Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C

. 2020 Mar 06 ; 10 (1) : 4185. [epub] 20200306

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32144395
Odkazy

PubMed 32144395
PubMed Central PMC7060197
DOI 10.1038/s41598-020-60867-w
PII: 10.1038/s41598-020-60867-w
Knihovny.cz E-zdroje

At Abu Hureyra (AH), Syria, the 12,800-year-old Younger Dryas boundary layer (YDB) contains peak abundances in meltglass, nanodiamonds, microspherules, and charcoal. AH meltglass comprises 1.6 wt.% of bulk sediment, and crossed polarizers indicate that the meltglass is isotropic. High YDB concentrations of iridium, platinum, nickel, and cobalt suggest mixing of melted local sediment with small quantities of meteoritic material. Approximately 40% of AH glass display carbon-infused, siliceous plant imprints that laboratory experiments show formed at a minimum of 1200°-1300 °C; however, reflectance-inferred temperatures for the encapsulated carbon were lower by up to 1000 °C. Alternately, melted grains of quartz, chromferide, and magnetite in AH glass suggest exposure to minimum temperatures of 1720 °C ranging to >2200 °C. This argues against formation of AH meltglass in thatched hut fires at 1100°-1200 °C, and low values of remanent magnetism indicate the meltglass was not created by lightning. Low meltglass water content (0.02-0.05% H2O) is consistent with a formation process similar to that of tektites and inconsistent with volcanism and anthropogenesis. The wide range of evidence supports the hypothesis that a cosmic event occurred at Abu Hureyra ~12,800 years ago, coeval with impacts that deposited high-temperature meltglass, melted microspherules, and/or platinum at other YDB sites on four continents.

Zobrazit více v PubMed

Firestone RB, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Nat Acad Sci. 2007;104:16016–16021. doi: 10.1073/pnas.0706977104. PubMed DOI PMC

Kennett JP, et al. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents. Proc Nat Acad Sci. 2015;112:E4344–4353. doi: 10.1073/pnas.1507146112. PubMed DOI PMC

Napier WM. Palaeolithic extinctions and the Taurid Complex. Mon Not R Astron Soc. 2010;405:1901–1906.

Napier W. The hazard from fragmenting comets. Monthly Notices of the Royal Astronomical Society. 2019;488:1822–1827.

Wittke James H., Weaver James C., Bunch Ted E., Kennett James P., Kennett Douglas J., Moore Andrew M. T., Hillman Gordon C., Tankersley Kenneth B., Goodyear Albert C., Moore Christopher R., Daniel I. Randolph, Ray Jack H., Lopinot Neal H., Ferraro David, Israde-Alcántara Isabel, Bischoff James L., DeCarli Paul S., Hermes Robert E., Kloosterman Johan B., Revay Zsolt, Howard George A., Kimbel David R., Kletetschka Gunther, Nabelek Ladislav, Lipo Carl P., Sakai Sachiko, West Allen, Firestone Richard B. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proceedings of the National Academy of Sciences. 2013;110(23):E2088–E2097. doi: 10.1073/pnas.1301760110. PubMed DOI PMC

LeCompte M. A., Goodyear A. C., Demitroff M. N., Batchelor D., Vogel E. K., Mooney C., Rock B. N., Seidel A. W. Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proceedings of the National Academy of Sciences. 2012;109(44):E2960–E2969. doi: 10.1073/pnas.1208603109. PubMed DOI PMC

Wu, Y., Sharma, M., LeCompte, M. A., Demitroff, M. N. & Landis, J. D. Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proc Nat Acad Sci110, E3557-3566 (2013). PubMed PMC

Bunch TE, et al. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Nat Acad Sci. 2012;109:E1903–E1912. doi: 10.1073/pnas.1204453109. PubMed DOI PMC

Pino M, et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci Rep. 2019;9:4413. doi: 10.1038/s41598-018-38089-y. PubMed DOI PMC

Kletetschka G, et al. Cosmic-impact event in lake sediments from Central Europe postdates the Laacher See eruption and marks onset of the younger Dryas. The Journal of Geology. 2018;126:561–575. doi: 10.1086/699869. DOI

Israde-Alcantara I., Bischoff J. L., Dominguez-Vazquez G., Li H.-C., DeCarli P. S., Bunch T. E., Wittke J. H., Weaver J. C., Firestone R. B., West A., Kennett J. P., Mercer C., Xie S., Richman E. K., Kinzie C. R., Wolbach W. S. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proceedings of the National Academy of Sciences. 2012;109(13):E738–E747. doi: 10.1073/pnas.1110614109. PubMed DOI PMC

