Targeted Clindamycin Delivery Systems: Promising Options for Preventing and Treating Bacterial Infections Using Biomaterials

. 2024 Apr 16 ; 25 (8) : . [epub] 20240416

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38673971

Grantová podpora
POIR.04.04.00-00-16D7/18 Foundation for Polish Science
APVV-22-0133 Slovak Research and Development Agency

Targeted therapy represents a real opportunity to improve the health and lives of patients. Developments in this field are confirmed by the fact that the global market for drug carriers was worth nearly $40 million in 2022. For this reason, materials engineering and the development of new drug carrier compositions for targeted therapy has become a key area of research in pharmaceutical drug delivery in recent years. Ceramics, polymers, and metals, as well as composites, are of great interest, as when they are appropriately processed or combined with each other, it is possible to obtain biomaterials for hard tissues, soft tissues, and skin applications. After appropriate modification, these materials can release the drug directly at the site requiring a therapeutic effect. This brief literature review characterizes routes of drug delivery into the body and discusses biomaterials from different groups, options for their modification with clindamycin, an antibiotic used for infections caused by aerobic and anaerobic Gram-positive bacteria, and different methods for the final processing of carriers. Examples of coating materials for skin wound healing, acne therapy, and bone tissue fillers are given. Furthermore, the reasons why the use of antibiotic therapy is crucial for a smooth and successful recovery and the risks of bacterial infections are explained. It was demonstrated that there is no single proven delivery scheme, and that the drug can be successfully released from different carriers depending on the destination.

Zobrazit více v PubMed

Ghanem A.M. Recent advances in transdermal drug delivery systems: A review. Int. J. Appl. Pharm. 2024;16:28–33. doi: 10.22159/ijap.2024v16i2.49950. DOI

Singh S., Pandey V.K., Tewari R.P., Agarwal V. Nanoparticle based drug delivery system: Advantages and applications. Ind. J. Sci. Technol. 2011;4:177–180. doi: 10.17485/ijst/2011/v4i3.16. DOI

Drug Delivery Systems Market Size, Share & COVID-19 Impact Analysis, by Type (Inhalation, Transdermal, Injectable, and Others), by Device Type (Conventional and Advaced), by Distribution Channel (Hospital, Pharmacies, Retail Pharmacies, and Others) [(accessed on 11 March 2024)]. Available online: https://www.fortunebusinessinsights.com/drug-delivery-systems-market-103070.

Adepu S., Ramakrishna S. Controlled drug delivery systems: Current status and future directions. Molecules. 2021;26:5905. doi: 10.3390/molecules26195905. PubMed DOI PMC

Dash T.R., Verma P. Matrix tablets: An approach towards oral extended release drug delivery. Int. J. Pharma Res. Rev. 2013;2:12–24.

Pinto J.F. Site-specific drug delivery systems within the gastro-intestinal tract: From the mouth to the colon. Int. J. Pharm. 2010;395:44–52. doi: 10.1016/j.ijpharm.2010.05.003. PubMed DOI

Reddy D., Pillay V., Choonara Y.E., Du Toit L.C. Rapidly disintegrating oramucosal drug delivery technologies Rapidly disintegrating oramucosal drug delivery technologies. Pharm. Develop. Technol. 2009;14:588–601. doi: 10.3109/10837450902838700. PubMed DOI

Anderson G.D., Saneto R.P. Current oral and non-oral routes of antiepileptic drug delivery. Adv. Drug Deliv. Rev. 2012;64:911–918. doi: 10.1016/j.addr.2012.01.017. PubMed DOI

Matsuda Y., Konno Y., Hashimoto T., Nagai M., Taguchi T., Satsukawa M., Yamashita S. Quantitative assessment of intestinal first-pass metabolism of oral drugs using portal-vein cannulated rats. Pharm. Res. 2015;32:604–616. doi: 10.1007/s11095-014-1489-x. PubMed DOI

Riviere J.E., Papich M.G. Potential and problems of developing transdermal patches for veterinary applications. Adv. Drug Deliv. Rev. 2001;50:175–203. doi: 10.1016/S0169-409X(01)00157-0. PubMed DOI

Escobar-Chavez J.J., Diaz-Torres R., Rodriguez-Cruz I.M., Dominguez-Delgado C.L., Sampere-Morales R., Angeles-Anguiano E., Melgoza-Contreras L.M. Nanocarriers for transdermal drug delivery. Res. Rep. Transdermal Drug Deliv. 2012;1:3–17. doi: 10.2147/RRTD.S32621. DOI

Păduraru D.N., Niculescu A.-G., Bolocan A., Andronic O., Grumezescu A.M., Bîrlă R. An updated overview of cyclodextrin-based drug delivery systems for cancer therapy. Pharmaceutics. 2022;14:1748. doi: 10.3390/pharmaceutics14081748. PubMed DOI PMC

Spoială A., Ilie C.-I., Motelica L., Ficai D., Semenescu A., Oprea O.-C., Ficai A. Smart magnetic drug delivery systems for the treatment of cancer. Nanomaterials. 2023;13:876. doi: 10.3390/nano13050876. PubMed DOI PMC

Rizwan M., Yahya R., Hassan A., Yar M., Azzahari A.D., Selvanathan V., Sonsudin F., Abouloula C.N. pH Sensitive hydrogels in drug delivery: Brief history, properties, swelling, and release mechanism, material selection and applications. Polymers. 2017;9:137. doi: 10.3390/polym9040137. PubMed DOI PMC

