Shocked quartz at the Younger Dryas onset (12.8 ka) supports cosmic airbursts/impacts contributing to North American megafaunal extinctions and collapse of the Clovis technocomplex
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40929082
PubMed Central
PMC12422476
DOI
10.1371/journal.pone.0319840
PII: PONE-D-24-52648
Knihovny.cz E-zdroje
- MeSH
- archeologie MeSH
- křemen * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Severní Amerika MeSH
- Názvy látek
- křemen * MeSH
Shocked quartz grains are an accepted indicator of crater-forming cosmic impact events, which also typically produce amorphous silica along the fractures. Furthermore, previous research has shown that shocked quartz can form when nuclear detonations, asteroids, and comets produce near-surface or "touch-down" airbursts. When cosmic airbursts detonate with enough energy and at sufficiently low altitude, the resultant relatively small, high-velocity fragments may strike Earth's surface with high enough pressures to generate thermal and mechanical shock that can fracture quartz grains and introduce molten silica into the fractures. Here, we report the discovery of shocked quartz grains in a layer dating to the Younger Dryas (YD) onset (12.8 ka) in three classic archaeological sequences in the Southwestern United States: Murray Springs, Arizona; Blackwater Draw, New Mexico; and Arlington Canyon, California. These sites were foundational in demonstrating that the extinction or observed population bottlenecks of many megafaunal species and the coeval collapse/reorganization of the Clovis technocomplex in North America co-occurred at or near the YD onset. Using a comprehensive suite of 10 analytical techniques, including electron microscopy (TEM, SEM, CL, and EBSD), we have identified grains with glass-filled fractures similar to shocked grains associated with nuclear explosions and 27 accepted impact craters of different ages (e.g., Meteor Crater, 50 ka; Chesapeake Bay, 35 Ma; Chicxulub, 66 Ma; Manicouagan, 214 Ma) and produced in 11 laboratory shock experiments. In addition, we used hydrocode modeling to explore the temperatures, pressures, and shockwave velocities associated with the airburst of a 100-m fragment of a comet and conclude that they are sufficient to produce shocked quartz. These shocked grains co-occur with previously reported peak concentrations in platinum, meltglass, soot, and nanodiamonds, along with microspherules, similar to those found in ~28 microspherule layers that are accepted as evidence for cosmic impact events, even in the absence of a known crater. The discovery of apparently thermally-altered shocked quartz grains at these three key archaeological sites supports a cosmic impact as a major contributing factor in the megafaunal extinctions and the collapse of the Clovis technocomplex at the YD onset.
Brody School of Medicine East Carolina University Greenville North Carolina United States of America
CAMCOR University of Oregon Eugene Oregon United States of America
College of Humanities Arts and Social Sciences Flinders University Bedford Park South Australia
Comet Research Group Prescott Arizona United States of America
Department of Chemistry and Biochemistry DePaul University Chicago Illinois United States of America
Faculty of Science Charles University Prague Czech Republic
Geophysical Institute University of Alaska Fairbanks Alaska United States of America
Santa Barbara Museum of Natural History Santa Barbara California United States of America
Virginia Institute of Marine Science Gloucester Point Virginia United States of America
Zobrazit více v PubMed
Firestone RB, West A, Kennett JP, Becker L, Bunch TE, Revay ZS, et al. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proc Natl Acad Sci U S A. 2007;104(41):16016–21. doi: 10.1073/pnas.0706977104 PubMed DOI PMC
Haynes CV Jr. Younger Dryas “black mats” and the Rancholabrean termination in North America. Proc Natl Acad Sci U S A. 2008;105(18):6520–5. doi: 10.1073/pnas.0800560105 PubMed DOI PMC
Anderson DG, Goodyear AC, Kennett J, West A. Multiple lines of evidence for possible human population decline/settlement reorganization during the early Younger Dryas. Quat Int. 2011;242:570–83.
Vartanyan S, Arslanov KA, Tertychnaya T, Chernov S. Radiocarbon dating evidence for mammoths on Wrangel island, Arctic ocean, until 2000 BC1. Radiocarbon. 1995;37(1):1–6.
Martin PS. The Discovery of America: The first Americans may have swept the Western Hemisphere and decimated its fauna within 1000 years. Science. 1973;179(4077):969–74. doi: 10.1126/science.179.4077.969 PubMed DOI
Broecker WS. Paleocean circulation during the Last Deglaciation: A bipolar seesaw?. Paleoceanography. 1998;13(2):119–21. doi: 10.1029/97pa03707 DOI
Broecker WS. Was the Younger Dryas triggered by a flood?. Science. 2006;312(5777):1146–8. doi: 10.1126/science.1123253 PubMed DOI
Broecker WS, Andree M, Wolfli W, Oeschger H, Bonani G, Kennett J, et al. The chronology of the last Deglaciation: Implications to the cause of the Younger Dryas Event. Paleoceanography. 1988;3(1):1–19. doi: 10.1029/pa003i001p00001 DOI
Broecker WS, Kennett JP, Flower BP, Teller JT, Trumbore S, Bonani G, et al. Routing of meltwater from the Laurentide Ice Sheet during the Younger Dryas cold episode. Nature. 1989;341(6240):318–21. doi: 10.1038/341318a0 DOI
Moore AMT, Kennett JP, Napier WM, LeCompte MA, Moore CR, West A. Abu Hureyra, Syria, Part 3: Comet airbursts triggered major climate change 12,800 years ago that initiated the transition to agriculture. Airbursts and Cratering Impacts. 2023;1(1). doi: 10.14293/aci.2023.0004 DOI
Napier WM. Palaeolithic extinctions and the Taurid Complex. Mon Not R Astron Soc. 2010;405:1901–6.
Wolbach WS, Ballard JP, Mayewski PA, Adedeji V, Bunch TE, Firestone RB. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 1. Ice cores and glaciers. Journal of Geology. 2018;126(2):165–84.
Napier WM, Bunch TE, Kennett JP, Wittke JH, Tankersley KB, Kletetschka G, et al. Reply to Boslough PubMed DOI PMC
Napier WM. The hazard from fragmenting comets. Mon Not R Astron Soc. 2019;488(2):1822–7.
Napier WM. Comets, Catastrophes and Earth’s History. Journal of Cosmology. 2009;2:344–55.
Glass BP, Simonson BM. Mesozoic spherule/impact ejecta layers. Distal impact ejecta layers. Springer. 2013. p. 245–320.
Glass BP, Simonson BM. Distal Impact Ejecta Layers: Spherules and More. Elements. 2012;8(1):43–8. doi: 10.2113/gselements.8.1.43 DOI
Moore AMT, Kennett JP, LeCompte M, Moore CR, Li Y-Q, Kletetschka GK. Abu Hureyra, Syria, Part 1: Shock-fractured quartz grains support 12,800-year-old cosmic airburst at the Younger Dryas onset. Airbursts and Cratering Impacts. 2023;1(1):1–28.
