Steroidomic Changes in the Cerebrospinal Fluid of Women with Multiple Sclerosis

. 2025 Jun 19 ; 26 (12) : . [epub] 20250619

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40565362

Grantová podpora
NU20-04-00450 Czech Research Health Council

Multiple sclerosis (MS) is a long-term disease that causes inflammation and damage to the nervous system. This study evaluated steroidomic alterations related to MS in 57 female MS patients during the follicular phase and 17 during the luteal phase, as well as in age- and phase-matched controls. The data showed that (1) unconjugated and conjugated steroids were strongly linked between the blood and CSF. (2) MS patients have lower levels of unconjugated steroids compared to controls. However, unchanged levels of conjugated steroids suggest a possible increase in steroid sulfotransferase functioning. (3) MS patients show altered levels of steroids linked to 11β-hydroxylase (CYP11B1) function. While direct enzyme activity was not measured, disrupted cortisol biosynthesis-potentially linked to reduced functioning of both CYP11B1 and 17α-hydroxylase/17,20-lyase-is associated with more severe cases of MS. (4) Reduced levels of 5α/β-steroids and protective GABAergic 3α-hydroxy-5α/β-steroids in MS patients might be linked to the pathophysiology of MS. (5) A potential increase in AKR1C3 function in MS could contribute to inflammation, as this enzyme catalyzes the synthesis of both steroids and prostaglandins. However, direct measurements of enzyme activity are needed to confirm this hypothesis. (6) Lower pregnenolone levels in MS patients might weaken neuroprotection, while higher pregnenolone sulfate levels could support cognitive function. (7) Lower levels of protective pregnenolone, DHEA, and androstenediol were associated with worse MS, suggesting these steroids may help shield against the disease.

Zobrazit více v PubMed

Ysrraelit M.C., Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156:9–22. doi: 10.1111/imm.13004. PubMed DOI PMC

Sparaco M., Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocr. 2021;60:100889. doi: 10.1016/j.yfrne.2020.100889. PubMed DOI

Ubuka T., Trudeau V.L., Parhar I. Editorial: Steroids and the Brain. Front. Endocrinol. 2020;11:366. doi: 10.3389/fendo.2020.00366. PubMed DOI PMC

Redzic Z. Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: Similarities and differences. Fluids Barriers CNS. 2011;8:3. doi: 10.1186/2045-8118-8-3. PubMed DOI PMC

Porcu P., Barron A.M., Frye C.A., Walf A.A., Yang S.Y., He X.Y., Morrow A.L., Panzica G.C., Melcangi R.C. Neurosteroidogenesis Today: Novel Targets for Neuroactive Steroid Synthesis and Action and Their Relevance for Translational Research. J. Neuroendocr. 2016;28:12351. doi: 10.1111/jne.12351. PubMed DOI PMC

Duque Ede A., Munhoz C.D. The Pro-inflammatory Effects of Glucocorticoids in the Brain. Front. Endocrinol. 2016;7:78. doi: 10.3389/fendo.2016.00078. PubMed DOI PMC

Borowicz K.K., Piskorska B., Banach M., Czuczwar S.J. Neuroprotective actions of neurosteroids. Front. Endocrinol. 2011;2:50. doi: 10.3389/fendo.2011.00050. PubMed DOI PMC

Giatti S., Boraso M., Melcangi R.C., Viviani B. Neuroactive steroids, their metabolites, and neuroinflammation. J. Mol. Endocrinol. 2012;49:R125–R134. doi: 10.1530/JME-12-0127. PubMed DOI

Melcangi R.C., Giatti S., Pesaresi M., Calabrese D., Mitro N., Caruso D., Garcia-Segura L.M. Role of neuroactive steroids in the peripheral nervous system. Front. Endocrinol. 2011;2:104. doi: 10.3389/fendo.2011.00104. PubMed DOI PMC

De Alcubierre D., Ferrari D., Mauro G., Isidori A.M., Tomlinson J.W., Pofi R. Glucocorticoids and cognitive function: A walkthrough in endogenous and exogenous alterations. J. Endocrinol. Investig. 2023;46:1961–1982. doi: 10.1007/s40618-023-02091-7. PubMed DOI PMC

Gundamraj S., Hasbun R. The Use of Adjunctive Steroids in Central Nervous Infections. Front. Cell. Infect. Microbiol. 2020;10:592017. doi: 10.3389/fcimb.2020.592017. PubMed DOI PMC

Ngo S.T., Steyn F.J., McCombe P.A. Gender differences in autoimmune disease. Front. Neuroendocr. 2014;35:347–369. doi: 10.1016/j.yfrne.2014.04.004. PubMed DOI

Smith R., Studd J.W. A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J. R. Soc. Med. 1992;85:612–613. doi: 10.1177/014107689208501008. PubMed DOI PMC

Argyriou A.A., Makris N. Multiple sclerosis and reproductive risks in women. Reprod. Sci. 2008;15:755–764. doi: 10.1177/1933719108324138. PubMed DOI

Begemann M.J., Dekker C.F., van Lunenburg M., Sommer I.E. Estrogen augmentation in schizophrenia: A quantitative review of current evidence. Schizophr. Res. 2012;141:179–184. doi: 10.1016/j.schres.2012.08.016. PubMed DOI

Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC

Powrie Y.S.L., Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: Therapeutic potential? J. Neuroinflamm. 2018;15:289. doi: 10.1186/s12974-018-1324-0. PubMed DOI PMC

Honcu P., Hill M., Bicikova M., Jandova D., Velikova M., Kajzar J., Kolatorova L., Bestak J., Macova L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC

Kamin H.S., Kertes D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017;89:69–85. doi: 10.1016/j.yhbeh.2016.11.018. PubMed DOI

Noorbakhsh F., Baker G.B., Power C. Allopregnanolone and neuroinflammation: A focus on multiple sclerosis. Front. Cell. Neurosci. 2014;8:134. doi: 10.3389/fncel.2014.00134. PubMed DOI PMC

Balan I., Beattie M.C., O’Buckley T.K., Aurelian L., Morrow A.L. Endogenous Neurosteroid (3alpha,5alpha)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci. Rep. 2019;9:1220. doi: 10.1038/s41598-018-37409-6. PubMed DOI PMC

Kancheva R., Hill M., Novak Z., Chrastina J., Velikova M., Kancheva L., Riha I., Starka L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2010;119:35–44. doi: 10.1016/j.jsbmb.2009.12.006. PubMed DOI

Bottasso O., Bay M.L., Besedovsky H., del Rey A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand. J. Immunol. 2007;66:166–175. doi: 10.1111/j.1365-3083.2007.01962.x. PubMed DOI

Du C., Khalil M.W., Sriram S. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J. Immunol. 2001;167:7094–7101. doi: 10.4049/jimmunol.167.12.7094. PubMed DOI

Rontzsch A., Thoss K., Petrow P.K., Henzgen S., Brauer R. Amelioration of murine antigen-induced arthritis by dehydroepiandrosterone (DHEA) Inflamm. Res. 2004;53:189–198. PubMed

Tan X.D., Dou Y.C., Shi C.W., Duan R.S., Sun R.P. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 2009;207:39–44. doi: 10.1016/j.jneuroim.2008.11.011. PubMed DOI

Choi I.S., Cui Y., Koh Y.A., Lee H.C., Cho Y.B., Won Y.H. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J. Intern. Med. 2008;23:176–181. doi: 10.3904/kjim.2008.23.4.176. PubMed DOI PMC

Sudo N., Yu X.N., Kubo C. Dehydroepiandrosterone attenuates the spontaneous elevation of serum IgE level in NC/Nga mice. Immunol. Lett. 2001;79:177–179. doi: 10.1016/S0165-2478(01)00285-1. PubMed DOI

Romagnani S., Kapsenberg M., Radbruch A., Adorini L. Th1 and Th2 cells. Res. Immunol. 1998;149:871–873. doi: 10.1016/S0923-2494(99)80016-9. PubMed DOI

Pratschke S., von Dossow-Hanfstingl V., Dietz J., Schneider C.P., Tufman A., Albertsmeier M., Winter H., Angele M.K. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J. Surg. Res. 2014;189:117–125. doi: 10.1016/j.jss.2014.02.002. PubMed DOI

Sterzl I., Hampl R., Sterzl J., Votruba J., Starka L. 7Beta-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J. Steroid Biochem. Mol. Biol. 1999;71:133–137. doi: 10.1016/S0960-0760(99)00134-X. PubMed DOI

Kancheva R., Hill M., Velikova M., Kancheva L., Vcelak J., Ampapa R., Zido M., Stetkarova I., Libertinova J., Vosatkova M., et al. Altered Steroidome in Women with Multiple Sclerosis. Int. J. Mol. Sci. 2024;25:12033. doi: 10.3390/ijms252212033. PubMed DOI PMC

Nakamura Y., Hornsby P.J., Casson P., Morimoto R., Satoh F., Xing Y., Kennedy M.R., Sasano H., Rainey W.E. Type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 2009;94:2192–2198. doi: 10.1210/jc.2008-2374. PubMed DOI PMC

Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI

Murgia F., Giagnoni F., Lorefice L., Caria P., Dettori T., D’Alterio M.N., Angioni S., Hendren A.J., Caboni P., Pibiri M., et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines. 2022;10:3107. doi: 10.3390/biomedicines10123107. PubMed DOI PMC

Xu C., Liu W., You X., Leimert K., Popowycz K., Fang X., Wood S.L., Slater D.M., Sun Q., Gu H., et al. PGF2alpha modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol. Hum. Reprod. 2015;21:603–614. doi: 10.1093/molehr/gav018. PubMed DOI PMC

Vitku J., Hill M., Kolatorova L., Kubala Havrdova E., Kancheva R. Steroid Sulfation in Neurodegenerative Diseases. Front. Mol. Biosci. 2022;9:839887. doi: 10.3389/fmolb.2022.839887. PubMed DOI PMC

Singh H., Kumar R., Mazumder A., Salahuddin, Mazumder R., Abdullah M.M. Insights into Interactions of Human Cytochrome P450 17A1: A Review. Curr. Drug Metab. 2022;23:172–187. doi: 10.2174/1389200223666220401093833. PubMed DOI

Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI

Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Dehennin L., Peres G. Plasma and urinary markers of oral testosterone misuse by healthy men in presence of masking epitestosterone administration. Int. J. Sports Med. 1996;17:315–319. doi: 10.1055/s-2007-972853. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...