Ayran M., Karabulut H., Deniz K.I., Akcanli G.C., Ulag S., Croitoru A.-M., Tihăuan B.-M., Sahin A., Ficai D., Gunduz O., et al. Electrically triggered quercetin release from polycaprolactone/bismuth ferrite microfibrous scaffold for skeletal muscle tissue. Pharmaceutics. 2023;15:920. doi: 10.3390/pharmaceutics15030920. PubMed DOI PMC

Silindir Gunay M., Yekta Ozer A., Chalon S. Drug delivery systems for imaging and therapy of Parkinson’s disease. Curr. Neuropharm. 2015;14:376–391. doi: 10.2174/1570159X14666151230124904. PubMed DOI PMC

Huang X., Ma Y., Li Y., Han F., Lin W. Targeted drug delivery systems for kidney diseases. Front. Bioeng. Biotechnol. 2021;9:683247. doi: 10.3389/fbioe.2021.683247. PubMed DOI PMC

Paolini M.S., Fenton O.S., Bhattacharya C., Andresen J.L., Langer R.S. Polymers for extended-release administration. Biomed. Microdevices. 2019;21:45. doi: 10.1007/s10544-019-0386-9. PubMed DOI

Kleiner L.W., Wright J.C., Wang Y. Evolution of implantable and insertable drug delivery systems. J. Control. Release. 2014;181:1–10. doi: 10.1016/j.jconrel.2014.02.006. PubMed DOI

Van Tran T.T., Tayara H., Chong K.T. Artificial intelligence in drug metabolism and excretion prediction: Recent advances, challenges, and future perspectives. Pharmaceutics. 2023;15:1260. doi: 10.3390/pharmaceutics15041260. PubMed DOI PMC

Hardenia A., Maheshwari N., Hardenia S.S., Dwivedi S.K., Maheshwari R., Tekade R.K. Scientific rationale for designing controlled drug delivery systems. In: Tekade R.K., editor. Basic Fundamentals of Drug Delivery—Advances in Pharmaceutical Product Development and Research. Academic Press & Elsevier; London, UK: 2019. pp. 1–28.

Paarakh M.P., Jose P.A.N.I., Setty C.M., Peter G.V. Release Kinetics—Concepts and applications. Int. J. Pharm. Res. Technol. 2019;8:12–20. doi: 10.31838/ijprt/08.01.02. DOI

Wiseman J.T., Fernandes-Taylor S., Barnes M.L., Saunders R.S., Saha S., Havlena J., Rathouz P.J., Craig Kent K. Predictors of surgical site infection after hospital discharge in patients undergoing major vascular surgery. J. Vasc. Surg. 2015;62:1023–1031.e5. doi: 10.1016/j.jvs.2015.04.453. PubMed DOI PMC

Ibrahimi O.A., Sharon V., Eisen D.B. Surgical-Site infections and routes of bacterial transfer: Which ones are most plausible? Dermatol. Surg. 2011;37:1709–1720. doi: 10.1111/j.1524-4725.2011.02183.x. PubMed DOI

Ali K.M., Al-Jaff B.M.A. Source and antibiotic susceptibility of Gram-negative bacteria causing superficial incisional surgical site infections. Int. J. Surg. Open. 2021;30:100318. doi: 10.1016/j.ijso.2021.01.007. DOI

Daeschlein G., Napp M., Layer F., von Podewils S., Haase H., Spitzmueller R., Assadian O., Kasch R., Werner G., Jünger M., et al. Antimicrobial efficacy of preoperative skin antisepsis and clonal relationship to postantiseptic skin-and-wound flora in patients undergoing clean orthopedic surgery. Eur. J. Clin. Microbiol. Inf. Dis. 2015;34:2265–2273. doi: 10.1007/s10096-015-2478-7. PubMed DOI

Brady R.A., Leid J.G., Costerton J.W., Shirtliff M.E. Osteomyelitis: Clinical overview and mechanisms of infection persistence. Clin. Microbiol. Newslet. 2006;28:65–72. doi: 10.1016/j.clinmicnews.2006.04.001. DOI

Rimashevskiy D.V., Akhtyamov I.F., Fedulichev P.N., Zaalan W., Ustazov K.A., Basith A., Moldakulov J.M., Zinoviev M.P. Pathogenetic features of chronic osteomyelitis treatment. Genij Ortopedii. 2021;27:628–635. doi: 10.18019/1028-4427-2021-27-5-628-635. DOI

Lam M., Hu A., Fleming P., Lynde C.W. The impact of acne treatment on skin bacterial microbiota: A systematic review. J. Cut. Med. Surg. 2022;26:93–97. doi: 10.1177/12034754211037994. PubMed DOI PMC

Wang C., Huttner B.D., Magrini N., Cheng Y., Tong J., Li S., Wan C., Zhu Q., Zhao S., Zhuo Z., et al. Pediatric antibiotic prescribing in China according to the 2019 World Health Organization access, watch, and reserve (AWaRe) antibiotic categories. J. Pediatr. 2020;220:125–131.e5. doi: 10.1016/j.jpeds.2020.01.044. PubMed DOI

