Hybrid Polymer-Inorganic Materials with Hyaluronic Acid as Controlled Antibiotic Release Systems

. 2023 Dec 22 ; 17 (1) : . [epub] 20231222

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203913

Grantová podpora
Biomateriały kompozytowe do zastosowań medycznych Project FuturLab PK 2022/23

In recent years, significant developments have taken place in scientific fields such as tissue and materials engineering, which allow for the development of new, intelligent biomaterials. An example of such biomaterials is drug delivery systems that release the active substance directly at the site where the therapeutic effect is required. In this research, polymeric materials and ceramic-polymer composites were developed as carriers for the antibiotic clindamycin. The preparation and characterization of biomaterials based on hyaluronic acid, collagen, and nano brushite obtained using the photocrosslinking technique under UV (ultraviolet) light are described. Physical and chemical analyses of the materials obtained were carried out using Fourier transform infrared spectroscopy (FT-IR) and optical microscopy. The sorption capacities were determined and subjected to in vitro incubation in simulated biological environments such as Ringer's solution, simulated body fluid (SBF), phosphate-buffered saline (PBS), and distilled water. The antibiotic release rate was also measured. The study confirmed higher swelling capacity for materials with no addition of a ceramic phase, thus it can be concluded that brushite inhibits the penetration of the liquid medium into the interior of the samples, leading to faster absorption of the liquid medium. In addition, incubation tests confirmed preliminary biocompatibility. No drastic changes in pH values were observed, which suggests that the materials are stable under these conditions. The release rate of the antibiotic from the biomaterial into the incubation medium was determined using high-pressure liquid chromatography (HPLC). The concentration of the antibiotic in the incubation fluid increased steadily following a 14-day incubation in PBS, indicating continuous antibiotic release. Based on the results, it can be concluded that the developed polymeric material demonstrates potential for use as a carrier for the active substance.

Zobrazit více v PubMed

Radulescu D.E., Neacsu I.A., Grumezescu A.M., Andronescu E. Novel Trends into the Development of Natural Hydroxyapatite-Based Polymeric Composites for Bone Tissue Engineering. Polymers. 2022;14:899. doi: 10.3390/polym14050899. PubMed DOI PMC

Niemczyk-Soczynska B., Zaszczyńska A., Zabielski K., Sajkiewicz P. Hydrogel, Electrospun and Composite Materials for Bone/Cartilage and Neural Tissue Engineering. Materials. 2021;14:6899. doi: 10.3390/ma14226899. PubMed DOI PMC

Zhou B., Jiang X., Zhou X., Tan W., Luo H., Lei S., Yang Y. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: Therapeutic strategies and recent advances. Biomater. Res. 2023;27:86. doi: 10.1186/s40824-023-00422-6. PubMed DOI PMC

Zhou J., Zhang Z., Joseph J., Zhang X., Ferdows B.E., Patel D.N., Chen W., Banfi G., Molinaro R., Cosco D., et al. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration. 2021;1:20210011. doi: 10.1002/EXP.20210011. PubMed DOI PMC

Kim H., Hwangbo H., Koo Y.W., Kim G. Fabrication of mechanically reinforced gelatin/hydroxyapatite bio-composite scaffolds by core/shell nozzle printing for bone tissue engineering. Int. J. Mol. Sci. 2020;21:3401. doi: 10.3390/ijms21093401. PubMed DOI PMC

Lopes D., Martins-Cruz C., Oliveira M.B., Mano J.F. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials. 2018;185:240–275. doi: 10.1016/j.biomaterials.2018.09.028. PubMed DOI PMC

Wang W., Yeung K.W.K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017;2:224–247. doi: 10.1016/j.bioactmat.2017.05.007. PubMed DOI PMC

Agarwal R., García A.J. Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv. Drug Deliv. Rev. 2015;94:53–62. doi: 10.1016/j.addr.2015.03.013. PubMed DOI PMC

Chen F.-M., Jin Y., Chen F.-M., Jin Y. Periodontal Tissue Engineering and Regeneration: Current Approaches and Expanding Opportunities. Tissue Eng. Part B Rev. 2010;16:219–255. doi: 10.1089/ten.teb.2009.0562. PubMed DOI

Holtzclaw D., Toscano N., Eisenlohr L., Callan D. The Safety of Bone Allografts Used in Dentistry: A Review. J. Am. Dent. Assoc. 2008;139:1192–1199. doi: 10.14219/jada.archive.2008.0334. PubMed DOI

