Altered Steroidome in Women with Multiple Sclerosis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU20-04-00450
Agentura Pro Zdravotnický Výzkum České Republiky
PubMed
39596101
PubMed Central
PMC11593676
DOI
10.3390/ijms252212033
PII: ijms252212033
Knihovny.cz E-zdroje
- Klíčová slova
- GC-MS/MS, differential diagnostics, multiple sclerosis, multivariate statistics, steroidomics,
- MeSH
- dospělí MeSH
- hydrokortison metabolismus krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- roztroušená skleróza * metabolismus krev MeSH
- steroidy metabolismus MeSH
- studie případů a kontrol MeSH
- tandemová hmotnostní spektrometrie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydrokortison MeSH
- steroidy MeSH
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) mainly afflicting young women. Various steroids can influence the onset and development of the disease or, on the contrary, mitigate its course; however, a systematic review of steroidomic changes in MS patients is lacking. Based on the gas chromatography tandem mass spectrometry (GC-MS/MS) platform and, in the case of estradiol, also using immunoassay, this study performed a comprehensive steroidomic analysis in 25 female MS patients aged 39(32, 49) years compared to 15 female age-matched controls aged 38(31, 46) years. A significant trend towards higher ratios of conjugated steroids to their unconjugated counterparts was found in patients, which is of particular interest in terms of the balance between excitatory and inhibitory steroid modulators of ionotropic receptors. Patients showed altered metabolic pathway to cortisol with decreased conversion of pregnenolone to 17-hydroxypregnenolone and 17-hydroxypregnenolone to 17-hydroxyprogesterone and increased conversion of 17-hydroxypregnenolone to dehydroepiandrosterone (DHEA), resulting in lower levels of 17-hydroxyprogesterone, as well as indications of impaired conversion of 11-deoxy-steroids to 11β-hydroxy-steroids but reduced conversion of cortisol to cortisone. Due to over-activation of hypothalamic-pituitary-adrenal axis (HPAA), however, cortisol and cortisone levels were higher in patients with indications of depleted cortisol synthesizing enzymes. Patients showed lower conversion of DHEA to androstenedione, androstenedione to testosterone, androstenedione to estradiol in the major pathway, and testosterone to estradiol in the minor pathway for estradiol synthesis at increased conversion of androstenedione to testosterone. They also showed lower conversion of immunoprotective Δ5 androstanes to their more potent 7α/β-hydroxy metabolites and had lower circulating allopregnanolone and higher ratio 3β-hydroxy-steroids to their neuroprotective 3α-hydroxy-counterparts.
Department of Neurology 1st Faculty of Medicine Charles University 12008 Prague Czech Republic
Institute of Endocrinology 11000 Prague Czech Republic
MS Center 2nd Faculty of Medicine Charles University 15006 Prague Czech Republic
Zobrazit více v PubMed
Ysrraelit M.C., Correale J. Impact of sex hormones on immune function and multiple sclerosis development. Immunology. 2019;156:9–22. doi: 10.1111/imm.13004. PubMed DOI PMC
Sparaco M., Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front. Neuroendocrinol. 2021;60:100889. doi: 10.1016/j.yfrne.2020.100889. PubMed DOI
Ngo S.T., Steyn F.J., McCombe P.A. Gender differences in autoimmune disease. Front. Neuroendocrinol. 2014;35:347–369. doi: 10.1016/j.yfrne.2014.04.004. PubMed DOI
Smith R., Studd J.W. A pilot study of the effect upon multiple sclerosis of the menopause, hormone replacement therapy and the menstrual cycle. J. R. Soc. Med. 1992;85:612–613. doi: 10.1177/014107689208501008. PubMed DOI PMC
Argyriou A.A., Makris N. Multiple sclerosis and reproductive risks in women. Reprod. Sci. 2008;15:755–764. doi: 10.1177/1933719108324138. PubMed DOI