Moore CR, LeCompte MA, Kennett JP, Brooks MJ, Firestone RB, Ivester AH, et al. Platinum, shock-fractured quartz, microspherules, and meltglass widely distributed in Eastern USA at the Younger Dryas onset (12.8 ka). Airbursts and Cratering Impacts. 2024;2(1). doi: 10.14293/aci.2024.0003 DOI
Boslough M. Computational modeling of low-altitude airbursts. AGU Fall Meeting Abstracts, 2007.
Boslough M. Airburst Modeling. First International Workshop on Potentially Hazardous Asteroids Characterization, Atmospheric Entry and Risk Assessment. 2015.
Boslough MBE, Crawford DA. Low-altitude airbursts and the impact threat. International Journal of Impact Engineering. 2008;35(12):1441–8. doi: 10.1016/j.ijimpeng.2008.07.053 DOI
Boslough M, Schultz P, Harris R. Hypervelocity Airburst Shower Formation of the Pica Glass. 13th Planetary Crater Consortium Meeting. 2022.
Wolbach WS, Ballard JP, Mayewski PA, Parnell AC, Cahill N, Adedeji V. Extraordinary biomass-burning episode and impact winter triggered by the Younger Dryas cosmic impact ∼12,800 years ago. 2. Lake, marine, and terrestrial sediments. Journal of Geology. 2018;126(2):185–205.
Pino M, Abarzúa AM, Astorga G, Martel-Cea A, Cossio-Montecinos N, Navarro RX, et al. Sedimentary record from Patagonia, southern Chile supports cosmic-impact triggering of biomass burning, climate change, and megafaunal extinctions at 12.8 ka. Sci Rep. 2019;9(1):4413. doi: 10.1038/s41598-018-38089-y PubMed DOI PMC
Kennett J, Kennett D, LeCompte M, West A. Potential consequences of the YDB cosmic impact at 12.8 ka. In: Goodyear AC, Moore AM, editors. Early human life on the southeastern coastal plain. Gainesville, FL: University Press of Florida. 2018. p. 175–92.
Lee C-TA, Wasserburg GJ, Kyte FT. Platinum-group elements (PGE) and rhenium in marine sediments across the Cretaceous–Tertiary boundary: constraints on Re-PGE transport in the marine environment. Geochimica et Cosmochimica Acta. 2003;67(4):655–70. doi: 10.1016/s0016-7037(02)01135-3 DOI
McDonald I. Clearwater East impact structure: A re‐interpretation of the projectile type using new platinum‐group element data from meteorites. Meteoritics & Planetary Scien. 2002;37(3):459–64. doi: 10.1111/j.1945-5100.2002.tb00828.x DOI
Tagle R, Hecht L. Geochemical identification of projectiles in impact rocks. Meteorit & Planetary Scien. 2006;41(11):1721–35. doi: 10.1111/j.1945-5100.2006.tb00448.x DOI
Alvarez LW, Alvarez W, Asaro F, Michel HV. Extraterrestrial cause for the cretaceous-tertiary extinction. Science. 1980;208(4448):1095–108. doi: 10.1126/science.208.4448.1095 PubMed DOI
French BM, Koeberl C. The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth-Science Reviews. 2010;98(1–2):123–70. doi: 10.1016/j.earscirev.2009.10.009 DOI
Simonson BM, Glass BP. Spherule layers—records of ancient impacts. Annu Rev Earth Planet Sci. 2004;32(1):329–61. doi: 10.1146/annurev.earth.32.101802.120458 DOI
Hough RM, Gilmour I, Pillinger CT. Carbon isotope study of impact diamonds in Chicxulub ejecta at Cretaceous-Tertiary boundary sites in Mexico and the Western Interior of the United States. In: Dressler BO, Sharpton VL, editors. Large Meteorite Impacts and Planetary Evolution II, Special Paper. 1999. p. 215–22.
Schmitt R, Lapke C, Lingemann C, Siebenschock M, Stöffler D. Distribution and origin of impact diamonds in the Ries crater, Germany. Geological Society of America. 2005.
Adatte T, Keller G, Stüben D, Harting M, Kramar U, Stinnesbeck W, et al. Late Maastrichtian and K/T paleoenvironment of the eastern Tethys (Israel): mineralogy, trace and platinum group elements, biostratigraphy and faunal turnovers. Bulletin de la Société Géologique de France. 2005;176(1):37–55. doi: 10.2113/176.1.37 DOI
Wolbach WS, Gilmour I, Anders E. Major wildfires at the Cretaceous/Tertiary boundary. Geological Society of America Special Paper. 1990;247:391–400.
Wolbach WS, Gilmour I, Anders E, Orth CJ, Brooks RR. Global fire at the Cretaceous–Tertiary boundary. Nature. 1988;335(6192):744–744. doi: 10.1038/335744e0 DOI
Varricchio DJ, Raven RF, Wolbach WS, Elsik WC, Witzke BJ. Soot and palynologic analysis of Manson impact-related strata (Upper Cretaceous) of Iowa and South Dakota, USA. Cretaceous Research. 2009;30(1):127–34. doi: 10.1016/j.cretres.2008.06.005 DOI
Israde-Alcántara I, Bischoff JL, Domínguez-Vázquez G, Li H-C, DeCarli PS, Bunch TE, et al. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proc Natl Acad Sci U S A. 2012;109(13):E738-47. doi: 10.1073/pnas.1110614109 PubMed DOI PMC
Kurbatov AV, Mayewski PA, Steffensen JP, West A, Kennett DJ, Kennett JP. Discovery of a nanodiamond-rich layer in the Greenland ice sheet. J Glaciol. 2010;56(199):747–57.
Fayek M, Anovitz LM, Allard LF, Hull S. Framboidal iron oxide: Chondrite-like material from the black mat, Murray Springs, Arizona. Earth and Planetary Science Letters. 2012;319–320:251–8. doi: 10.1016/j.epsl.2011.11.033 DOI
LeCompte MA, Goodyear AC, Demitroff MN, Batchelor D, Vogel EK, Mooney C, et al. Independent evaluation of conflicting microspherule results from different investigations of the Younger Dryas impact hypothesis. Proc Natl Acad Sci U S A. 2012;109(44):E2960-9. doi: 10.1073/pnas.1208603109 PubMed DOI PMC
Bunch TE, Hermes RE, Moore AMT, Kennett DJ, Weaver JC, Wittke JH, et al. Very high-temperature impact melt products as evidence for cosmic airbursts and impacts 12,900 years ago. Proc Natl Acad Sci U S A. 2012;109(28):E1903-12. doi: 10.1073/pnas.1204453109 PubMed DOI PMC
Wittke JH, Weaver JC, Bunch TE, Kennett JP, Kennett DJ, Moore AMT, et al. Evidence for deposition of 10 million tonnes of impact spherules across four continents 12,800 y ago. Proc Natl Acad Sci U S A. 2013;110(23):E2088-97. doi: 10.1073/pnas.1301760110 PubMed DOI PMC
Moore CR, West A, LeCompte MA, Brooks MJ, Daniel IR Jr, Goodyear AC, et al. Widespread platinum anomaly documented at the Younger Dryas onset in North American sedimentary sequences. Sci Rep. 2017;7:44031. doi: 10.1038/srep44031 PubMed DOI PMC
Mahaney WC, Kalm V, Krinsley DH, Tricart P, Schwartz S, Dohm J, et al. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma. Geomorphology. 2010;116(1–2):48–57. doi: 10.1016/j.geomorph.2009.10.007 DOI
Mahaney WC. Cosmic airburst on developing Allerød substrates (soils) in the Western Alps, Mt. Viso area. Stud Quat. 2018;35:1–21.