Vekemans J., Hasso-Agopsowicz M., Kang G., Hausdorff W.P., Fiore A., Tayler E., Klemm E.J., Laxminarayan R., Srikantiah P., Friede M., et al. Leveraging Vaccines to reduce antibiotic use and prevent antimicrobial resistance: A World Health Organization action framework. Clin. Inf. Dis. 2021;73:E1011–E1017. doi: 10.1093/cid/ciab062. PubMed DOI PMC

Luchian I., Goriuc A., Martu M.A., Covasa M. Clindamycin as an alternative option in optimizing periodontal therapy. Antibiotics. 2021;10:814. doi: 10.3390/antibiotics10070814. PubMed DOI PMC

Álvarez L.A., Van de Sijpe G., Desmet S., Metsemakers W.J., Spriet I., Allegaert K., Rozenski J. Ways to Improve insights into clindamycin pharmacology and pharmacokinetics tailored to practice. Antibiotics. 2022;11:701. doi: 10.3390/antibiotics11050701. doi: 10.3390/antibiotics11050701. PubMed DOI PMC

Chaiwarit T., Rachtanapun P., Kantrong N., Jantrawut P. Preparation of clindamycin hydrochloride loaded de-esterified low-methoxyl mango peel pectin film used as a topical drug delivery system. Polymers. 2020;12:1006. doi: 10.3390/polym12051006. PubMed DOI PMC

Egle K., Skadins I., Grava A., Micko L., Dubniks V., Salma I., Dubnika A. Injectable platelet-rich fibrin as a drug carrier increases the antibacterial susceptibility of antibiotic—clindamycin phosphate. Int. J. Mol. Sci. 2022;23:7407. doi: 10.3390/ijms23137407. PubMed DOI PMC

Spížek J., Řezanka T. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochem. Pharmacol. 2017;133:20–28. doi: 10.1016/j.bcp.2016.12.001. PubMed DOI

Assefa M. Inducible clindamycin-resistant Staphylococcus aureus strains in Africa: A systematic review. Int. J. Microbiol. 2022;2022:1835603. doi: 10.1155/2022/1835603. PubMed DOI PMC

Cherazard R., Epstein M., Doan T.-L., Salim T., Bharti S., Smith M.A. Antimicrobial resistant Streptococcus pneumoniae: Prevalence, mechanisms, and clinical implications. Am. J. Ther. 2017;24:e361–e369. doi: 10.1097/MJT.0000000000000551. PubMed DOI

Cheung G.Y.C., Bae J.S., Otto M. Pathogenicity and virulence of Staphylococcus aureus. Virulence. 2021;12:547–569. doi: 10.1080/21505594.2021.1878688. PubMed DOI PMC

Mohamed N., Wang M.Y., Le Hue J.-C., Liljenqvist U., Scully I.L., Baber J., Begier E., Jansen K.U., Gurtman A., Anderson A.S. Vaccine development to prevent Staphylococcus aureus surgical-site infections. Brit. J. Surg. 2017;104:e41–e54. doi: 10.1002/bjs.10454. PubMed DOI

Li L., Ma J., Yu Z., Li M., Zhang W., Sun H. Epidemiological characteristics and antibiotic resistance mechanisms of Streptococcus pneumoniae: An updated review. Microbiol. Res. 2023;266:127221. doi: 10.1016/j.micres.2022.127221. PubMed DOI

Wade K.C., Benjamin D.K. Clinical pharmacology of anti-infective drugs. In: Remington J.S., Klein J.O., Wilson C.B., Nizet V., Maldonado Y.A., editors. Infectious Diseases of the Fetus and Newborn. 7th ed. Saunders; Philadelphia, PA, USA: 2011. pp. 1160–1211.

Rezahosseini O., Roed C., Holler J.G., Frimodt-Møller N. Adjunctive antibiotic therapy with clindamycin or linezolid in patients with group A Streptococcus (GAS) meningitis. Inf. Dis. 2023;55:751–753. doi: 10.1080/23744235.2023.2231073. PubMed DOI

Arteagoitia I., Sánchez F.R., Figueras A., Arroyo-Lamas N. Is clindamycin effective in preventing infectious complications after oral surgery? Systematic review and meta-analysis of randomized controlled trials. Clin. Oral Investig. 2022;26:4467–4478. doi: 10.1007/s00784-022-04411-2. PubMed DOI PMC

Peeters A., Putzeys G., Thorrez L. Current insights in the application of bone grafts for local antibiotic delivery in bone reconstruction surgery. J. Bone Jt. Infect. 2019;4:245–253. doi: 10.7150/jbji.38373. PubMed DOI PMC

Allegaert K., Muller A.E., Russo F., Schoenmakers S., Deprest J., Koch B.C.P. Pregnancy-related pharmacokinetics and antimicrobial prophylaxis during fetal surgery, cefazolin and clindamycin as examples. Prenat. Diagn. 2020;40:1178–1184. doi: 10.1002/pd.5753. PubMed DOI

Eda T., Okada M., Ogura R., Tsukamoto Y., Kanemaru Y., Watanabe J., On J., Aoki H., Oishi M., Takei N., et al. Novel repositioning therapy for drug-resistant glioblastoma: In vivo validation study of clindamycin treatment targeting the mTOR pathway and combination therapy with temozolomide. Cancers. 2022;14:770. doi: 10.3390/cancers14030770. PubMed DOI PMC