Kinzie CR, et al. Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. J Geol. 2014;122:475–506. doi: 10.1086/677046. DOI

Wolbach WS, et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. J Geol. 2018;126:165–184. doi: 10.1086/695703. DOI

Wolbach WS, et al. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. J Geol. 2018;126:185–205. doi: 10.1086/695704. DOI

Moore CR, et al. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Sci Rep. 2017;7:44031. doi: 10.1038/srep44031. PubMed DOI PMC

Moore CR, et al. Sediment cores from White Pond, South Carolina, contain a platinum anomaly, pyrogenic carbon peak, and coprophilous spore decline at 12.8 ka. Scientific Reports. 2019;9:1–11. doi: 10.1038/s41598-018-37186-2. PubMed DOI PMC

Petaev MI, Huang S, Jacobsen SB, Zindler A. Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proc Nat Acad Sci. 2013;110:12917–12920. doi: 10.1073/pnas.1303924110. PubMed DOI PMC

Andronikov AV, et al. Implications from chemical, structural and mineralogical studies of magnetic microspherules from around the lower Younger Dryas boundary (New Mexico, USA) Geogr Ann A. 2016;98:39–59. doi: 10.1111/geoa.12122. DOI

Firestone RB, et al. Analysis of the Younger Dryas impact layer. J Siberian Fed Univ. 2010;1:30–62.

Kurbatov AV, et al. Discovery of a nanodiamond-rich layer in the Greenland ice sheet. J Glaciol. 2010;56:747–757. doi: 10.3189/002214310794457191. DOI

Kennett DJ, et al. Nanodiamonds in the Younger Dryas boundary sediment layer. Science. 2009;323:94. doi: 10.1126/science.1162819. PubMed DOI

Kennett DJ, et al. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments. Proc Nat Acad Sci. 2009;106:12623–12628. doi: 10.1073/pnas.0906374106. PubMed DOI PMC

Anderson DG, Goodyear AC, Kennett J, West A. Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quat Int. 2011;242:570–583. doi: 10.1016/j.quaint.2011.04.020. DOI

Moore A, Kennett D. Cosmic impact, the Younger Dryas, Abu Hureyra, and the inception of agriculture in Western Asia. Eurasian Prehist. 2013;10:57–66.

Van Hoesel A, Hoek WZ, Pennock GM, Drury MR. The Younger Dryas impact hypothesis: a critical review. Quat Sci Rev. 2014;83:95–114. doi: 10.1016/j.quascirev.2013.10.033. DOI

Boslough, M. et al. Arguments and evidence against a Younger Dryas impact event in Climates, landscapes, civilizations, Geophysical Monograph Series Vol. 198 (eds. Giosan, L. et al.) 13–26 (Am Geophys Union, 2012).

Holliday V, Surovell T, Johnson E. A blind test of the Younger Dryas impact hypothesis. PloS One. 2016;11:e0155470. doi: 10.1371/journal.pone.0155470. PubMed DOI PMC

Holliday VT, Surovell T, Meltzer DJ, Grayson DK, Boslough M. The Younger Dryas impact hypothesis: a cosmic catastrophe. Quat Sci. 2014;29:515–530. doi: 10.1002/jqs.2724. DOI

Surovell TA, et al. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proc Nat Acad Sci. 2009;106:18155–18158. doi: 10.1073/pnas.0907857106. PubMed DOI PMC

Thy P, Willcox G, Barfod GH, Fuller DQ. Anthropogenic origin of siliceous scoria droplets from Pleistocene and Holocene archaeological sites in northern Syria. J Archaeol Sci. 2015;54:193–209. doi: 10.1016/j.jas.2014.11.027. DOI

Moore, A. M. T., Hillman, G. C. & Legge, A. J. Village on the Euphrates: from foraging to farming at Abu Hureyra. 585 (Oxford University Press, 2000).

Heide K, Heide G. Vitreous state in nature—Origin and properties. Chem Erde. 2011;71:305–335. doi: 10.1016/j.chemer.2011.10.001. DOI

Schultz PH, Harris RS, Clemett SJ, Thomas-Keprta KL, Zárate M. Preserved Flora and Organics in Impact Melt Breccias. Geology. 2014;42:515–518. doi: 10.1130/G35343.1. DOI

Ascough PL. Charcoal reflectance measurements: implications for structural characterization and assessment of diagenetic alteration. J Archaeol Sci. 2010;37:1590–1599. doi: 10.1016/j.jas.2010.01.020. DOI

Braadbaart F, Poole I. Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. J Archaeol Sci. 2008;35:2434–2445. doi: 10.1016/j.jas.2008.03.016. DOI

Gurov, E. P., Permiakov, V. & Koeberl, C. Chromferide Found in Impact Melt Rocks of the El’gygytgyn Crater, Chukotka, Russia. 50th Lunar and Planetary Science Conference 2019 (2019).