Kennett JP, Kennett DJ, Culleton BJ, Aura Tortosa JE, Bischoff JL, Bunch TE, et al. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents. Proc Natl Acad Sci U S A. 2015;112(32):E4344-53. doi: 10.1073/pnas.1507146112 PubMed DOI PMC
Kennett DJ, Kennett JP, West A, Mercer C, Hee SSQ, Bement L, et al. Nanodiamonds in the Younger Dryas boundary sediment layer. Science. 2009;323(5910):94. doi: 10.1126/science.1162819 PubMed DOI
LeCompte MA, West A, Adededji A, Demitroff M, Witwer T, Langenburg RA. The Bowser Road Mastodon and the Younger Dryas Impact Hypothesis, Appendix 3. In: Gramly R, editor. The Archaeological Recovery of the Bowser Road Mastodon, Orange County NY. Santa Clara, CA: Persimmon Press. 2017.
Teller J, Boyd M, LeCompte M, Kennett J, West A, Telka A, et al. A multi-proxy study of changing environmental conditions in a Younger Dryas sequence in southwestern Manitoba, Canada, and evidence for an extraterrestrial event. Quat Res. 2019;93:60–87. doi: 10.1017/qua.2019.46 DOI
Wu Y, Sharma M, LeCompte MA, Demitroff MN, Landis JD. Origin and provenance of spherules and magnetic grains at the Younger Dryas boundary. Proc Natl Acad Sci U S A. 2013;110(38):E3557-66. doi: 10.1073/pnas.1304059110 PubMed DOI PMC
Thackeray JF, Scott L. The Younger Dryas in the Wonderkrater Sequence, South Africa?. Annals of the Transvaal Museum. 2006;43(1):111–2.
Kinzie CR, Que Hee SS, Stich A, Tague KA, Mercer C, Razink JJ. Nanodiamond-rich layer across three continents consistent with major cosmic impact at 12,800 cal BP. Journal of Geology. 2014;122(5):475–506.
Petaev MI, Huang S, Jacobsen SB, Zindler A. Large Pt anomaly in the Greenland ice core points to a cataclysm at the onset of Younger Dryas. Proc Natl Acad Sci U S A. 2013;110(32):12917–20. doi: 10.1073/pnas.1303924110 PubMed DOI PMC
Andronikov A, Lauretta D, Andronikova I, Maxwell R. On the possibility of a late Pleistocene extraterrestrial impact: LA-ICP-MS analysis of the black mat and Usselo horizon samples. 74th Annual Meteoritical Society Meeting. 2011;46(SI, Supplement 1):A11–A.
Andronikov AV, Subetto DA, Lauretta DS, Andronikova IE, Drosenko DA, Kuznetsov DD, et al. In search for fingerprints of an extraterrestrial event: Trace element characteristics of sediments from the lake Medvedevskoye (Karelian Isthmus, Russia). Dokl Earth Sc. 2014;457(1):819–23. doi: 10.1134/s1028334x14070022 DOI
Andronikov AV, Andronikova IE. Sediments from around the Lower Younger Dryas Boundary (USA): Implications from LA-ICP-Analysis. Geogr Ann A. 2016;98:221–36.
Andronikov AV, Andronikova IE, Loehn CW, Lafuente B, Ballenger JA, Crawford GT. Implications from chemical, structural and mineralogical studies of magnetic microspherules from around the lower Younger Dryas Boundary (New Mexico, USA). Geogr Ann A. 2016;98(1):39–59.
Andronikov AV, Rudnickaitė E, Lauretta DS, Andronikova IE, Kaminskas D, Šinkūnas P. Geochemical evidence of the presence of volcanic and meteoritic materials in Late Pleistocene lake sediments of Lithuania. Quat Int. 2015;386:18–29.
Mahaney W, Krinsley DH, Milner MW, Fischer R, Langworthy K. Did the black-mat impact/airburst reach the Antarctic? Evidence from new mountain near the Taylor Glacier in the Dry Valley Mountains. J Geol. 2018;126(3):285–305.
Mahaney WC, Krinsley D, Kalm V. Evidence for a cosmogenic origin of fired glaciofluvial beds in the northwestern Andes: Correlation with experimentally heated quartz and feldspar. Sediment Geol. 2010;231:31–40.
Kennett DJ, Kennett JP, West GJ, Erlandson JM, Johnson JR, Hendy IL. Wildfire and abrupt ecosystem disruption on California’s Northern Channel Islands at the Ållerød-Younger Dryas boundary (13.0-12.9 ka). Quat Sci Rev. 2008;27(27):2530–45.
Vance Haynes C Jr. Geochronology of paleoenvironmental change, clovis type site, Blackwater Draw, New Mexico. Geoarchaeology. 1995;10(5):317–88. doi: 10.1002/gea.3340100502 DOI
Johnson JR, Stafford TW Jr, Ajie HO, Morris DP. Arlington springs revisited. Proceedings of the fifth California Islands symposium. 2002;5:541–5.
Hermes RE, Wenk HR, Kennett JP, Bunch TE, Moore CR, LeCompte MA. Microstructures in shocked quartz: linking nuclear airbursts and meteorite impacts. Airbursts and cratering impacts. 2023;1(1):1–40.
Haynes Jr C. Arizona’s famous Clovis sites could be displayed for public. Mammoth Trumpet. 1998;13(2):2–6.
Waters MR, Stafford TW Jr. Redefining the age of Clovis: implications for the peopling of the Americas. Science. 2007;315(5815):1122–6. doi: 10.1126/science.1137166 PubMed DOI
Collard M, Buchanan B, Hamilton MJ, O’Brien MJ. Spatiotemporal dynamics of the Clovis–Folsom transition. Journal of Archaeological Science. 2010;37(10):2513–9. doi: 10.1016/j.jas.2010.05.011 DOI
Haynes CV Jr. Centennial Field Guide. In: Hill ML, editor. Cordilleran Section of the Geological Society of America. 1: Geological Society of America; 1987. p. 23–8.