Kamin H.S., Kertes D.A. Cortisol and DHEA in development and psychopathology. Horm. Behav. 2017;89:69–85. doi: 10.1016/j.yhbeh.2016.11.018. PubMed DOI
Groeneweg F.L., Karst H., de Kloet E.R., Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol. Cell. Endocrinol. 2012;350:299–309. doi: 10.1016/j.mce.2011.06.020. PubMed DOI
Mikulska J., Juszczyk G., Gawronska-Grzywacz M., Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci. 2021;11:1298. doi: 10.3390/brainsci11101298. PubMed DOI PMC
Cherian K., Schatzberg A.F., Keller J. HPA axis in psychotic major depression and schizophrenia spectrum disorders: Cortisol, clinical symptomatology, and cognition. Schizophr. Res. 2019;213:72–79. doi: 10.1016/j.schres.2019.07.003. PubMed DOI
Misiak B., Piotrowski P., Chec M., Samochowiec J. Cortisol and dehydroepiandrosterone sulfate in patients with schizophrenia spectrum disorders with respect to cognitive performance. Compr. Psychoneuroendocrinol. 2021;6:100041. doi: 10.1016/j.cpnec.2021.100041. PubMed DOI PMC
Ritsner M., Maayan R., Gibel A., Strous R.D., Modai I., Weizman A. Elevation of the cortisol/dehydroepiandrosterone ratio in schizophrenia patients. Eur. Neuropsychopharmacol. 2004;14:267–273. doi: 10.1016/j.euroneuro.2003.09.003. PubMed DOI
Ritsner M., Gibel A., Maayan R., Ratner Y., Ram E., Modai I., Weizman A. State and trait related predictors of serum cortisol to DHEA(S) molar ratios and hormone concentrations in schizophrenia patients. Eur. Neuropsychopharmacol. 2007;17:257–264. doi: 10.1016/j.euroneuro.2006.09.001. PubMed DOI
Begemann M.J., Dekker C.F., van Lunenburg M., Sommer I.E. Estrogen augmentation in schizophrenia: A quantitative review of current evidence. Schizophr. Res. 2012;141:179–184. doi: 10.1016/j.schres.2012.08.016. PubMed DOI
Qaiser M.Z., Dolman D.E.M., Begley D.J., Abbott N.J., Cazacu-Davidescu M., Corol D.I., Fry J.P. Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat. J. Neurochem. 2017;142:672–685. doi: 10.1111/jnc.14117. PubMed DOI PMC
Cai H., Cao T., Zhou X., Yao J.K. Neurosteroids in Schizophrenia: Pathogenic and Therapeutic Implications. Front. Psychiatry. 2018;9:73. doi: 10.3389/fpsyt.2018.00073. PubMed DOI PMC
Powrie Y.S.L., Smith C. Central intracrine DHEA synthesis in ageing-related neuroinflammation and neurodegeneration: Therapeutic potential? J. Neuroinflammation. 2018;15:289. doi: 10.1186/s12974-018-1324-0. PubMed DOI PMC
Honcu P., Hill M., Bicikova M., Jandova D., Velikova M., Kajzar J., Kolatorova L., Bestak J., Macova L., Kancheva R., et al. Activation of Adrenal Steroidogenesis and an Improvement of Mood Balance in Postmenopausal Females after Spa Treatment Based on Physical Activity. Int. J. Mol. Sci. 2019;20:3687. doi: 10.3390/ijms20153687. PubMed DOI PMC
MacKenzie E.M., Odontiadis J., Le Melledo J.M., Prior T.I., Baker G.B. The relevance of neuroactive steroids in schizophrenia, depression, and anxiety disorders. Cell. Mol. Neurobiol. 2007;27:541–574. doi: 10.1007/s10571-006-9086-0. PubMed DOI PMC
Luu-The V. Assessment of steroidogenesis and steroidogenic enzyme functions. J. Steroid Biochem. Mol. Biol. 2013;137:176–182. doi: 10.1016/j.jsbmb.2013.05.017. PubMed DOI
Labrie F. All sex steroids are made intracellularly in peripheral tissues by the mechanisms of intracrinology after menopause. J. Steroid Biochem. Mol. Biol. 2015;145:133–138. doi: 10.1016/j.jsbmb.2014.06.001. PubMed DOI
Tomassini V., Pozzilli C. Sex hormones, brain damage and clinical course of Multiple Sclerosis. J. Neurol. Sci. 2009;286:35–39. doi: 10.1016/j.jns.2009.04.014. PubMed DOI
Foroughipour A., Norbakhsh V., Najafabadi S.H., Meamar R. Evaluating sex hormone levels in reproductive age women with multiple sclerosis and their relationship with disease severity. J. Res. Med. Sci. 2012;17:882–885. PubMed PMC
Kanceva R., Starka L., Kancheva L., Hill M., Velikova M., Havrdova E. Increased serum levels of C21 steroids in female patients with multiple sclerosis. Physiol. Res. 2015;64((Suppl. 2)):S247–S254. doi: 10.33549/physiolres.933145. PubMed DOI