Florencio-Silva R., Sasso G.R.D.S., Sasso-Cerri E., Simões M.J., Cerri P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015;2015:421746. doi: 10.1155/2015/421746. PubMed DOI PMC

Wijesinghe W., Mantilaka M., Senarathna K.C., Herath H., Premachandra T., Ranasinghe C., Rajapakse R., Edirisinghe M., Mahalingam S., Bandara I., et al. Preparation of bone-implants by coating hydroxyapatite nanoparticles on self-formed titanium dioxide thin-layers on titanium metal surfaces. Mater. Sci. Eng. C. 2016;63:172–184. doi: 10.1016/j.msec.2016.02.053. PubMed DOI

Jeong J., Kim J.H., Shim J.H., Hwang N.S., Heo C.Y. Bioactive calcium phosphate materials and applications in bone regeneration. Biomater. Res. 2019;23:4. doi: 10.1186/s40824-018-0149-3. PubMed DOI PMC

Gorodzha S., Douglas T.E.L., Samal S.K., Detsch R., Cholewa-Kowalska K., Braeckmans K., Boccaccini A.R., Skirtach A.G., Weinhardt V., Baumbach T., et al. High-resolution synchrotron X-ray analysis of bioglass-enriched hydrogels. J. Biomed. Mater. Res.-Part A. 2016;104:1194–1201. doi: 10.1002/jbm.a.35642. PubMed DOI

Douglas T.E.L., Dziadek M., Gorodzha S., Lišková J., Brackman G., Vanhoorne V., Vervaet C., Balcaen L., del Rosario Florez Garcia M., Boccaccini A.R., et al. Novel injectable gellan gum hydrogel composites incorporating Zn- and Sr-enriched bioactive glass microparticles: High-resolution X-ray microcomputed tomography, antibacterial and in vitro testing. J. Tissue Eng. Regen. Med. 2018;12:1313–1326. doi: 10.1002/term.2654. PubMed DOI

Ripamonti U., Crooks J., Khoali L., Roden L. The induction of bone formation by coral-derived calcium carbonate/hydroxyapatite constructs. Biomaterials. 2009;30:1428–1439. doi: 10.1016/j.biomaterials.2008.10.065. PubMed DOI

Wang Z., Jiang S., Zhao Y., Zeng M. Synthesis and characterization of hydroxyapatite nano-rods from oyster shell with exogenous surfactants. Mater. Sci. Eng. C. 2019;105:110102. doi: 10.1016/j.msec.2019.110102. PubMed DOI

Bas M., Daglilar S., Kuskonmaz N., Kalkandelen C., Erdemir G., Kuruca S.E., Tulyaganov D., Yoshioka T., Gunduz O., Ficai D., et al. Mechanical and biocompatibility properties of calcium phosphate bioceramics derived from salmon fish bone wastes. Int. J. Mol. Sci. 2020;21:8082. doi: 10.3390/ijms21218082. PubMed DOI PMC

Chuysinuan P., Nooeaid P., Thanyacharoen T., Techasakul S., Pavasant P., Kanjanamekanant K. Injectable eggshell-derived hydroxyapatite-incorporated fibroin-alginate composite hydrogel for bone tissue engineering. Int. J. Biol. Macromol. 2021;193:799–808. doi: 10.1016/j.ijbiomac.2021.10.132. PubMed DOI

Li C., Wang J., Wang Y., Gao H., Wei G., Huang Y., Yu H., Gan Y., Wang Y., Mei L., et al. Recent progress in drug delivery. Acta Pharm. Sin. B. 2019;9:1145–1162. doi: 10.1016/j.apsb.2019.08.003. PubMed DOI PMC

Zhai P., Peng X., Li B., Liu Y., Sun H., Li X. The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol. 2020;151:1224–1239. doi: 10.1016/j.ijbiomac.2019.10.169. PubMed DOI

Hemshekhar M., Thushara R.M., Chandranayaka S., Sherman L.S., Kemparaju K., Girish K.S. Emerging Roles of Hyaluronic Acid Bioscaffolds in Tissue Engineering and Regenerative Medicine. Volume 86. Elsevier B.V.; Amsterdam, The Netherlands: 2016. PubMed