Ballenger JAM, Holliday VT, Kowler AL, Reitze WT, Prasciunas MM, Shane Miller D, et al. Evidence for Younger Dryas global climate oscillation and human response in the American Southwest. Quaternary International. 2011;242(2):502–19. doi: 10.1016/j.quaint.2011.06.040 DOI
Surovell TA, Boyd JR, Haynes CV Jr, Hodgins GWL. On the Dating of the Folsom Complex and its Correlation with the Younger Dryas, the End of Clovis, and Megafaunal Extinction. PaleoAmerica. 2016;2(2):81–9. doi: 10.1080/20555563.2016.1174559 DOI
Agenbroad LD, Johnson JR, Morris D, Stafford TW. Mammoths and humans as late Pleistocene contemporaries on Santa Rosa Island. Proceedings of the Sixth California Islands Symposium, 2005. 3–7.
Meltzer DJ, Holliday VT, Cannon MD, Miller DS. Chronological evidence fails to support claim of an isochronous widespread layer of cosmic impact indicators dated to 12,800 years ago. Proc Natl Acad Sci U S A. 2014;111(21):E2162-71. doi: 10.1073/pnas.1401150111 PubMed DOI PMC
Jorgeson IA, Breslawski RP, Fisher AE. Radiocarbon simulation fails to support the temporal synchroneity requirement of the Younger Dryas impact hypothesis. Quat res. 2020;96:123–39. doi: 10.1017/qua.2019.83 DOI
Holliday VT, Daulton TL, Bartlein PJ, Boslough MB, Breslawski RP, Fisher AE, et al. Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH). Earth-Science Reviews. 2023;247:104502. doi: 10.1016/j.earscirev.2023.104502 DOI
Holliday VT, Surovell T, Meltzer DJ, Grayson DK, Boslough M. The Younger Dryas impact hypothesis: a cosmic catastrophe. Quat Sci. 2014;29:515–30.
Boslough M, Nicoll K, Holliday V, Daulton T, Meltzer D, Pinter N. Arguments and evidence against a Younger Dryas impact event. In: Giosan L, Fuller D, Nicoll K, Flad R, Clift P, editors. Climates, landscapes, civilizations. Washington, DC: Am Geophys Union. 2012. p. 13–26.
Haynes Jr CV, Stanford DJ, Jodry M, Dickenson J, Montgomery JL, Shelley PH. A Clovis well at the type site 11,500 BC: The oldest prehistoric well in America. Geoarchaeology: An International Journal. 1999;14(5):455–70.
Bronk Ramsey C. OxCal 4.4.4. University of Cambridge. 2021. http://c14.arch.ox.ac.uk/oxcal
French BM. Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Washington DC: Lunar and Planetary Institute. 1998.
West A, Young M, Costa L, Kennett JP, Moore CR, LeCompte MA, et al. Modeling airbursts by comets, asteroids, and nuclear detonations: shock metamorphism, meltglass, and microspherules. Airbursts and Cratering Impacts. 2024;2(1). doi: 10.14293/aci.2024.0004 DOI
Richet P, Gillet P. Pressure-induced amorphization of minerals: a review. Eur J Mineral. 1997;9(5):907–34. doi: 10.1127/ejm/9/5/0907 DOI
Fritz J, Assis Fernandes V, Greshake A, Holzwarth A, Böttger U. On the formation of diaplectic glass: Shock and thermal experiments with plagioclase of different chemical compositions. Meteorit & Planetary Scien. 2019;54(7):1533–47. doi: 10.1111/maps.13289 DOI
HAMERS MF, DRURY MR. Scanning electron microscope‐cathodoluminescence (SEM‐CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. Meteorit & Planetary Scien. 2011;46(12):1814–31. doi: 10.1111/j.1945-5100.2011.01295.x DOI
Hamers MF, Pennock GM, Drury MR. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz. Phys Chem Minerals. 2016;44(4):263–75. doi: 10.1007/s00269-016-0858-x DOI
Hamers MF, Pennock GM, Herwegh M, Drury MR. Distinction between amorphous and healed planar deformation features in shocked quartz using composite color scanning electron microscope cathodoluminescence (SEM‐CL) imaging. Meteorit & Planetary Scien. 2016;51(10):1914–31. doi: 10.1111/maps.12711 DOI
Kennett DJ, Kennett JP, West A, West GJ, Bunch TE, Culleton BJ, et al. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments. Proc Natl Acad Sci U S A. 2009;106(31):12623–8. doi: 10.1073/pnas.0906374106 PubMed DOI PMC
Maiorana-Boutilier A, Mitra S, West A, Bischoff J, Louchouarn P, Norwood M, et al. Organic composition of Younger Dryas black mat. Geological Society of America Conference, Southeastern Section, 65th annual meeting 2016:4–1.
Haynes CV Jr, Boerner J, Domanik K, Lauretta D, Ballenger J, Goreva J. The Murray Springs Clovis site, Pleistocene extinction, and the question of extraterrestrial impact. Proc Natl Acad Sci U S A. 2010;107(9):4010–5. doi: 10.1073/pnas.0908191107 PubMed DOI PMC
Bohor B, Fisler D, Gratz AJ. Distinguishing between shock and tectonic lamellae with the SEM. Lunar and Planetary Science Conference. 1995;26:145.
Gratz A. Distinguishing shocked from tectonically deformed quartz by the use of the SEM and chemical etching. Earth and Planetary Science Letters. 1996;142(3–4):513–21. doi: 10.1016/0012-821x(96)00099-4 DOI
Madden MEE, Kring DA, Bodnar RJ. Shock reequilibration of fluid inclusions in Coconino sandstone from Meteor Crater, Arizona. Earth and Planetary Science Letters. 2006;241(1–2):32–46. doi: 10.1016/j.epsl.2005.10.008 DOI
Hamers MF. Identifying shock microstructures in quartz from terrestrial impacts: new scanning electron microscopy methods. UU Department of Earth Sciences. 2013.
Kalceff MAS, Phillips MR, Moon AR, Kalceff W. Cathodoluminescence microcharacterisation of silicon dioxide polymorphs. Cathodoluminescence in Geosciences. Springer. 2000. p. 193–224.
Moore AMT, Kennett JP, Napier WM, Bunch TE, Weaver JC, LeCompte M, et al. Evidence of Cosmic Impact at Abu Hureyra, Syria at the Younger Dryas Onset (~12.8 ka): High-temperature melting at >2200 °C. Sci Rep. 2020;10(1):4185. doi: 10.1038/s41598-020-60867-w PubMed DOI PMC
Powell JL. Premature rejection in science: The case of the Younger Dryas Impact Hypothesis. Sci Prog. 2022;105(1):368504211064272. doi: 10.1177/00368504211064272 PubMed DOI PMC
Sweatman MB. The Younger Dryas impact hypothesis: Review of the impact evidence. Earth-Science Reviews. 2021;218:103677. doi: 10.1016/j.earscirev.2021.103677 DOI
Sweatman MB, Powell JL, West A. Rebuttal of Holliday DOI
Pinter N, Scott AC, Daulton TL, Podoll A, Koeberl C, Anderson RS, et al. The Younger Dryas impact hypothesis: A requiem. Earth-Science Reviews. 2011;106(3–4):247–64. doi: 10.1016/j.earscirev.2011.02.005 DOI
Surovell TA, Holliday VT, Gingerich JAM, Ketron C, Haynes CV Jr, Hilman I, et al. An independent evaluation of the Younger Dryas extraterrestrial impact hypothesis. Proc Natl Acad Sci U S A. 2009;106(43):18155–8. doi: 10.1073/pnas.0907857106 PubMed DOI PMC
Scott AC, Pinter N, Collinson ME, Hardiman M, Anderson RS, Brain AP, et al. Fungus, not comet or catastrophe, accounts for carbonaceous spherules in the Younger Dryas “impact layer”. Geophys Res Lett. 2010;37(14):1–5.