Yang S.H., Lee M.G. Dose-independent pharmacokinetics of clindamycin after intravenous and oral administration to rats: Contribution of gastric first-pass effect to low bioavailability. Int. J. Pharm. 2007;332:17–23. doi: 10.1016/j.ijpharm.2006.11.019. PubMed DOI

Lemaire S., Van Bambeke F., Pierard D., Appelbaum P.C., Tulkens P.M. Activity of fusidic acid against extracellular and intracellular Staphylococcus aureus: Influence of ph and comparison with linezolid and clindamycin. Clin. Inf. Dis. 2011;52:S493–S503. doi: 10.1093/cid/cir165. PubMed DOI

Hua S. Advances in oral drug delivery for regional targeting in the gastrointestinal tract—Influence of physiological, pathophysiological and pharmaceutical factors. Front. Pharmacol. 2020;11:524. doi: 10.3389/fphar.2020.00524. PubMed DOI PMC

Vellonen K.S., Soini E.M., Del Amo E.M., Urtti A. Prediction of ocular drug distribution from systemic blood circulation. Mol. Pharm. 2016;13:2906–2911. doi: 10.1021/acs.molpharmaceut.5b00729. PubMed DOI

Thornhill M.H., Dayer M.J., Durkin M.J., Lockhart P.B., Baddour L.M. Risk of adverse reactions to oral antibiotics prescribed by dentists. J. Dent. Res. 2019;98:1081–1087. doi: 10.1177/0022034519863645. PubMed DOI PMC

Dubey N., Xu J., Zhang Z., Nör J.E., Bottino M.C. Comparative evaluation of the cytotoxic and angiogenic effects of minocycline and clindamycin: An in vitro study. J. Endod. 2019;45:882–889. doi: 10.1016/j.joen.2019.04.007. PubMed DOI PMC

Eliaz N., Metoki N. Calcium phosphate bioceramics: A review of their history, structure, properties, coating technologies and biomedical applications. Materials. 2017;10:334. doi: 10.3390/ma10040334. PubMed DOI PMC

Canillas M., Pena P., De Aza A.H., Rodríguez M.A. Calcium phosphates for biomedical applications. Bol. Soc. Esp. Ceram. Vidr. 2017;56:91–112. doi: 10.1016/j.bsecv.2017.05.001. DOI

Lara-Ochoa S., Ortega-Lara W., Guerrero-Beltrán C.E. Hydroxyapatite nanoparticles in drug delivery: Physicochemistry and applications. Pharmaceutics. 2021;13:1642. doi: 10.3390/pharmaceutics13101642. PubMed DOI PMC

Harb S.V., Bassous N.J., de Souza T.A.C., Trentin A., Pulcinelli S.H., Santilli C.V., Webster T.J., Lobo A.O., Hammer P. Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants. Mat. Sci. Eng. C. 2020;116:111149. doi: 10.1016/j.msec.2020.111149. PubMed DOI

Shalini B., Kumar A.R. A comparative study of hydroxyapatite (Ca10(PO4)6(OH)2) using sol-gel and co-precipitation methods for biomedical applications. J. Indian Chem. Soc. 2019;96:25–28.

Damerau J.M., Bierbaum S., Wiedemeier D., Korn P., Smeets R., Jenny G., Nadalini J., Stadlinger B. A systematic review on the effect of inorganic surface coatings in large animal models and meta-analysis on tricalcium phosphate and hydroxyapatite on periimplant bone formation. J. Biomed. Mat. Res. B. 2022;110:157–175. doi: 10.1002/jbm.b.34899. PubMed DOI PMC

Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3. PubMed DOI PMC

Wagner M., Hess T., Zakowiecki D. Studies on the pH-dependent solubility of various grades of calcium phosphate-based pharmaceutical excipients. J. Pharm. Sci. 2022;111:1749–1760. doi: 10.1016/j.xphs.2021.12.005. PubMed DOI

El Hazzat M., El Hamidi A., Halim M., Arsalane S. Complex evolution of phase during the thermal investigation of Brushite-type calcium phosphate CaHPO4·2H2O. Materialia. 2021;16:101055. doi: 10.1016/j.mtla.2021.101055. DOI

Gbureck U., Vorndran E., Barralet J.E. Modeling vancomycin release kinetics from microporous calcium phosphate ceramics comparing static and dynamic immersion conditions. Acta Biomat. 2008;4:1480–1486. doi: 10.1016/j.actbio.2008.02.027. PubMed DOI

Zamoume O., Thibault S., Regnié G., Mecherri M.O., Fiallo M., Sharrock P. Macroporous calcium phosphate ceramic implants for sustained drug delivery. Mat. Sci. Eng. C. 2011;31:1352–1356. doi: 10.1016/j.msec.2011.04.020. DOI

Mo X., Zhang D., Liu K., Zhao X., Li X., Wang W. Nano-hydroxyapatite composite scaffolds loaded with bioactive factors and drugs for bone tissue engineering. Int. J. Mol. Sci. 2023;24:1291. doi: 10.3390/ijms24021291. PubMed DOI PMC

Wang L., Hou X., Feng L., Zhou Y., Liu X., Tian C. Drug delivery properties of three—Dimensional ordered macroporous zinc—Doped hydroxyapatite. J. Mat. Res. 2022;37:2314–2321. doi: 10.1557/s43578-022-00632-z. DOI

