Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32144395
PubMed Central
PMC7060197
DOI
10.1038/s41598-020-60867-w
PII: 10.1038/s41598-020-60867-w
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°-1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to >2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°-1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02-0.05% H2O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.
Armagh Observatory and Planetarium College Hill Armagh BT61 9DG Northern Ireland UK
Center for Advanced Materials Characterization at Oregon University of Oregon Eugene OR 97403 USA
College of Liberal Arts Rochester Institute of Technology Rochester NY 14623 USA
Comet Research Group 2204 Lakewood Drive Prescott AZ 86301 USA
Department of Natural Sciences Elizabeth City State University Elizabeth City NC 27909 USA
Los Alamos National Laboratory White Rock NM 87547 USA
U S Geological Survey 12201 Sunrise Valley Drive Reston VA 20192 USA
Wyss Institute for Biologically Inspired Engineering Harvard University Cambridge MA 02138 USA
Zobrazit více v PubMed
Firestone RB, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Nat Acad Sci. 2007;104:16016–16021. doi: 10.1073/pnas.0706977104. PubMed DOI PMC
Kennett JP, et al. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents. Proc Nat Acad Sci. 2015;112:E4344–4353. doi: 10.1073/pnas.1507146112. PubMed DOI PMC
Napier WM. Palaeolithic extinctions and the Taurid Complex. Mon Not R Astron Soc. 2010;405:1901–1906.
Napier W. The hazard from fragmenting comets. Monthly Notices of the Royal Astronomical Society. 2019;488:1822–1827.
Wittke James H., Weaver James C., Bunch Ted E., Kennett James P., Kennett Douglas J., Moore Andrew M. T., Hillman Gordon C., Tankersley Kenneth B., Goodyear Albert C., Moore Christopher R., Daniel I. Randolph, Ray Jack H., Lopinot Neal H., Ferraro David, Israde-Alcántara Isabel, Bischoff James L., DeCarli Paul S., Hermes Robert E., Kloosterman Johan B., Revay Zsolt, Howard George A., Kimbel David R., Kletetschka Gunther, Nabelek Ladislav, Lipo Carl P., Sakai Sachiko, West Allen, Firestone Richard B. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences. 2013;110(23):E2088–E2097. doi: 10.1073/pnas.1301760110. PubMed DOI PMC
LeCompte M. A., Goodyear A. C., Demitroff M. N., Batchelor D., Vogel E. K., Mooney C., Rock B. N., Seidel A. W. Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences. 2012;109(44):E2960–E2969. doi: 10.1073/pnas.1208603109. PubMed DOI PMC
Wu, Y., Sharma, M., LeCompte, M. A., Demitroff, M. N. & Landis, J. D. Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proc Nat Acad Sci110, E3557-3566 (2013). PubMed PMC
Bunch TE, et al. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Nat Acad Sci. 2012;109:E1903–E1912. doi: 10.1073/pnas.1204453109. PubMed DOI PMC
Pino M, et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci Rep. 2019;9:4413. doi: 10.1038/s41598-018-38089-y. PubMed DOI PMC
Kletetschka G, et al. Cosmic-impact event in lake sediments from Central Europe postdates the Laacher See eruption and marks onset of the younger Dryas. The Journal of Geology. 2018;126:561–575. doi: 10.1086/699869. DOI
Israde-Alcantara I., Bischoff J. L., Dominguez-Vazquez G., Li H.-C., DeCarli P. S., Bunch T. E., Wittke J. H., Weaver J. C., Firestone R. B., West A., Kennett J. P., Mercer C., Xie S., Richman E. K., Kinzie C. R., Wolbach W. S. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences. 2012;109(13):E738–E747. doi: 10.1073/pnas.1110614109. PubMed DOI PMC
Kinzie CR, et al. Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. J Geol. 2014;122:475–506. doi: 10.1086/677046. DOI
Wolbach WS, et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. J Geol. 2018;126:165–184. doi: 10.1086/695703. DOI
Wolbach WS, et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. J Geol. 2018;126:185–205. doi: 10.1086/695704. DOI
Moore CR, et al. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Sci Rep. 2017;7:44031. doi: 10.1038/srep44031. PubMed DOI PMC
Moore CR, et al. Sediment cores from White Pond, South Carolina, contain a platinum anomaly, pyrogenic carbon peak, and coprophilous spore decline at 12.8 ka. Scientific Reports. 2019;9:1–11. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC
Petaev MI, Huang S, Jacobsen SB, Zindler A. Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proc Nat Acad Sci. 2013;110:12917–12920. doi: 10.1073/pnas.1303924110. PubMed DOI PMC
Andronikov AV, et al. Implications from chemical, structural and mineralogical studies of magnetic microspherules from around the lower Younger Dryas boundary (New Mexico, USA) Geogr Ann A. 2016;98:39–59. doi: 10.1111/geoa.12122. DOI
Firestone RB, et al. Analysis of the Younger Dryas impact layer. J Siberian Fed Univ. 2010;1:30–62.