Daulton TL, Pinter N, Scott AC. No evidence of nanodiamonds in Younger-Dryas sediments to support an impact event. Proc Natl Acad Sci U S A. 2010;107(37):16043–7. doi: 10.1073/pnas.1003904107 PubMed DOI PMC
Tian H, Schryvers D, Claeys P. Nanodiamonds do not provide unique evidence for a Younger Dryas impact. Proc Natl Acad Sci U S A. 2011;108(1):40–4. doi: 10.1073/pnas.1007695108 PubMed DOI PMC
Bement LC, Madden AS, Carter BJ, Simms AR, Swindle AL, Alexander HM, et al. Quantifying the distribution of nanodiamonds in pre-Younger Dryas to recent age deposits along Bull Creek, Oklahoma panhandle, USA. Proc Natl Acad Sci U S A. 2014;111(5):1726–31. doi: 10.1073/pnas.1309734111 PubMed DOI PMC
Moore AMT, Kennett JP, Napier WM, Bunch TE, Weaver JC, LeCompte MA. Abu Hureyra, Syria, Part 2: Additional evidence supporting the catastrophic destruction of this prehistoric village by a cosmic airburst ∼12,800 years ago. Airbursts and Cratering Impacts. 2023;1(1):1–36.
Ferriere L, Osinski GR. Shock metamorphism. In: Osinski GR, Pierazzo E, editors. Impact Cratering: Processes and Products. John Wiley & Sons. 2012. p. 106–24.
Goltrant O, Cordier P, Doukhan J-C. Planar deformation features in shocked quartz; a transmission electron microscopy investigation. Earth and Planetary Science Letters. 1991;106(1–4):103–15. doi: 10.1016/0012-821x(91)90066-q DOI
Christie JM, Ardell AJ. Substructures of Deformation Lamellae in Quartz. Geol. 1974;2(8):405. doi: 10.1130/0091-7613(1974)2<405:sodliq>2.0.co;2 DOI
Gratz AndrewJ, Tyburczy J, Christie J, Ahrens T, Pongratz P. Shock Metamorphism of Deformed Quartz. Phys Chem Minerals. 1988;16(3). doi: 10.1007/bf00220689 DOI
Stöffler D, Gault DE, Wedekind J, Polkowski G. Experimental hypervelocity impact into quartz sand: Distribution and shock metamorphism of ejecta. J Geophys Res. 1975;80(29):4062–77. doi: 10.1029/jb080i029p04062 DOI
Stöffler D, Langenhorst F. Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory*. Meteoritics. 1994;29(2):155–81. doi: 10.1111/j.1945-5100.1994.tb00670.x DOI
Vernooij MGC, Langenhorst F. Experimental reproduction of tectonic deformation lamellae in quartz and comparison to shock‐induced planar deformation features. Meteorit & Planetary Scien. 2005;40(9–10):1353–61. doi: 10.1111/j.1945-5100.2005.tb00406.x DOI
Langenhorst F. Shock metamorphism of some minerals: Basic introduction and microstructural observations. Bulletin of the Czech Geological Survey. 2002;77(4):265–82.
Ernstson K, Mayer W, Neumair A, Rappenglück B, Sudhaus D. The Chiemgau crater strewn field: Evidence of a Holocene large impact event in Southeast Bavaria, Germany. J Sib Fed. 2010;3(1):72–103.
Ernstson K, Bauer F, Hiltl M. A Prominent Iron Silicides Strewn Field and Its Relation to the Bronze Age/Iron Age Chiemgau Meteorite Impact Event (Germany). EARTH. 2023. doi: 10.11648/j.earth.20231201.14 DOI
Bunch TE, Cohen AJ. Shock deformation of quartz from two meteorite craters. Geol Soc America Bull. 1964;75(12):1263. doi: 10.1130/0016-7606(1964)75[1263:sdoqft]2.0.co;2 DOI
Bunch TE. A study of shock-induced microstructures and solid state transformations of several minerals from explosion craters. Pittsburgh: University of Pittsburgh. 1966.
Feignon J, FerriÈre L, Leroux H, Koeberl C. Characterization of shocked quartz grains from Chicxulub peak ring granites and shock pressure estimates. Meteorit & Planetary Scien. 2020;55(10):2206–23. doi: 10.1111/maps.13570 DOI
Ferrière L, Feignon J-G, Leroux H, Koeberl C. What do shocked quartz grains in impactites from the IODP Expedition 364 drill core tell us about the Chicxulub impact event? 49th Annual Lunar and Planetary Science Conference. 2018;(2083):2238.
Trepmann CA, Spray JG. Shock-induced crystal-plastic deformation and post-shock annealing of quartz: microstructural evidence from crystalline target rocks of the Charlevoix impact structure, Canada. Eur J Mineral. 2006;18(2):161–73. doi: 10.1127/0935-1221/2006/0018-0161 DOI
Trepmann CA, Spray JG. Post-Shock Crystal-Plastic Processes in Quartz from Crystalline Target Rocks of the Charlevoix Impact Structure. 35th Lunar and Planetary Science Conference, March 15-19, 2004, League City, Texas, abstract no1730. 2004:2.
Stöffler D, Hamann C, Metzler K. Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system. Meteoritics & Planetary Science. 2018;53(1):5–49.
Poelchau MH, Kenkmann T. Feather features: A low-shock-pressure indicator in quartz. J Geophys Res. 2011;116(B2). doi: 10.1029/2010jb007803 DOI
Grieve RAF, Langenhorst F, Stöffler D. Shock metamorphism of quartz in nature and experiment: II. Significance in geoscience*. Meteorit & Planetary Scien. 1996;31(1):6–35. doi: 10.1111/j.1945-5100.1996.tb02049.x DOI
Voorn M. A new way to confirm meteorite impact produced planar features in quartz: combining universal stage and electron backscatter diffraction techniques. 2010.