Munir M.U., Salman S., Javed I., Bukhari S.N.A., Ahmad N., Shad N.A., Aziz F. Nano-hydroxyapatite as a delivery system: Overview and advancements. Artif. Cells Nanomed Biotechnol. 2021;49:717–727. doi: 10.1080/21691401.2021.2016785. PubMed DOI

Wu V.M., Tang S., Uskoković V. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: The antibacterial effect. ACS Appl. Mater. Interfaces. 2018;10:34013–34028. doi: 10.1021/acsami.8b12784. PubMed DOI

Uskoković V., Desai T.A. Simultaneous bactericidal and osteogenic effect of nanoparticulate calcium phosphate powders loaded with clindamycin on osteoblasts infected with Staphylococcus aureus. Mat. Sci. Eng. C. 2014;37:210–222. doi: 10.1016/j.msec.2014.01.008. PubMed DOI PMC

Niziołek K., Słota D., Sadlik J., Łachut E., Florkiewicz W., Sobczak-Kupiec A. Influence of drying technique on physicochemical properties of synthetic hydroxyapatite and its potential use as a drug carrier. Materials. 2023;16:6431. doi: 10.3390/ma16196431. PubMed DOI PMC

Słota D., Piętak K., Florkiewicz W., Jampílek J., Tomala A., Urbaniak M.M., Tomaszewska A., Rudnicka K., Sobczak-Kupiec A. Clindamycin-loaded nanosized calcium phosphates powders as a carrier of active substances. Nanomaterials. 2023;13:1469. doi: 10.3390/nano13091469. PubMed DOI PMC

Massaro M., Noto R., Riela S. Past, present and future perspectives on halloysite clay minerals. Molecules. 2020;25:4863. doi: 10.3390/molecules25204863. PubMed DOI PMC

Danyliuk N., Tomaszewska J., Tatarchuk T. Halloysite nanotubes and halloysite-based composites for environmental and biomedical applications. J. Mol. Liq. 2020;309:113077. doi: 10.1016/j.molliq.2020.113077. DOI

Machowska A., Klara J., Ledwójcik G., Wójcik K., Dulińska-Litewka J., Karewicz A. Clindamycin-loaded halloysite nanotubes as the antibacterial component of composite hydrogel for bone repair. Polymers. 2022;14:5151. doi: 10.3390/polym14235151. PubMed DOI PMC

Cywar R.M., Rorrer N.A., Hoyt C.B., Beckham G.T., Chen E.Y.-X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mat. 2022;7:83–103. doi: 10.1038/s41578-021-00363-3. DOI

Zhao J., Wang G., Wang C., Park C.B. Ultra-lightweight, super thermal-insulation and strong PP/CNT microcellular foams. Compos. Sci. Technol. 2020;191:108084. doi: 10.1016/j.compscitech.2020.108084. DOI

Kraft U., Molina-Lopez F., Son D., Bao Z., Murmann B. Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits. Adv. Electron. Mater. 2020;6:1900681. doi: 10.1002/aelm.201900681. DOI

Hart L.F., Hertzog J.E., Rauscher P.M., Rawe B.W., Tranquilli M.M., Rowan S.J. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mat. 2021;6:508–530. doi: 10.1038/s41578-021-00278-z. DOI

Rezvova M.A., Klyshnikov K.Y., Gritskevich A.A., Ovcharenko E.A. Polymeric heart valves will displace mechanical and tissue heart valves: A new era for the medical devices. Int. J. Mol. Sci. 2023;24:3963. doi: 10.3390/ijms24043963. PubMed DOI PMC

Bărăian A.-I., Iacob B.-C., Bodoki A.E., Bodoki E. In vivo applications of molecularly imprinted polymers for drug delivery: A pharmaceutical perspective. Int. J. Mol. Sci. 2022;23:14071. doi: 10.3390/ijms232214071. PubMed DOI PMC

Hartl N., Adams F., Merkel O.M. From Adsorption to Covalent Bonding: Apolipoprotein E Functionalization of polymeric nanoparticles for drug delivery across the blood–brain barrier. Adv. Ther. 2021;4:2000092. doi: 10.1002/adtp.202000092. PubMed DOI PMC

Priya James H., John R., Alex A., Anoop K.R. Smart polymers for the controlled delivery of drugs—A concise overview. Acta Pharm. Sin. B. 2014;4:120–127. doi: 10.1016/j.apsb.2014.02.005. PubMed DOI PMC

Gao Q., Kim B.-S., Gao G. Advanced strategies for 3D bioprinting of tissue and organ analogs using alginate hydrogel bioinks. Mar. Drugs. 2021;19:708. doi: 10.3390/md19120708. PubMed DOI PMC

Zhang M., Zhao X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 2020;162:1414–1428. doi: 10.1016/j.ijbiomac.2020.07.311. PubMed DOI

Wagener N., Di Fazio P., Böker K.O., Matziolis G. Osteogenic effect of pregabalin in human primary mesenchymal stem cells, osteoblasts and osteosarcoma cells. Life. 2022;12:496. doi: 10.3390/life12040496. PubMed DOI PMC

Gowri M., Latha N., Suganya K., Rajan M. Calcium alginate nanoparticle crosslinked phosphorylated polyallylamine to the controlled release of clindamycin for osteomyelitis treatment controlled release of clindamycin for osteomyelitis treatment. Drug Dev. Ind. Pharm. 2021;47:280–291. doi: 10.1080/03639045.2021.1879835. PubMed DOI