Kurbatov AV, et al. Discovery of a nanodiamond-rich layer in the Greenland ice sheet. J Glaciol. 2010;56:747–757. doi: 10.3189/002214310794457191. DOI
Kennett DJ, et al. Nanodiamonds in the Younger Dryas boundary sediment layer. Science. 2009;323:94. doi: 10.1126/science.1162819. PubMed DOI
Kennett DJ, et al. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments. Proc Nat Acad Sci. 2009;106:12623–12628. doi: 10.1073/pnas.0906374106. PubMed DOI PMC
Anderson DG, Goodyear AC, Kennett J, West A. Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quat Int. 2011;242:570–583. doi: 10.1016/j.quaint.2011.04.020. DOI
Moore A, Kennett D. Cosmic impact, the Younger Dryas, Abu Hureyra, and the inception of agriculture in Western Asia. Eurasian Prehist. 2013;10:57–66.
Van Hoesel A, Hoek WZ, Pennock GM, Drury MR. The Younger Dryas impact hypothesis: a critical review. Quat Sci Rev. 2014;83:95–114. doi: 10.1016/j.quascirev.2013.10.033. DOI
Boslough, M. et al. Arguments and evidence against a Younger Dryas impact event in Climates, landscapes, civilizations, Geophysical Monograph Series Vol. 198 (eds. Giosan, L. et al.) 13–26 (Am Geophys Union, 2012).
Holliday V, Surovell T, Johnson E. A blind test of the Younger Dryas impact hypothesis. PloS One. 2016;11:e0155470. doi: 10.1371/journal.pone.0155470. PubMed DOI PMC
Holliday VT, Surovell T, Meltzer DJ, Grayson DK, Boslough M. The Younger Dryas impact hypothesis: a cosmic catastrophe. Quat Sci. 2014;29:515–530. doi: 10.1002/jqs.2724. DOI
Surovell TA, et al. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proc Nat Acad Sci. 2009;106:18155–18158. doi: 10.1073/pnas.0907857106. PubMed DOI PMC
Thy P, Willcox G, Barfod GH, Fuller DQ. Anthropogenic origin of siliceous scoria droplets from Pleistocene and Holocene archaeological sites in northern Syria. J Archaeol Sci. 2015;54:193–209. doi: 10.1016/j.jas.2014.11.027. DOI
Moore, A. M. T., Hillman, G. C. & Legge, A. J. Village on the Euphrates: from foraging to farming at Abu Hureyra. 585 (Oxford University Press, 2000).
Heide K, Heide G. Vitreous state in nature—Origin and properties. Chem Erde. 2011;71:305–335. doi: 10.1016/j.chemer.2011.10.001. DOI
Schultz PH, Harris RS, Clemett SJ, Thomas-Keprta KL, Zárate M. Preserved Flora and Organics in Impact Melt Breccias. Geology. 2014;42:515–518. doi: 10.1130/G35343.1. DOI
Ascough PL. Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. J Archaeol Sci. 2010;37:1590–1599. doi: 10.1016/j.jas.2010.01.020. DOI
Braadbaart F, Poole I. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. J Archaeol Sci. 2008;35:2434–2445. doi: 10.1016/j.jas.2008.03.016. DOI
Gurov, E. P., Permiakov, V. & Koeberl, C. Chromferide Found in Impact Melt Rocks of the El’gygytgyn Crater, Chukotka, Russia. 50th Lunar and Planetary Science Conference 2019 (2019).