Campanale F, Mugnaioli E, Folco L, Gemmi M, Lee MR, Daly L, et al. Evidence for subsolidus quartz-coesite transformation in impact ejecta from the Australasian tektite strewn field. Geochimica et Cosmochimica Acta. 2019;264:105–17. doi: 10.1016/j.gca.2019.08.014 DOI
Amare K. Petrographic Studies of Rocks from The Chesapeake Bay Impact Structure (USA): Implication for Moderate Shock Pressures in Sedimentary Breccias. mejs. 2010;2(2). doi: 10.4314/mejs.v2i2.57679 DOI
Gurov EP, Koeberl C, Reimold WU, Brandstätter F, Amare K. Shock metamorphism of siliceous volcanic rocks of the El’gygytgyn impact crater (Chukotka, Russia). Large Meteorite Impacts III. Geological Society of America. 2005. doi: 10.1130/0-8137-2384-1.391 DOI
Koeberl C, Ferrière L. Libyan Desert Glass area in western Egypt: Shocked quartz in bedrock points to a possible deeply eroded impact structure in the region. Meteorit & Planetary Scien. 2019;54(10):2398–408. doi: 10.1111/maps.13250 DOI
Engelhardt W v., Bertsch W. Shock induced planar deformation structures in quartz from the Ries crater, Germany. Contr Mineral and Petrol. 1969;20(3):203–34. doi: 10.1007/bf00377477 DOI
French BM, Cordua WS, Plescia JB. The Rock Elm meteorite impact structure, Wisconsin: Geology and shock-metamorphic effects in quartz. Geo Society Am Bull. 2004;116(1):200. doi: 10.1130/b25207.1 DOI
Huber MS, Kovaleva E, Zamyatin DA, Davletshina AA, Fernandez V, Salge T. Post-cratering melting of target rocks at the impact melt contact: Observations from the Vredefort impact structure, South Africa. Chemical Geology. 2024;654:122037. doi: 10.1016/j.chemgeo.2024.122037 DOI
Bunch TE, LeCompte MA, Adedeji AV, Wittke JH, Burleigh TD, Hermes RE, et al. A Tunguska sized airburst destroyed Tall el-Hammam a Middle Bronze Age city in the Jordan Valley near the Dead Sea. Sci Rep. 2021;11(1):18632. doi: 10.1038/s41598-021-97778-3 PubMed DOI PMC
Silvia PJ, Collins S, LeCompte MA, Kennett JP, Moore CR, Kletetschka G. Modeling how a powerful airburst destroyed Tall el-Hammam, a Middle Bronze Age city near the Dead Sea. Airbursts and Cratering Impacts. 2024;2:1–52.
Lambert P. Fractures induced by shock in quartz and feldspar. Mineral mag. 1979;43(328):527–33. doi: 10.1180/minmag.1979.043.328.13 DOI
Ogilvie P, Gibson RL, Reimold WU, Deutsch A, Hornemann U. Experimental investigation of shock metamorphic effects in a metapelitic granulite: The importance of shock impedance contrast between components. Meteorit & Planetary Scien. 2011;46(10):1565–86. doi: 10.1111/j.1945-5100.2011.01250.x DOI
Ogilvie P, Gibson R, Reimold W, Deutsch A. Experimental investigation of shock effects in a metapelitic granulite-new results, Raman spectroscopy and mineral chemistry. 38th Annual Lunar and Planetary Science Conference. 2007;(1338):1551.
Hartung JB, Kunk MJ, Anderson RR. Geology, geophysics, and geochronology of the Manson impact structure. 1990.
Adachi T, Kletetschka G. Impact-pressure controlled orientation of shatter cone magnetizations in Sierra Madera, Texas, USA. Stud Geophys Geod. 2008;52(2):237–54. doi: 10.1007/s11200-008-0016-0 DOI
Koeberl C, Reimold WU, Cooper G, Cowan D, Vincent PM. Aorounga and Gweni Fada impact structures, Chad: Remote sensing, petrography, and geochemistry of target rocks. Meteorit & Planetary Scien. 2005;40(9–10):1455–71. doi: 10.1111/j.1945-5100.2005.tb00412.x DOI
Kowitz A, Schmitt RT, Uwe Reimold W, Hornemann U. The first MEMIN shock recovery experiments at low shock pressure (5–12.5 GPa) with dry, porous sandstone. Meteorit & Planetary Scien. 2012;48(1):99–114. doi: 10.1111/maps.12030 DOI
Reimold WU, Crósta AP, Hasch M, Kowitz A, Hauser N, Sanchez JP, et al. Shock deformation confirms the impact origin for the Cerro do Jarau, Rio Grande do Sul, Brazil, structure. Meteorit & Planetary Scien. 2018;54(10):2384–97. doi: 10.1111/maps.13233 DOI
Reimold WU, Koeberl C. Impact structures in Africa: A review. J Afr Earth Sci. 2014;93:57–175. doi: 10.1016/j.jafrearsci.2014.01.008 PubMed DOI PMC
Gratz A. Deformation in laboratory-shocked quartz. Journal of Non-Crystalline Solids. 1984;67(1–3):543–58. doi: 10.1016/0022-3093(84)90175-3 DOI
Buchanan PC, Reimold WU. Planar deformation features and impact glass in inclusions from the Vredefort Granophyre, South Africa. Meteorit & Planetary Scien. 2002;37(6):807–22. doi: 10.1111/j.1945-5100.2002.tb00857.x DOI
Kowitz A, Güldemeister N, Schmitt RT, Reimold WU, Wünnemann K, Holzwarth A. Revision and recalibration of existing shock classifications for quartzose rocks using low‐shock pressure (2.5-20 GP a) recovery experiments and mesoscale numerical modeling. Meteoritics & Planetary Science. 2016;51(10):1741–61.
Kieffer SW. From regolith to rock by shock. The Moon. 1975;13(1–3):301–20. doi: 10.1007/bf00567522 DOI
Van Hoesel A, Hoek WZ, Pennock GM, Kaiser K, Plümper O, Jankowski M, et al. A search for shocked quartz grains in the Allerød‐Younger Dryas boundary layer. Meteorit & Planetary Scien. 2015;50(3):483–98. doi: 10.1111/maps.12435 DOI
Ballard JP, Bijkerk AK. Quartz melt structures in European coversands may support Younger Dryas extraterrestrial impact hypothesis. UT Geography Research Symposium 2014 “Mapping Outside the Lines: Geography as a Nexus for Interdisciplinary and Collaborative Research”. 2014.
Zeng Q, Tonge AL, Ramesh KT. A multi-mechanism constitutive model for the dynamic failure of quasi-brittle materials. Part I: Amorphization as a failure mode. Journal of the Mechanics and Physics of Solids. 2019;130:370–92. doi: 10.1016/j.jmps.2019.06.012 DOI
Fazio A, Pollok K, Langenhorst F. Experimental evidence for mechanical Brazil twins as an indicator of low-pressure shock metamorphism (<17.5 GPa). Geology. 2018;46(9):787–90. doi: 10.1130/g40198.1 DOI
Carl E, Mansfeld U, Liermann H, Danilewsky A, Langenhorst F, Ehm L, et al. High‐pressure phase transitions of α‐quartz under nonhydrostatic dynamic conditions: A reconnaissance study at PETRA III. Meteorit & Planetary Scien. 2017;52(7):1465–74. doi: 10.1111/maps.12840 DOI
Kowitz A, Güldemeister N, Reimold WU, Schmitt RT, Wünnemann K. Diaplectic quartz glass and SiO2 melt experimentally generated at only 5 GPa shock pressure in porous sandstone: Laboratory observations and meso-scale numerical modeling. Earth and Planetary Science Letters. 2013;384:17–26. doi: 10.1016/j.epsl.2013.09.021 DOI
Christie J, Griggs D, Carter N. Experimental evidence of basal slip in quartz. The Journal of Geology. 1964;72(6):734–56.