Einhorn T.A., Gerstenfeld L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015;11:45–54. doi: 10.1038/nrrheum.2014.164. PubMed DOI PMC

Fraser J.R.E., Laurent T.C., Laurent U.B.G. Hyaluronan: Its nature, distribution, functions and turnover. J. Intern. Med. 1997;242:27–33. doi: 10.1046/j.1365-2796.1997.00170.x. PubMed DOI

Fallacara A., Baldini E., Manfredini S., Vertuani S. Hyaluronic acid in the third millennium. Polymers. 2018;10:701. doi: 10.3390/polym10070701. PubMed DOI PMC

Dreiss C.A. Hydrogel design strategies for drug delivery. Curr. Opin. Colloid Interface Sci. 2020;48:1–17. doi: 10.1016/j.cocis.2020.02.001. DOI

Eivazzadeh-Keihan R., Noruzi E.B., Aliabadi H.A.M., Sheikhaleslami S., Akbarzadeh A.R., Hashemi S.M., Gorab M.G., Maleki A., Cohan R.A., Mahdavi M., et al. Recent advances on biomedical applications of pectin-containing biomaterials. Int. J. Biol. Macromol. 2022;217:1–18. doi: 10.1016/j.ijbiomac.2022.07.016. PubMed DOI

Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC

Toole B.P. Hyaluronan: From extracellular glue to pericellular cue. Nat. Rev. Cancer. 2004;4:528–539. doi: 10.1038/nrc1391. PubMed DOI

Choi B., Kim S., Lin B., Wu B.M., Lee M. Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl. Mater. Interfaces. 2014;6:20110–20121. doi: 10.1021/am505723k. PubMed DOI

Balakrishnan B., Banerjee R. Biopolymer-based hydrogels for cartilage tissue engineering. Chem. Rev. 2011;111:4453–4474. doi: 10.1021/cr100123h. PubMed DOI

Zamboni F., Wong C.K., Collins M.N. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact. Mater. 2023;19:458–473. doi: 10.1016/j.bioactmat.2022.04.023. PubMed DOI PMC

Walimbe T., Panitch A. Best of both hydrogel worlds: Harnessing bioactivity and tunability by incorporating glycosaminoglycans in collagen hydrogels. Bioengineering. 2020;7:156. doi: 10.3390/bioengineering7040156. PubMed DOI PMC

Guillén-Carvajal K., Valdez-Salas B., Beltrán-Partida E., Salomón-Carlos J., Cheng N. Chitosan, Gelatin, and Collagen Hydrogels for Bone Regeneration. Polymers. 2023;15:2762. doi: 10.3390/polym15132762. PubMed DOI PMC

Nabavi M.H., Salehi M., Ehterami A., Bastami F., Semyari H., Tehranchi M., Nabavi M.A., Semyari H. A collagen-based hydrogel containing tacrolimus for bone tissue engineering. Drug Deliv. Transl. Res. 2020;10:108–121. doi: 10.1007/s13346-019-00666-7. PubMed DOI

Fan L., Ren Y., Emmert S., Vučković I., Stojanovic S., Najman S., Schnettler R., Barbeck M., Schenke-Layland K., Xiong X. The Use of Collagen-Based Materials in Bone Tissue Engineering. Int. J. Mol. Sci. 2023;24:3744. doi: 10.3390/ijms24043744. PubMed DOI PMC

Ucar B. Natural biomaterials in brain repair: A focus on collagen. Neurochem. Int. 2021;146:105033. doi: 10.1016/j.neuint.2021.105033. PubMed DOI

Korzeniewska-Rybicka I., Karpinska A. Klindamycyna—Kompletna monografia leku. Pediatr. Med. Rodz. 2018;14((Suppl. S1)):s1–s15. doi: 10.15557/PiMR.2018.s1.0001. DOI

Thadepalli H., Dhawan V.K. Clindamycin A Review of Fifteen Years of Experience. Rev. Infect. Dis. 1982;4:1133–1153. doi: 10.1093/clinids/4.6.1133. PubMed DOI

Pavlović N., Bogićević I.A., Zaklan D., Ðanić M., Goločorbin-Kon S., Al-Salami H., Mikov M. Influence of Bile Acids in Hydrogel Pharmaceutical Formulations on Dissolution Rate and Permeation of Clindamycin Hydrochloride. Gels. 2022;8:35. doi: 10.3390/gels8010035. PubMed DOI PMC