Ebel DS, Grossman L. Condensation in dust-enriched systems. Geochim Cosmochim Acta. 2000;64:339–366. doi: 10.1016/S0016-7037(99)00284-7. DOI

Eliopoulos DG, Economou-Eliopoulos M, Apostolikas A, Golightly JP. Geochemical features of nickel-laterite deposits from the Balkan Peninsula and Gordes, Turkey: The genetic and environmental significance of arsenic. Ore Geol Rev. 2012;48:413–427. doi: 10.1016/j.oregeorev.2012.05.008. DOI

Koeberl, C. The geochemistry and cosmochemistry of impacts. Planets, Asteriods, Comets And The Solar System, 73–118 (2014).

Sheffer, A. & Melosh, H. J. Why Moldavites are reduced. 36th Annual Lunar and Planetary Science Conference (2005).

Hikichi Y, Nomura T. Melting Temperatures of Monazite and Xenotime. J Am Ceram Soc. 1987;70:252–253.

Nagata T, Yama-Ai M, Akimoto S. Memory of Initial Remanent Magnetization and Number of Repeating of Heat Treatments in Low-temperature Behaviour of Haematite. Nature. 1961;190:620–621. doi: 10.1038/190620a0. DOI

Wasilewski P, Kletetschka G. Lodestone: Natures only permanent magnet‐What it is and how it gets charged. Geophys Res Lett. 1999;26:2275–2278. doi: 10.1029/1999GL900496. DOI

Kletetschka G, Acuna MH, Kohout T, Wasilewski PJ, Connerney JEP. An empirical scaling law for acquisition of thermoremanent magnetization. Earth Planet Sci Lett. 2004;226:521–528. doi: 10.1016/j.epsl.2004.08.001. DOI

Fu RR, Weiss BP. Detrital remanent magnetization in the solar nebula. J Geophys Res. 2012;117:1–19.

Crawford DA, Schultz PH. Laboratory observations of impact–generated magnetic fields. Nature. 1988;336:50. doi: 10.1038/336050a0. DOI

Crawford DA, Schultz PH. Laboratory investigations of impact-generated plasma. Journal of Geophysical Research: Planets. 1991;96:18807–18817. doi: 10.1029/91JE02012. DOI

Kletetschka G, Kohout T, Wasilewski PJ. Magnetic remanence in the Murchison meteorite. Meteorit Planet Sci. 2003;38:399–405. doi: 10.1111/j.1945-5100.2003.tb00275.x. DOI

Kletetschka, G., Wasilewski, P. J., Kohout, T., Adachi, T. & Mikula, V. Protocol for first order paleofields estimation. Meteorit Planet Sci41, A97-A97 (2006).

Kohout T, Kletetschka G, Donadini F, Fuller M, Herrero-Bervera E. Analysis of the natural remanent magnetization of rocks by measuring the efficiency ratio through alternating field demagnetization spectra. Stud Geophys Geod. 2008;52:225–235. doi: 10.1007/s11200-008-0015-1. DOI

Kletetschka G, Wieczorek MA. Fundamental Relations of Mineral Specific Magnetic Carriers for Paleointensity Determination. Phys Earth Planet Inter. 2017;272:44–49. doi: 10.1016/j.pepi.2017.09.008. DOI

Beran, A. & Koeberl, C. Water in tektites and impact glasses by Fourier‐transformed infrared spectrometry. Meteorit Planet Sci32 (1997).

Newman S, Stolper EM, Epstein S. Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique. American Mineralogist. 1986;71:1527–1541.

Zhang Y, Martin A, Berndt H, Lücke B, Meisel M. FTIR investigation of surface intermediates formed during the ammoxidation of toluene over vanadyl pyrophosphate. Journal of Molecular Catalysis A: Chemical. 1997;118:205–214. doi: 10.1016/S1381-1169(96)00383-4. DOI

El Goresy A. Baddeleyite and its significance in impact glasses. Journal of Geophysical Research. 1965;70:3453–3456. doi: 10.1029/JZ070i014p03453. DOI

Thy P, Segobye AK, Ming DW. Implications of prehistoric glassy biomass slag from east-central Botswana. J Archaeol Sci. 1995;22:629–637. doi: 10.1016/S0305-4403(95)80148-0. DOI

Scott AC, et al. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”. Geophys Res Lett. 2010;37:1–5. doi: 10.1029/2010GL043345. DOI

van Hoesel A, et al. Nanodiamonds and wildfire evidence in the Usselo horizon postdate the Allerød-Younger Dryas boundary. Proc Nat Acad Sci. 2012;109:7648–7653. doi: 10.1073/pnas.1120950109. PubMed DOI PMC

Garde, A. A. et al. Organic Carbon from the Hiawatha Impact Crater, North-West Greenland. 50th Lunar and Planetary Science Conference 2019 (2019).