Abbaspour M., Makhmalzadeh B.S., Arastoo Z., Jahangiri A., Shiralipour R. Effect of anionic polymers on drug loading and release from clindamycin phosphate solid lipid nanoparticles. Trop. J. Pharm. Res. 2013;12:477–482. doi: 10.4314/tjpr.v12i4.5. DOI

Kilicarslan M., Ilhan M., Inal O., Orhan K. Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur. J. Pharm. Sci. 2018;123:441–451. doi: 10.1016/j.ejps.2018.08.007. PubMed DOI

Zanganeh S.M., Tahvildari K., Nozari M. Preparation and characterization of chitosan-alginate biopolymer loaded by clindamycin phosphate as an effective drug delivery system for the treatment of acne. Polym. Bull./Res. Sq. 2023:1–20. doi: 10.21203/rs.3.rs-3598549/v1. DOI

Do N.H.N., Truong Q.T., Le P.K., Ha A.C. Recent developments in chitosan hydrogels carrying natural bioactive compounds. Carbohydr. Polym. 2022;294:119726. doi: 10.1016/j.carbpol.2022.119726. PubMed DOI

Wei S., Liu X., Zhou J., Zhang J., Dong A., Huang P., Wang W., Deng L. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int. J. Biol. Macromol. 2020;155:153–162. doi: 10.1016/j.ijbiomac.2020.03.182. PubMed DOI

Tiraton T., Suwantong O., Chuysinuan P., Ekabutr P., Niamlang P., Khampieng T., Supaphol P. Biodegradable microneedle fabricated from sodium alginate-gelatin for transdermal delivery of clindamycin. Mater. Today Commun. 2022;32:104158. doi: 10.1016/j.mtcomm.2022.104158. DOI

Foox M., Raz-Pasteur A., Berdicevsky I., Krivoy N., Zilberman M. In vitro microbial inhibition, bonding strength, and cellular response to novel gelatin-alginate antibiotic-releasing soft tissue adhesives. Polym. Adv. Technol. 2014;25:516–524. doi: 10.1002/pat.3278. DOI

Dirzu N., Lucaciu O., Dirzu D.S., Soritau O., Cenariu D., Crisan B., Tefas L., Campian R.S. BMP-2 delivery through liposomes in bone regeneration. Appl. Sci. 2022;12:1373. doi: 10.3390/app12031373. DOI

Schrade S., Ritschl L., Süss R., Schilling P., Seidenstuecker M. Gelatin Nanoparticles for targeted dual drug release out of alginate-di-aldehyde-gelatin gels. Gels. 2022;8:365. doi: 10.3390/gels8060365. PubMed DOI PMC

Hasan N., Cao J., Lee J., Kim H., Wook J. Development of clindamycin—Loaded alginate/pectin/hyaluronic acid composite hydrogel film for the treatment of MRSA—infected wounds. J. Pharm. Investig. 2021;51:597–610. doi: 10.1007/s40005-021-00541-z. DOI

Kim J.O., Choi J.Y., Park J.K., Kim J.H., Jin S.G., Chang S.W., Li D.X., Hwang M.R., Woo J.S., Kim J.A., et al. Development of clindamycin-loaded wound dressing with polyvinyl alcohol and sodium alginate. Biol. Pharm. Bull. 2008;31:2277–2282. doi: 10.1248/bpb.31.2277. PubMed DOI

Morakul B., Wongrakpanich A., Teeranachaidekul V., Washiradathsathien K., Gamolvate A. Clindamycin peel-off mask film, an effective formulation for C. acnes treatment: Characterization and microbiological activity. Indonesian J. Pharm. 2023;34:128–139. doi: 10.22146/ijp.5167. DOI

Mohamed A.I., Ahmed O.A., Amin S., Elkadi O.A., Kassem M.A. In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy. Int. J. Pharm. 2015;494:127–135. doi: 10.1016/j.ijpharm.2015.08.032. PubMed DOI

Jalageri M.B., Mohan Kumar G.C. Hydroxyapatite reinforced polyvinyl alcohol/polyvinyl pyrrolidone based hydrogel for cartilage replacement. Gels. 2022;8:555. doi: 10.3390/gels8090555. PubMed DOI PMC

Nadem S., Ziyadi H., Hekmati M., Baghali M. Cross—linked poly(vinyl alcohol) nanofibers as drug carrier of clindamycin. Polym. Bull. 2020;77:5615–5629. doi: 10.1007/s00289-019-03027-z. DOI

Mandegari M., Ghasemi-Mobarakeh L., Varshosaz J. Fabrication and characterization of a novel wound dressing with clindamycin loaded PVA nanoparticles for acne treatment. Fiber. Polym. 2022;23:3369–3379. doi: 10.1007/s12221-022-4605-2. DOI

Sangnim T., Limmatvapirat S., Nunthanid J., Sriamornsak P., Sittikijyothin W., Wannachaiyasit S., Huanbutta K. Design and characterization of clindamycin-loaded nanofiber patches composed of polyvinyl alcohol and tamarind seed gum and fabricated by electrohydrodynamic atomization. Asian J. Pharm. Sci. 2018;13:450–458. doi: 10.1016/j.ajps.2018.01.002. PubMed DOI PMC

Khattab A., Nattouf A. Optimization of entrapment efficiency and release of clindamycin in microsponge based gel. Sci. Rep. 2021;11:23345. doi: 10.1038/s41598-021-02826-7. PubMed DOI PMC