Han S.S., Ji S.M., Park M.J., Suneetha M., Uthappa U.T. Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels. 2022;8:834. doi: 10.3390/gels8120834. PubMed DOI PMC

Smieja M. Current indications for the use of clindamycin: A critical review. Can. J. Infect. Dis. 1998;9:22–28. doi: 10.1155/1998/538090. PubMed DOI PMC

Rial-Hermida M.I., Rey-Rico A., Blanco-Fernandez B., Carballo-Pedrares N., Byrne E.M., Mano J.F. Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules. ACS Biomater. Sci. Eng. 2021;7:4102–4127. doi: 10.1021/acsbiomaterials.0c01784. PubMed DOI PMC

Manzoor A., Dar A.H., Pandey V.K., Shams R., Khan S., Panesar P.S., Kennedy J.F., Fayaz U., Khan S.A. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int. J. Biol. Macromol. 2022;213:987–1006. doi: 10.1016/j.ijbiomac.2022.06.044. PubMed DOI

Assefa M. Inducible Clindamycin-Resistant Staphylococcus aureus Strains in Africa: A Systematic Review. Int. J. Microbiol. 2022;2022:1835603. doi: 10.1155/2022/1835603. PubMed DOI PMC

Aqib M., Anwar A., Ajaz H., Akbar S., Manzoor A., Abid M., Waheed Z., Kanwal Q. Metal-Doped Brushite Cement for Bone Regeneration. J. Bionic Eng. 2023;20:2716–2731. doi: 10.1007/s42235-023-00409-y. DOI

Yassine I., Joudi M., Hafdi H., Hatimi B., Mouldar J., Bensemlali M., Nasrellah H., Mahammedi M.A.E., Bakasse M. Synthesis of brushite from phophogypsum industrial waste. Biointerface Res. Appl. Chem. 2022;12:6580–6588. doi: 10.33263/BRIAC125.65806588. DOI

Moses J.C., Dey M., Devi K.B., Roy M., Nandi S.K., Mandal B.B. Synergistic Effects of Silicon/Zinc Doped Brushite and Silk Scaffolding in Augmenting the Osteogenic and Angiogenic Potential of Composite Biomimetic Bone Grafts. ACS Biomater. Sci. Eng. 2019;5:1462–1475. doi: 10.1021/acsbiomaterials.8b01350. PubMed DOI

Boanini E., Silingardi F., Gazzano M., Bigi A. Synthesis and Hydrolysis of Brushite (DCPD): The Role of Ionic Substitution. Cryst. Growth Des. 2021;21:1689–1697. doi: 10.1021/acs.cgd.0c01569. DOI

Hurle K., Oliveira J.M., Reis R.L., Pina S., Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater. 2021;123:51–71. doi: 10.1016/j.actbio.2021.01.004. PubMed DOI

Vahabzadeh S., Fleck S., Duvvuru M.K., Cummings H. Effects of Cobalt on Physical and Mechanical Properties and In Vitro Degradation Behavior of Brushite Cement. JOM. 2019;71:315–320. doi: 10.1007/s11837-018-3204-6. DOI

Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment. Biomaterials. 2005;26:6423–6429. doi: 10.1016/j.biomaterials.2005.03.049. PubMed DOI

Słota D., Piętak K., Florkiewicz W., Jampílek J., Tomala A., Urbaniak M.M., Tomaszewska A., Rudnicka K., Sobczak-Kupiec A. Clindamycin-Loaded Nanosized Calcium Phosphates Powders as a Carrier of Active Substances. Nanomaterials. 2023;13:1469. doi: 10.3390/nano13091469. PubMed DOI PMC

Słota D., Florkiewicz W., Piętak K., Pluta K., Sadlik J., Miernik K., Sobczak-Kupiec A. Preparation of PVP and betaine biomaterials enriched with hydroxyapatite and its evaluation as a drug carrier for controlled release of clindamycin. Ceram. Int. 2022;48:35467–35473. doi: 10.1016/j.ceramint.2022.08.151. DOI

Słota D., Florkiewicz W., Piętak K., Szwed A., Włodarczyk M., Siwińska M., Rudnicka K., Sobczak-Kupiec A. Preparation, Characterization, and Biocompatibility Assessment of Polymer-Ceramic Composites Loaded with Salvia officinalis Extract. Materials. 2021;14:6000. doi: 10.3390/ma14206000. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...