Hermes RE, Strickfaden WBJ. A new look at trinitite. Nucl Weap J. 2005;2:2–7.

Glasstone, S. & Dolan, P. J. The Effects of Nuclear Weapons. 653 (US Dept of Defense, U.S. Government Printing Office, 1977).

Osinski GR, et al. The Dakhleh Glass: product of an impact airburst or cratering event in the Western Desert of Egypt? Meteorit Planet Sci. 2008;43:2089–2106. doi: 10.1111/j.1945-5100.2008.tb00663.x. DOI

Schultz PH, et al. The record of Miocene impacts in the Argentine Pampas. Meteoritics & Planetary Science. 2006;41:749–771. doi: 10.1111/j.1945-5100.2006.tb00990.x. DOI

Daly RT, Schultz PH. The delivery of water by impacts from planetary accretion to present. Science Advances. 2018;4:eaar2632. doi: 10.1126/sciadv.aar2632. PubMed DOI PMC

Harris, R., Schultz, P. & King, P. The fate of water in melts produced during natural and experimental impacts into wet, fine-grained sedimentary targets in Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process. 57–58 (2007).

Koeberl C. Geochemistry and origin of Muong Nong-type tektites. Geochim Cosmochim Acta. 1992;56:1033–1064. doi: 10.1016/0016-7037(92)90046-L. DOI

Howard KT, et al. Biomass preservation in impact melt ejecta. Nat Geosci. 2013;6:1018–1022. doi: 10.1038/ngeo1996. DOI

Andronikov A, Lauretta D, Andronikova I, Maxwell R. On the possibility of a late Pleistocene extraterrestrial impact: LA-ICP-MS Analysis of the Black Mat and Usselo Horizon Samples. 74th Annual Meteoritical Society Meeting. 2011;46:A11–A11.

Andronikov A, et al. In search for fingerprints of an extraterrestrial event: Trace element characteristics of sediments from the lake Medvedevskoye (Karelian Isthmus, Russia) Dokl Earth Sci. 2014;457:819–823. doi: 10.1134/S1028334X14070022. DOI

Andronikov AV, Andronikova IE. Sediments from Around the Lower Younger Dryas Boundary (USA): Implications from LA-ICP-Analysis. Geogr Ann A. 2016;98:221–236. doi: 10.1111/geoa.12132. DOI

Andronikov AV, Hoesel A, Andronikova IE, Hoek WZ. Trace Element Distribution and Implications in Sediments Across the Allerød-Younger Dryas Boundary in the Netherlands and Belgium. Geogr Ann A. 2016;98:325–345. doi: 10.1111/geoa.12140. DOI

Andronikov AV, et al. Geochemical evidence of the presence of volcanic and meteoritic materials in Late Pleistocene lake sediments of Lithuania. Quat Int. 2015;386:18–29. doi: 10.1016/j.quaint.2014.10.005. DOI

Schultz, P. et al. Late Pleistocene Fireballs Over the Atacama Desert, Chile. Lunar and Planetary Science Conference50 (2019).

Harris, R. & Schultz, P. When Rubble Piles Attack: The Menagerie of Microscopic Meteorite Debris in Pica Impact Glass. Lunar and Planetary Science Conference50 (2019).

Thackeray JF, Scott L. The Younger Dryas in the Wonderkrater sequence, South Africa? Annals of the Transvaal Museum. 2006;43:111–112.

Mahaney W, Krinsley DH, Milner MW, Fischer R, Langworthy K. Did the Black-Mat Impact/Airburst Reach the Antarctic? Evidence from New Mountain Near the Taylor Glacier in the Dry Valley Mountains. J Geol. 2018;126:285–305. doi: 10.1086/697248. DOI

Mahaney WC. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma. Geomorphology. 2010;116:48–57. doi: 10.1016/j.geomorph.2009.10.007. DOI

Mahaney WC. Cosmic airburst on developing Allerød substrates (soils) in the Western Alps, Mt. Viso Area. Stud Quat. 2018;35:1–21.

Napier, W. M. The influx of comets and their debris in Accretion of Extraterrestrial Matter Throughout Earth’s History (eds. Peucker-Ehrenbrink, B. & Schmitz, B.) 51–74 (Springer, 2001).

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...