Ilhan M., Kilicarslan M., Orhan K. Effect of process variables on in vitro characteristics of clindamycin phosphate loaded PLGA nanoparticles in dental bone regeneration and 3D characterization studies using nano-CT. J. Drug Deliv. Technol. 2022;76:103710. doi: 10.1016/j.jddst.2022.103710. DOI

Kurakula M., Rao G.S.N.K. Pharmaceutical assessment of polyvinylpyrrolidone (PVP): As excipient from conventional to controlled delivery systems with a spotlight on COVID-19 inhibition. J. Drug Deliv. Technol. 2020;60:102046. doi: 10.1016/j.jddst.2020.102046. PubMed DOI PMC

Borowska M., Glinka M., Filipowicz N., Terebieniec A., Szarlej P. Polymer biodegradable coatings as active substance release systems for urological applications. Monatsh. Chem. 2019;150:1697–1702. doi: 10.1007/s00706-019-02474-8. DOI

Hirnle L., Heimrath J., Woytoń J., Kłósek A., Hirnle G., Małolepsza-Jarmołowska K. Application of 2% clindamycin cream in the treatment of bacterial vaginosis and valuation of methylcellulose gel containing the complex of chitosan F and PVP k-90 with lactic acid as carrier for intravaginally adhbited medicines in the cases of pregnancie. Ginekol. Polska. 2002;72:1096–1100. PubMed

Ilyas R.A., Zuhri M.Y.M., Norrrahim M.N.F., Misenan M.S.M., Jenol M.A., Samsudin S.A., Nurazzi N.M., Asyraf M.R.M., Supian A.B.M., Bangar S.P., et al. Natural fiber-reinforced polycaprolactone green and hybrid biocomposites for various advanced applications. Polymers. 2022;14:182. doi: 10.3390/polym14010182. PubMed DOI PMC

Tanha N.R., Nouri M. Core-shell nanofibers of silk fibroin/polycaprolactone-clindamycin: Study on nanofibers structure and controlled release behavior. Polym. Sci. Ser. A. 2019;61:85–95. doi: 10.1134/S0965545X19010085. DOI

Mohamadi P., Mirmoeini G., Bahrami H., Mohsenzadeh E., Cochrane C., Koncar V. Electrospinning of poly(caprolactone)/gelatin/clindamycin nanocomposites as an antibacterial wound dressing. Mat. Sci. Forum. 2022;1063:71–81. doi: 10.4028/p-dx9w6i. DOI

Setia H., Javed M., Abdalkareem S., Abdelbasset K., Bokov D., Fakri Y., Najm M.A.A., Kazemnejadi M. Preparation of antibacterial gel/PCL nanofibers reinforced by dicalcium phosphate-modified graphene oxide with control release of clindamycin for possible application in bone tissue engineering. Inorg. Chem. Commun. 2022;139:109336. doi: 10.1016/j.inoche.2022.109336. DOI

Castillo-Ortega M.M., López-Peña I.Y., Rodríguez-Félix D.E., Del Castillo-Castro T., Encinas-Encinas J.C., Santacruz-Ortega H., Cauich-Rodríguez J.V., Quiroz-Castillo J.M., Chan-Chan L.H., Leyva-Verduzco I., et al. Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering. Polym. Bull. 2022;79:5495–5513. doi: 10.1007/s00289-021-03734-6. DOI

Vahedi M., Barzin J., Shokrolahi F., Shokrollahi P. Self-Healing, injectable gelatin hydrogels cross-linked by dynamic Schiff base linkages support cell adhesion and sustained release of antibacterial drugs. Macromol. Mater. Eng. 2018;303:1800200. doi: 10.1002/mame.201800200. DOI

Shekhawat D., Singh A., Bhardwaj A., Patnaik A. A short review on polymer, metal and ceramic based implant materials; Proceedings of the IOP Conference Series: Materials Science and Engineering; Jaipur, India. 5–6 November 2020; p. 1017. DOI

Janmohammadi M., Nazemi Z., Salehi A.O.M., Seyfoori A., John J.V., Nourbakhsh M.S., Akbari M. Cellulose-based composite scaffolds for bone tissue engineering and localized drug delivery. Bioactive Mat. 2023;20:137–163. doi: 10.1016/j.bioactmat.2022.05.018. PubMed DOI PMC

Kołodziejska B., Kaflak A., Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration—A review. Materials. 2020;13:1748. doi: 10.3390/ma13071748. PubMed DOI PMC

Yue S., He H., Li B., Hou T. Hydrogel as a biomaterial for bone tissue engineering: A review. Nanomaterials. 2020;10:1511. doi: 10.3390/nano10081511. PubMed DOI PMC

Ritschl L., Schilling P., Wittmer A., Bohner M., Bernstein A., Schmal H., Seidenstuecker M. Composite material consisting of microporous beta-TCP ceramic and alginate-dialdehyde-gelatin for controlled dual release of clindamycin and bone morphogenetic protein 2. J. Mater. Sci. Mater. Med. 2023;34:39. doi: 10.1007/s10856-023-06743-1. PubMed DOI PMC

Kuehling T., Schilling P., Bernstein A., Mayr H.O., Serr A., Wittmer A., Bohner M., Seidenstuecker M. A human bone infection organ model for biomaterial research. Acta Biomater. 2022;144:230–241. doi: 10.1016/j.actbio.2022.03.020. PubMed DOI

Xin L. Preparation and characteristics of drug loaded PLGA chitosan/nano-hydroxyapatite membrane for guided periodontal tissue regeneration in surgical implanting. Acad. J. Second Mil. Med. Univ. 2017;12:194–200.

