelp/hlp_analysis_oper.html (2013).

Ramsey, C. B. Analysis Examples. https://c14.arch.ox.ac.uk/oxcalhelp/hlp_analysis_eg.html (2013).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...