Ebert M, Kowitz A, Schmitt RT, Reimold WU, Mansfeld U, Langenhorst F. Localized shock‐induced melting of sandstone at low shock pressures (<17.5 GPa): An experimental study. Meteorit & Planetary Scien. 2017;53(8):1633–43. doi: 10.1111/maps.12948 DOI
Huffman AR, Reimold WU. Experimental constraints on shock-induced microstructures in naturally deformed silicates. Tectonophysics. 1996;256(1–4):165–217. doi: 10.1016/0040-1951(95)00162-x DOI
Mansfeld U, Langenhorst F, Ebert M, Kowitz A, Schmitt RT. Microscopic evidence of stishovite generated in low‐pressure shock experiments on porous sandstone: Constraints on its genesis. Meteorit & Planetary Scien. 2017;52(7):1449–64. doi: 10.1111/maps.12867 DOI
Martinelli G, Plescia P, Tempesta E, Paris E, Gallucci F. Fracture Analysis of α-Quartz Crystals Subjected to Shear Stress. Minerals. 2020;10(10):870. doi: 10.3390/min10100870 DOI
Reimold WU, Ferrière L, Deutsch A, Koeberl C. Impact controversies: Impact recognition criteria and related issues. Meteorit & Planetary Scien. 2014;49(5):723–31. doi: 10.1111/maps.12284 DOI
Christie JM, Raleigh CB. The origin of deformation lamellae in quartz. American Journal of Science. 1959;257(6):385–407. doi: 10.2475/ajs.257.6.385 DOI
McLaren AC, Retchford JA, Griggs DT, Christie JM. Transmission Electron Microscope Study of Brazil Twins and Dislacations Experimentally Produced in Natural Quartz. Physica Status Solidi (b). 1967;19(2):631–44. doi: 10.1002/pssb.19670190216 DOI
McLaren AC, Turner RG, Boland JN, Hobbs BE. Dislocation structure of the deformation lamellae in synthetic quartz; a study by electron and optical microscopy. Contr Mineral and Petrol. 1970;29(2):104–15. doi: 10.1007/bf00392018 DOI
Eckert J, Gourdon O, Jacob DE, Meral C, Monteiro PJM, Vogel SC, et al. Ordering of water in opals with different microstructures. Eur J Mineral. 2015;27(2):203–13. doi: 10.1127/ejm/2015/0027-2428 DOI
Tankersley KB, Dunning NP, Owen LA, Huff WD, Park JH, Kim C, et al. Positive Platinum anomalies at three late Holocene high magnitude volcanic events in Western Hemisphere sediments. Sci Rep. 2018;8(1):11298. doi: 10.1038/s41598-018-29741-8 PubMed DOI PMC
de Silva S. Explosive volcanism and associated pressures- implications for models of endogenically shocked quartz. Global catastrophes in Earth history. Boulder, CO: Geological Society of America. 1990. p. 139–45.
de Silva S, Sharpton V. Explosive volcanism, shock metamorphism and the KT boundary. In: Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality, 1988. 38.
Koeberl C. The geochemistry and cosmochemistry of impacts. Planets, asteroids, comets and the solar system. 2014. p. 73–118.
Koeberl C. Impact cratering: the mineralogical and geochemical evidence. Oklahoma Geological Survey Circular. 1997;100:30–54.
Glikson AY, Meixner AJ, Radke B, Uysal IT, Saygin E, Vickers J, et al. Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia. Tectonophysics. 2015;643:55–72. doi: 10.1016/j.tecto.2014.12.010 DOI
French BM, Koeberl C, Gilmour I, Shirey SB, Dons JA, Naterstad J. The Gardnos impact structure, Norway: Petrology and geochemistry of target rocks and impactites. Geochimica et Cosmochimica Acta. 1997;61(4):873–904. doi: 10.1016/s0016-7037(96)00382-1 DOI
Kieffer SW. Shock metamorphism of the Coconino Sandstone at Meteor Crater, Arizona. J Geophys Res. 1971;76(23):5449–73. doi: 10.1029/jb076i023p05449 DOI
Kieffer SW, Phakey PP, Christie JM. Shock processes in porous quartzite: Transmission electron microscope observations and theory. Contr Mineral and Petrol. 1976;59(1):41–93. doi: 10.1007/bf00375110 DOI
Wakita S, Johnson BC, Denton CA, Davison TM. Jetting during oblique impacts of spherical impactors. Icarus. 2021;360:114365. doi: 10.1016/j.icarus.2021.114365 DOI
Artemieva N, Shuvalov V. Atmospheric shock waves after impacts of cosmic bodies up to 1000 m in diameter. Meteoritics & Planetary Science. 2019;54(3):592–608.
Van Ginneken M, Goderis S, Artemieva N, Debaille V, Decrée S, Harvey RP, et al. A large meteoritic event over Antarctica ca. 430 ka ago inferred from chondritic spherules from the Sør Rondane Mountains. Sci Adv. 2021;7(14):eabc1008. doi: 10.1126/sciadv.abc1008 PubMed DOI PMC
Artemieva NA, Shuvalov VV. From Tunguska to Chelyabinsk via Jupiter. Annu Rev Earth Planet Sci. 2016;44(1):37–56. doi: 10.1146/annurev-earth-060115-012218 DOI
Kletetschka G, Vyhnanek J, Kawasumiova D, Nabelek L, Petrucha V. Localization of the Chelyabinsk Meteorite From Magnetic Field Survey and GPS Data. IEEE Sensors J. 2015;15(9):4875–81. doi: 10.1109/jsen.2015.2435252 DOI
Brown PG, Assink JD, Astiz L, Blaauw R, Boslough MB, Borovička J, et al. A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature. 2013;503(7475):238–41. doi: 10.1038/nature12741 PubMed DOI
Popova OP, Jenniskens P, Emel’yanenko V, Kartashova A, Biryukov E, Khaibrakhmanov S, et al. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. 2013;342(6162):1069–73. doi: 10.1126/science.1242642 PubMed DOI
Kocherov A, Korochantsev A, Lorenz C, Ivanova M, Grokhovsky V. In: 2014. 2227.
Brown PG, Hildebrand AR, Zolensky ME, Grady M, Clayton RN, Mayeda TK, et al. The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science. 2000;290(5490):320–5. doi: 10.1126/science.290.5490.320 PubMed DOI
Brown PG, ReVelle DO, Tagliaferri E, Hildebrand AR. An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteorit & Planetary Scien. 2002;37(5):661–75. doi: 10.1111/j.1945-5100.2002.tb00846.x DOI
Martel LM. Better Know A Meteorite Collection: Natural History Museum in London, United Kingdom. Planetary Science Research Discoveries Report. 2009:136.