Uskoković V., Desai T.A. In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J. Pharm. Sci. 2014;103:567–579. doi: 10.1002/jps.23824. PubMed DOI PMC

Słota D., Florkiewicz W., Piętak K., Pluta K., Sadlik J., Miernik K., Sobczak-Kupiec A. Preparation of PVP and betaine biomaterials enriched with hydroxyapatite and its evaluation as a drug carrier for controlled release of clindamycin. Ceram. Int. 2022;48:35467–35473. doi: 10.1016/j.ceramint.2022.08.151. DOI

Ben W., Sun P., Huang C.H. Effects of combined UV and chlorine treatment on chloroform formation from triclosan. Chemosphere. 2016;150:715–722. doi: 10.1016/j.chemosphere.2015.12.071. PubMed DOI

Bayston R., Ashraff W. Preventing infection on antimicrobial. Orthop. Proc. 2012;94:58.

Antoniac I., Popescu D., Zapciu A., Antoniac A., Miculescu F., Moldovan H. Magnesium filled polylactic acid (PLA) material for filament based 3D printing. Materials. 2019;12:719. doi: 10.3390/ma12050719. PubMed DOI PMC

Pradid J., Keawwatana W., Boonyang U., Tangbunsuk S. Biological properties and enzymatic degradation studies of clindamycin-loaded PLA/HAp microspheres prepared from crocodile bones. Polym. Bull. 2017;74:5181–5194. doi: 10.1007/s00289-017-2006-2. DOI

Uskoković V., Hoover C., Vukomanović M., Uskoković D.P., Desai T.A. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(d,l-lactide-co-glycolide) powders for the treatment of osteomyelitis. Mat. Sci. Eng C. 2013;33:3362–3373. doi: 10.1016/j.msec.2013.04.023. PubMed DOI PMC

Vukomanović M., Škapin S.D., Jančar B., Maksin T., Ignjatović N., Uskoković V., Uskoković D. Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. Colloids Surf. B. 2011;82:404–413. doi: 10.1016/j.colsurfb.2010.09.011. PubMed DOI

Vukomanović M., Škapin S.D., Poljanšek I., Žagar E., Kralj B., Ignjatović N., Uskoković D. Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanosphere. Part 2: Simultaneous release of a drug and a prodrug (clindamycin and clindamycin phosphate) Colloids Surf. B. 2011;82:414–421. doi: 10.1016/j.colsurfb.2010.09.012. PubMed DOI

Vukomanović M., Zavašnik-Bergant T., Bračko I., Škapin S.D., Ignjatović N., Radmilović V., Uskoković D. Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 3: Properties of hydroxyapatite nano-rods and investigation of a distribution of the drug within the composite. Colloids Surf. B. 2011;87:226–235. doi: 10.1016/j.colsurfb.2011.05.023. PubMed DOI

Vukomanović M., Šarčev I., Petronijević B., Škapin S.D., Ignjatović N., Uskoković D. Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 4: A change of the surface properties during degradation process and the corresponding in vitro cellular response. Colloids Surf. B. 2012;91:144–153. doi: 10.1016/j.colsurfb.2011.10.049. PubMed DOI

Chen K., Guo B., Luo J. Quaternized carboxymethyl chitosan/organic montmorillonite nanocomposite as a novel cosmetic ingredient against skin aging. Carbohydr. Polym. 2017;173:100–106. doi: 10.1016/j.carbpol.2017.05.088. PubMed DOI

Delir S., Sirousazar M., Kheiri F. Clindamycin releasing bionanocomposite hydrogels as potential wound dressings for the treatment of infected wounds. J. Biomat. Sci. 2020;31:1489–1514. doi: 10.1080/09205063.2020.1764161. PubMed DOI

Muhammad N., Siddiqua S. Calcium bentonite vs sodium bentonite: The potential of calcium bentonite for soil foundation. Mat. Today Proc. 2022;4:822–827. doi: 10.1016/j.matpr.2021.02.386. DOI

Idris S.A.S., Yucel O. Influence of bentonite nanoparticles on properties of PVP-CMC-gums hydrogel films for biomedical applications. Int. J. Eng. Sci. Technol. 2022;6:81–98. doi: 10.26389/AJSRP.D150522. DOI

Bampidis V., Azimonti G., de Lourdes Bastos M., Christensen H., Dusemund B., Kos Durjava M., Kouba M., López-Alonso M., López Puente S., Marcon F., et al. Safety and efficacy of sodium carboxymethyl cellulose for all animal species. EFSA J. 2020;18:e06211. doi: 10.2903/j.efsa.2020.6211. PubMed DOI PMC

Sadeghi S., Nourmohammadi J., Ghaee A., Soleimani N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int. J. Biol. Macromol. 2019;147:1239–1247. doi: 10.1016/j.ijbiomac.2019.09.251. PubMed DOI

Maver T., Mastnak T., Mihelic M., Maver U., Finšgar M. Clindamycin-based 3D-printed and electrospun coatings for treatment of implant-related infections. Materials. 2021;14:1464. doi: 10.3390/ma14061464. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...