Ebel DS, Grossman L. Condensation in dust-enriched systems. Geochim Cosmochim Acta. 2000;64:339–366. doi: 10.1016/S0016-7037(99)00284-7. DOI
Eliopoulos DG, Economou-Eliopoulos M, Apostolikas A, Golightly JP. Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic. Ore Geol Rev. 2012;48:413–427. doi: 10.1016/j.oregeorev.2012.05.008. DOI
Koeberl, C. The geochemistry and cosmochemistry of impacts. Planets, Asteriods, Comets And The Solar System, 73–118 (2014).
Sheffer, A. & Melosh, H. J. Why Moldavites are reduced. 36th Annual Lunar and Planetary Science Conference (2005).
Hikichi Y, Nomura T. Melting Temperatures of Monazite and Xenotime. J Am Ceram Soc. 1987;70:252–253.
Nagata T, Yama-Ai M, Akimoto S. Memory of Initial Remanent Magnetization and Number of Repeating of Heat Treatments in Low-temperature Behaviour of Haematite. Nature. 1961;190:620–621. doi: 10.1038/190620a0. DOI
Wasilewski P, Kletetschka G. Lodestone: Natures only permanent magnet‐What it is and how it gets charged. Geophys Res Lett. 1999;26:2275–2278. doi: 10.1029/1999GL900496. DOI
Kletetschka G, Acuna MH, Kohout T, Wasilewski PJ, Connerney JEP. An empirical scaling law for acquisition of thermoremanent magnetization. Earth Planet Sci Lett. 2004;226:521–528. doi: 10.1016/j.epsl.2004.08.001. DOI
Fu RR, Weiss BP. Detrital remanent magnetization in the solar nebula. J Geophys Res. 2012;117:1–19.
Crawford DA, Schultz PH. Laboratory observations of impact–generated magnetic fields. Nature. 1988;336:50. doi: 10.1038/336050a0. DOI
Crawford DA, Schultz PH. Laboratory investigations of impact-generated plasma. Journal of Geophysical Research: Planets. 1991;96:18807–18817. doi: 10.1029/91JE02012. DOI
Kletetschka G, Kohout T, Wasilewski PJ. Magnetic remanence in the Murchison meteorite. Meteorit Planet Sci. 2003;38:399–405. doi: 10.1111/j.1945-5100.2003.tb00275.x. DOI
Kletetschka, G., Wasilewski, P. J., Kohout, T., Adachi, T. & Mikula, V. Protocol for first order paleofields estimation. Meteorit Planet Sci41, A97-A97 (2006).
Kohout T, Kletetschka G, Donadini F, Fuller M, Herrero-Bervera E. Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra. Stud Geophys Geod. 2008;52:225–235. doi: 10.1007/s11200-008-0015-1. DOI
Kletetschka G, Wieczorek MA. Fundamental Relations of Mineral Specific Magnetic Carriers for Paleointensity Determination. Phys Earth Planet Inter. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI
Beran, A. & Koeberl, C. Water in tektites and impact glasses by Fourier‐transformed infrared spectrometry. Meteorit Planet Sci32 (1997).
Newman S, Stolper EM, Epstein S. Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique. American Mineralogist. 1986;71:1527–1541.
Zhang Y, Martin A, Berndt H, Lücke B, Meisel M. FTIR investigation of surface intermediates formed during the ammoxidation of toluene over vanadyl pyrophosphate. Journal of Molecular Catalysis A: Chemical. 1997;118:205–214. doi: 10.1016/S1381-1169(96)00383-4. DOI
El Goresy A. Baddeleyite and its significance in impact glasses. Journal of Geophysical Research. 1965;70:3453–3456. doi: 10.1029/JZ070i014p03453. DOI
Thy P, Segobye AK, Ming DW. Implications of prehistoric glassy biomass slag from east-central Botswana. J Archaeol Sci. 1995;22:629–637. doi: 10.1016/S0305-4403(95)80148-0. DOI
Scott AC, et al. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”. Geophys Res Lett. 2010;37:1–5. doi: 10.1029/2010GL043345. DOI
van Hoesel A, et al. Nanodiamonds and wildfire evidence in the Usselo horizon postdate the Allerød-Younger Dryas boundary. Proc Nat Acad Sci. 2012;109:7648–7653. doi: 10.1073/pnas.1120950109. PubMed DOI PMC
Garde, A. A. et al. Organic Carbon from the Hiawatha Impact Crater, North-West Greenland. 50th Lunar and Planetary Science Conference 2019 (2019).