Marcus R, Melosh HJ, Collins GS. Earth Impact Effects Program 2004 [updated 2023]. 2004. Available from: https://impact.ese.ic.ac.uk/ImpactEarth/ImpactEffects/
Collins GS, Lynch E, McAdam R, Davison TM. A numerical assessment of simple airblast models of impact airbursts. Meteorit & Planetary Scien. 2017;52(8):1542–60. doi: 10.1111/maps.12873 DOI
Collins GS, Melosh HJ, Marcus R. Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteoritics & Planetary Science. 2005;40(2):817–40.
Collins GS, Melosh HJ, Osinski GR. The Impact-Cratering Process. Elements. 2012;8(1):25–30. doi: 10.2113/gselements.8.1.25 DOI
Mathias DL, Wheeler LF, Dotson JL. A probabilistic asteroid impact risk model: assessment of sub-300 m impacts. Icarus. 2017;289:106–19. doi: 10.1016/j.icarus.2017.02.009 DOI
Muthini J, Okeng’o GO. Modelling the dynamics of potentially dangerous large-earth impactors. arXiv preprint. 2021. doi: 10.48550/arXiv.210705988 DOI
Osinski GR, Grieve RAF, Ferrière L, Losiak A, Pickersgill AE, Cavosie AJ, et al. Impact Earth: A review of the terrestrial impact record. Earth-Science Reviews. 2022;232:104112. doi: 10.1016/j.earscirev.2022.104112 DOI
Robertson DK, Mathias DL. Hydrocode simulations of asteroid airbursts and constraints for Tunguska. Icarus. 2019;327:36–47. doi: 10.1016/j.icarus.2018.10.017 DOI
Lv H, He Q, Chen X, Han P. Numerical simulation of impact crater formation and distribution of high-pressure polymorphs. Acta Astronautica. 2023;203:169–86. doi: 10.1016/j.actaastro.2022.11.048 DOI
Baldwin E, Milner D, Burchell M, Crawford I. Shock wave propagation and damage to the target in oceanic impact events. Bridging the Gap II: Effect of Target Properties on the Impact Cratering Process. 2007. p. 13–4.
Baldwin E, Vocadlo L, Crawford I. Validation of AUTODYN in replicating large-scale planetary impact events. 36th Annual Lunar and Planetary Science Conference. 2005:1380.
Saito T, Kaiho K, Abe A, Katayama M, Takayama K. Hypervelocity impact of asteroid/comet on the oceanic crust of the earth. International Journal of Impact Engineering. 2008;35(12):1770–7. doi: 10.1016/j.ijimpeng.2008.07.046 DOI
Saito T, Kaiho K, Abe A, Katayama M, Takayama K. Numerical simulations of hypervelocity impact of asteroid/comet on the Earth. International Journal of Impact Engineering. 2006;33(1–12):713–22. doi: 10.1016/j.ijimpeng.2006.09.012 DOI
Birnbaum NK, Cowler M, Hayhurst C. Numerical simulation of impact using AUTODYN. Proc 2nd Int Impact Sympo, Beijing, China, 1996.
Deller JF, Lowry SC, Snodgrass C, Price MC, Sierks H. A new approach to modelling impacts on rubble pile asteroid simulants. Mon Not R Astron Soc. 2015;455(4):3752–62. doi: 10.1093/mnras/stv2584 DOI
Jones AP, Price DG, DeCarli PS, Price N, Clegg R. Impact decompression melting: a possible trigger for impact induced volcanism and mantle hotspots?. Impact markers in the Stratigraphic Record. 2003. p. 91–119.
Nishizawa M, Matsui Y, Suda K, Saito T, Shibuya T, Takai K, et al. Experimental Simulations of Hypervelocity Impact Penetration of Asteroids Into the Terrestrial Ocean and Benthic Cratering. JGR Planets. 2020;125(12). doi: 10.1029/2019je006291 DOI
Stickle A, Barnouin O, Bruck Syal M, Cheng A, El Mir C, Ernst C, et al. Impact simulation benchmarking for the double asteroid redirect test (DART). 47th Annual Lunar and Planetary Science Conference. 2016;(1903):2832.
Wie B, Barbee B, Pitz A, Kaplinger B, Hawkins M, Winkler T, et al. An innovative solution to NASA’s NEO impact threat mitigation grand challenge and flight validation mission architecture development. 2014.
Caldwell WK, Euser B, Plesko CS, Larmat C, Lei Z, Knight EE, et al. Benchmarking Numerical Methods for Impact and Cratering Applications. Applied Sciences. 2021;11(6):2504. doi: 10.3390/app11062504 DOI
Birnbaum N, Cowler M, Itoh M, Katayama M, Obata H. AUTODYN-an interactive non-linear dynamic analysis program for microcomputers through supercomputers. Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, 1987. 1–4.
Aftosmis MJ, Mathias DL, Tarano AM. Simulation-based height of burst map for asteroid airburst damage prediction. Acta Astronautica. 2019;156:278–83. doi: 10.1016/j.actaastro.2017.12.021 DOI
Shuvalov VV, Artem’eva NA, Kosarev IB. 3D hydrodynamic code sova for multimaterial flows, application to Shoemakerlevy 9 comet impact problem. International Journal of Impact Engineering. 1999;23(1):847–58. doi: 10.1016/s0734-743x(99)00129-3 DOI
Pierazzo E, Artemieva N, Asphaug E, Baldwin Ec, Cazamias J, Coker R, et al. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets. Meteorit & Planetary Scien. 2008;43(12):1917–38. doi: 10.1111/j.1945-5100.2008.tb00653.x DOI
Weissman PR, Lowry SC. Structure and density of cometary nuclei. Meteorit & Planetary Scien. 2008;43(6):1033–47. doi: 10.1111/j.1945-5100.2008.tb00691.x DOI
McMullan S, Collins GS. Uncertainty quantification in continuous fragmentation airburst models. Icarus. 2019;327:19–35. doi: 10.1016/j.icarus.2019.02.013 DOI
Ferus M, Knížek A, Cassone G, Rimmer PB, Changela H, Chatzitheodoridis E. Simulating asteroid impacts and meteor events by high-power lasers: from the laboratory to spaceborne missions. 2023.
Zhilyaev B, Petukhov V, Reshetnyk V, Vidmachenko A. Meteor colorimetry with CMOS cameras. 2021. doi: 10.48550/arXiv.2106.07403 DOI
Silber EA, Boslough M, Hocking WK, Gritsevich M, Whitaker RW. Physics of meteor generated shock waves in the Earth’s atmosphere – A review. Advances in Space Research. 2018;62(3):489–532. doi: 10.1016/j.asr.2018.05.010 DOI
Colonna G, Capitelli M, Laricchiuta A. Hypersonic meteoroid entry physics. IOP Publishing. 2019.
Demitroff M, LeCompte M, Rock B. Cold climate related structural sinks accommodate unusual soil constituents, Pinelands National Reserve, New Jersey, USA. AGU Fall Meeting Abstracts. 2009;2009:PP31D–1394.