Steroidomic Changes in the Cerebrospinal Fluid of Women with Multiple Sclerosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-04-00450
Czech Research Health Council
PubMed
40565362
PubMed Central
PMC12193344
DOI
10.3390/ijms26125904
PII: ijms26125904
Knihovny.cz E-zdroje
- Klíčová slova
- GC-MS/MS, cerebrospinal fluid, multiple sclerosis, multivariate statistics, steroidomics,
- MeSH
- dospělí MeSH
- folikulární fáze mozkomíšní mok MeSH
- lidé středního věku MeSH
- lidé MeSH
- luteální fáze mozkomíšní mok MeSH
- mladý dospělý MeSH
- roztroušená skleróza * mozkomíšní mok krev MeSH
- steroidy * mozkomíšní mok krev MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- steroidy * MeSH
Multiple sclerosis (MS) is a long-term disease that causes inflammation and damage to the nervous system. This study evaluated steroidomic alterations related to MS in 57 female MS patients during the follicular phase and 17 during the luteal phase, as well as in age- and phase-matched controls. The data showed that (1) unconjugated and conjugated steroids were strongly linked between the blood and CSF. (2) MS patients have lower levels of unconjugated steroids compared to controls. However, unchanged levels of conjugated steroids suggest a possible increase in steroid sulfotransferase functioning. (3) MS patients show altered levels of steroids linked to 11β-hydroxylase (CYP11B1) function. While direct enzyme activity was not measured, disrupted cortisol biosynthesis-potentially linked to reduced functioning of both CYP11B1 and 17α-hydroxylase/17,20-lyase-is associated with more severe cases of MS. (4) Reduced levels of 5α/β-steroids and protective GABAergic 3α-hydroxy-5α/β-steroids in MS patients might be linked to the pathophysiology of MS. (5) A potential increase in AKR1C3 function in MS could contribute to inflammation, as this enzyme catalyzes the synthesis of both steroids and prostaglandins. However, direct measurements of enzyme activity are needed to confirm this hypothesis. (6) Lower pregnenolone levels in MS patients might weaken neuroprotection, while higher pregnenolone sulfate levels could support cognitive function. (7) Lower levels of protective pregnenolone, DHEA, and androstenediol were associated with worse MS, suggesting these steroids may help shield against the disease.
Department of Neurology 1st Faculty of Medicine Charles University 12808 Prague Czech Republic
Zobrazit více v PubMed
Ysrraelit M.C., Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156:9–22. doi: 10.1111/imm.13004. PubMed DOI PMC
Sparaco M., Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocr. 2021;60:100889. doi: 10.1016/j.yfrne.2020.100889. PubMed DOI
Ubuka T., Trudeau V.L., Parhar I. Editorial: Steroids and the Brain. Front. Endocrinol. 2020;11:366. doi: 10.3389/fendo.2020.00366. PubMed DOI PMC
Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: Similarities and differences. Fluids Barriers CNS. 2011;8:3. doi: 10.1186/2045-8118-8-3. PubMed DOI PMC
Porcu P., Barron A.M., Frye C.A., Walf A.A., Yang S.Y., He X.Y., Morrow A.L., Panzica G.C., Melcangi R.C. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J. Neuroendocr. 2016;28:12351. doi: 10.1111/jne.12351. PubMed DOI PMC
Duque Ede A., Munhoz C.D. The Pro-inflammatory Effects of Glucocorticoids in the Brain. Front. Endocrinol. 2016;7:78. doi: 10.3389/fendo.2016.00078. PubMed DOI PMC
Borowicz K.K., Piskorska B., Banach M., Czuczwar S.J. Neuroprotective actions of neurosteroids. Front. Endocrinol. 2011;2:50. doi: 10.3389/fendo.2011.00050. PubMed DOI PMC
Giatti S., Boraso M., Melcangi R.C., Viviani B. Neuroactive steroids, their metabolites, and neuroinflammation. J. Mol. Endocrinol. 2012;49:R125–R134. doi: 10.1530/JME-12-0127. PubMed DOI
Melcangi R.C., Giatti S., Pesaresi M., Calabrese D., Mitro N., Caruso D., Garcia-Segura L.M. Role of neuroactive steroids in the peripheral nervous system. Front. Endocrinol. 2011;2:104. doi: 10.3389/fendo.2011.00104. PubMed DOI PMC
De Alcubierre D., Ferrari D., Mauro G., Isidori A.M., Tomlinson J.W., Pofi R. Glucocorticoids and cognitive function: A walkthrough in endogenous and exogenous alterations. J. Endocrinol. Investig. 2023;46:1961–1982. doi: 10.1007/s40618-023-02091-7. PubMed DOI PMC
Gundamraj S., Hasbun R. The Use of Adjunctive Steroids in Central Nervous Infections. Front. Cell. Infect. Microbiol. 2020;10:592017. doi: 10.3389/fcimb.2020.592017. PubMed DOI PMC
Ngo S.T., Steyn F.J., McCombe P.A. Gender differences in autoimmune disease. Front. Neuroendocr. 2014;35:347–369. doi: 10.1016/j.yfrne.2014.04.004. PubMed DOI
Smith R., Studd J.W. A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J. R. Soc. Med. 1992;85:612–613. doi: 10.1177/014107689208501008. PubMed DOI PMC
Argyriou A.A., Makris N. Multiple sclerosis and reproductive risks in women. Reprod. Sci. 2008;15:755–764. doi: 10.1177/1933719108324138. PubMed DOI