Hermes RE, Strickfaden WBJ. A new look at trinitite. Nucl Weap J. 2005;2:2–7.
Glasstone, S. & Dolan, P. J. The Effects of Nuclear Weapons. 653 (US Dept of Defense, U.S. Government Printing Office, 1977).
Osinski GR, et al. The Dakhleh Glass: product of an impact airburst or cratering event in the Western Desert of Egypt? Meteorit Planet Sci. 2008;43:2089–2106. doi: 10.1111/j.1945-5100.2008.tb00663.x. DOI
Schultz PH, et al. The record of Miocene impacts in the Argentine Pampas. Meteoritics & Planetary Science. 2006;41:749–771. doi: 10.1111/j.1945-5100.2006.tb00990.x. DOI
Daly RT, Schultz PH. The delivery of water by impacts from planetary accretion to present. Science Advances. 2018;4:eaar2632. doi: 10.1126/sciadv.aar2632. PubMed DOI PMC
Harris, R., Schultz, P. & King, P. The fate of water in melts produced during natural and experimental impacts into wet, fine-grained sedimentary targets in Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process. 57–58 (2007).
Koeberl C. Geochemistry and origin of Muong Nong-type tektites. Geochim Cosmochim Acta. 1992;56:1033–1064. doi: 10.1016/0016-7037(92)90046-L. DOI
Howard KT, et al. Biomass preservation in impact melt ejecta. Nat Geosci. 2013;6:1018–1022. doi: 10.1038/ngeo1996. DOI
Andronikov A, Lauretta D, Andronikova I, Maxwell R. On the possibility of a late Pleistocene extraterrestrial impact: LA-ICP-MS Analysis of the Black Mat and Usselo Horizon Samples. 74th Annual Meteoritical Society Meeting. 2011;46:A11–A11.
Andronikov A, et al. In search for fingerprints of an extraterrestrial event: Trace element characteristics of sediments from the lake Medvedevskoye (Karelian Isthmus, Russia) Dokl Earth Sci. 2014;457:819–823. doi: 10.1134/S1028334X14070022. DOI
Andronikov AV, Andronikova IE. Sediments from Around the Lower Younger Dryas Boundary (USA): Implications from LA-ICP-Analysis. Geogr Ann A. 2016;98:221–236. doi: 10.1111/geoa.12132. DOI
Andronikov AV, Hoesel A, Andronikova IE, Hoek WZ. Trace Element Distribution and Implications in Sediments Across the Allerød-Younger Dryas Boundary in the Netherlands and Belgium. Geogr Ann A. 2016;98:325–345. doi: 10.1111/geoa.12140. DOI
Andronikov AV, et al. Geochemical evidence of the presence of volcanic and meteoritic materials in Late Pleistocene lake sediments of Lithuania. Quat Int. 2015;386:18–29. doi: 10.1016/j.quaint.2014.10.005. DOI
Schultz, P. et al. Late Pleistocene Fireballs Over the Atacama Desert, Chile. Lunar and Planetary Science Conference50 (2019).
Harris, R. & Schultz, P. When Rubble Piles Attack: The Menagerie of Microscopic Meteorite Debris in Pica Impact Glass. Lunar and Planetary Science Conference50 (2019).
Thackeray JF, Scott L. The Younger Dryas in the Wonderkrater sequence, South Africa? Annals of the Transvaal Museum. 2006;43:111–112.
Mahaney W, Krinsley DH, Milner MW, Fischer R, Langworthy K. Did the Black-Mat Impact/Airburst Reach the Antarctic? Evidence from New Mountain Near the Taylor Glacier in the Dry Valley Mountains. J Geol. 2018;126:285–305. doi: 10.1086/697248. DOI
Mahaney WC. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma. Geomorphology. 2010;116:48–57. doi: 10.1016/j.geomorph.2009.10.007. DOI
Mahaney WC. Cosmic airburst on developing Allerød substrates (soils) in the Western Alps, Mt. Viso Area. Stud Quat. 2018;35:1–21.
Napier, W. M. The influx of comets and their debris in Accretion of Extraterrestrial Matter Throughout Earth’s History (eds. Peucker-Ehrenbrink, B. & Schmitz, B.) 51–74 (Springer, 2001).