Begemann M.J., Dekker C.F., van Lunenburg M., Sommer I.E. Estrogen augmentation in schizophrenia: A quantitative review of current evidence. Schizophr. Res. 2012;141:179–184. doi: 10.1016/j.schres.2012.08.016. PubMed DOI
Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC
Powrie Y.S.L., Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: Therapeutic potential? J. Neuroinflamm. 2018;15:289. doi: 10.1186/s12974-018-1324-0. PubMed DOI PMC
Honcu P., Hill M., Bicikova M., Jandova D., Velikova M., Kajzar J., Kolatorova L., Bestak J., Macova L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC
Kamin H.S., Kertes D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017;89:69–85. doi: 10.1016/j.yhbeh.2016.11.018. PubMed DOI
Noorbakhsh F., Baker G.B., Power C. Allopregnanolone and neuroinflammation: A focus on multiple sclerosis. Front. Cell. Neurosci. 2014;8:134. doi: 10.3389/fncel.2014.00134. PubMed DOI PMC
Balan I., Beattie M.C., O’Buckley T.K., Aurelian L., Morrow A.L. Endogenous Neurosteroid (3alpha,5alpha)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci. Rep. 2019;9:1220. doi: 10.1038/s41598-018-37409-6. PubMed DOI PMC
Kancheva R., Hill M., Novak Z., Chrastina J., Velikova M., Kancheva L., Riha I., Starka L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2010;119:35–44. doi: 10.1016/j.jsbmb.2009.12.006. PubMed DOI
Bottasso O., Bay M.L., Besedovsky H., del Rey A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand. J. Immunol. 2007;66:166–175. doi: 10.1111/j.1365-3083.2007.01962.x. PubMed DOI
Du C., Khalil M.W., Sriram S. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J. Immunol. 2001;167:7094–7101. doi: 10.4049/jimmunol.167.12.7094. PubMed DOI
Rontzsch A., Thoss K., Petrow P.K., Henzgen S., Brauer R. Amelioration of murine antigen-induced arthritis by dehydroepiandrosterone (DHEA) Inflamm. Res. 2004;53:189–198. PubMed
Tan X.D., Dou Y.C., Shi C.W., Duan R.S., Sun R.P. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 2009;207:39–44. doi: 10.1016/j.jneuroim.2008.11.011. PubMed DOI
Choi I.S., Cui Y., Koh Y.A., Lee H.C., Cho Y.B., Won Y.H. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J. Intern. Med. 2008;23:176–181. doi: 10.3904/kjim.2008.23.4.176. PubMed DOI PMC
Sudo N., Yu X.N., Kubo C. Dehydroepiandrosterone attenuates the spontaneous elevation of serum IgE level in NC/Nga mice. Immunol. Lett. 2001;79:177–179. doi: 10.1016/S0165-2478(01)00285-1. PubMed DOI
Romagnani S., Kapsenberg M., Radbruch A., Adorini L. Th1 and Th2 cells. Res. Immunol. 1998;149:871–873. doi: 10.1016/S0923-2494(99)80016-9. PubMed DOI
Pratschke S., von Dossow-Hanfstingl V., Dietz J., Schneider C.P., Tufman A., Albertsmeier M., Winter H., Angele M.K. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J. Surg. Res. 2014;189:117–125. doi: 10.1016/j.jss.2014.02.002. PubMed DOI
Sterzl I., Hampl R., Sterzl J., Votruba J., Starka L. 7Beta-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J. Steroid Biochem. Mol. Biol. 1999;71:133–137. doi: 10.1016/S0960-0760(99)00134-X. PubMed DOI
Kancheva R., Hill M., Velikova M., Kancheva L., Vcelak J., Ampapa R., Zido M., Stetkarova I., Libertinova J., Vosatkova M., et al. Altered Steroidome in Women with Multiple Sclerosis. Int. J. Mol. Sci. 2024;25:12033. doi: 10.3390/ijms252212033. PubMed DOI PMC
Nakamura Y., Hornsby P.J., Casson P., Morimoto R., Satoh F., Xing Y., Kennedy M.R., Sasano H., Rainey W.E. Type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 2009;94:2192–2198. doi: 10.1210/jc.2008-2374. PubMed DOI PMC
Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI
Murgia F., Giagnoni F., Lorefice L., Caria P., Dettori T., D’Alterio M.N., Angioni S., Hendren A.J., Caboni P., Pibiri M., et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines. 2022;10:3107. doi: 10.3390/biomedicines10123107. PubMed DOI PMC
Xu C., Liu W., You X., Leimert K., Popowycz K., Fang X., Wood S.L., Slater D.M., Sun Q., Gu H., et al. PGF2alpha modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol. Hum. Reprod. 2015;21:603–614. doi: 10.1093/molehr/gav018. PubMed DOI PMC
Vitku J., Hill M., Kolatorova L., Kubala Havrdova E., Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front. Mol. Biosci. 2022;9:839887. doi: 10.3389/fmolb.2022.839887. PubMed DOI PMC
Singh H., Kumar R., Mazumder A., Salahuddin, Mazumder R., Abdullah M.M. Insights into Interactions of Human Cytochrome P450 17A1: A Review. Curr. Drug Metab. 2022;23:172–187. doi: 10.2174/1389200223666220401093833. PubMed DOI
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Dehennin L., Peres G. Plasma and urinary markers of oral testosterone misuse by healthy men in presence of masking epitestosterone administration. Int. J. Sports Med. 1996;17:315–319. doi: 10.1055/s-2007-972853. PubMed DOI