Hill M., Parizek A., Kancheva R., Duskova M., Velikova M., Kriz L., Klimkova M., Paskova A., Zizka Z., Matucha P., et al. Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 2010;121:594–610. doi: 10.1016/j.jsbmb.2009.10.012. PubMed DOI
Caruso D., Melis M., Fenu G., Giatti S., Romano S., Grimoldi M., Crippa D., Marrosu M.G., Cavaletti G., Melcangi R.C. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J. Neurochem. 2014;130:591–597. doi: 10.1111/jnc.12745. PubMed DOI
Labrie F., Martel C., Belanger A., Pelletier G. Androgens in women are essentially made from DHEA in each peripheral tissue according to intracrinology. J. Steroid Biochem. Mol. Biol. 2017;168:9–18. doi: 10.1016/j.jsbmb.2016.12.007. PubMed DOI
Angeli A., Masera R.G., Sartori M.L., Fortunati N., Racca S., Dovio A., Staurenghi A., Frairia R. Modulation by cytokines of glucocorticoid action. Ann. N. Y. Acad. Sci. 1999;876:210–220. doi: 10.1111/j.1749-6632.1999.tb07641.x. PubMed DOI
de Kloet E.R., Joels M., Holsboer F. Stress and the brain: From adaptation to disease. Nat. Rev. Neurosci. 2005;6:463–475. doi: 10.1038/nrn1683. PubMed DOI
Hildebrandt H., Stachowiak R., Heber I., Schlake H.P., Eling P. Relation between cognitive fatigue and circadian or stress related cortisol levels in MS patients. Mult. Scler. Relat. Disord. 2020;45:102440. doi: 10.1016/j.msard.2020.102440. PubMed DOI
Slominski R.M., Tuckey R.C., Manna P.R., Jetten A.M., Postlethwaite A., Raman C., Slominski A.T. Extra-adrenal glucocorticoid biosynthesis: Implications for autoimmune and inflammatory disorders. Genes Immun. 2020;21:150–168. doi: 10.1038/s41435-020-0096-6. PubMed DOI PMC
Tucha L., Fuermaier A.B., Koerts J., Buggenthin R., Aschenbrenner S., Weisbrod M., Thome J., Lange K.W., Tucha O. Sustained attention in adult ADHD: Time-on-task effects of various measures of attention. J. Neural Transm. 2017;124((Suppl. S1)):39–53. doi: 10.1007/s00702-015-1426-0. PubMed DOI PMC
Vedhara K., Hyde J., Gilchrist I.D., Tytherleigh M., Plummer S. Acute stress, memory, attention and cortisol. Psychoneuroendocrinology. 2000;25:535–549. doi: 10.1016/S0306-4530(00)00008-1. PubMed DOI
Padgett D.A., Glaser R. How stress influences the immune response. Trends Immunol. 2003;24:444–448. doi: 10.1016/S1471-4906(03)00173-X. PubMed DOI
Pereira G.M., Soares N.M., Souza A.R., Becker J., Finkelsztejn A., Almeida R.M.M. Basal cortisol levels and the relationship with clinical symptoms in multiple sclerosis: A systematic review. Arq. Neuropsiquiatr. 2018;76:622–634. doi: 10.1590/0004-282x20180091. PubMed DOI
Heidbrink C., Hausler S.F., Buttmann M., Ossadnik M., Strik H.M., Keller A., Buck D., Verbraak E., van Meurs M., Krockenberger M., et al. Reduced cortisol levels in cerebrospinal fluid and differential distribution of 11beta-hydroxysteroid dehydrogenases in multiple sclerosis: Implications for lesion pathogenesis. Brain Behav. Immun. 2010;24:975–984. doi: 10.1016/j.bbi.2010.04.003. PubMed DOI
Tomassini V., Onesti E., Mainero C., Giugni E., Paolillo A., Salvetti M., Nicoletti F., Pozzilli C. Sex hormones modulate brain damage in multiple sclerosis: MRI evidence. J. Neurol. Neurosurg. Psychiatry. 2005;76:272–275. doi: 10.1136/jnnp.2003.033324. PubMed DOI PMC
Grinsted L., Heltberg A., Hagen C., Djursing H. Serum sex hormone and gonadotropin concentrations in premenopausal women with multiple sclerosis. J. Intern. Med. 1989;226:241–244. doi: 10.1111/j.1365-2796.1989.tb01387.x. PubMed DOI
Wei T., Lightman S.L. The neuroendocrine axis in patients with multiple sclerosis. Pt 6Brain. 1997;120:1067–1076. doi: 10.1093/brain/120.6.1067. PubMed DOI
Bottasso O., Bay M.L., Besedovsky H., del Rey A. The immuno-endocrine component in the pathogenesis of tuberculosis. Scand. J. Immunol. 2007;66:166–175. doi: 10.1111/j.1365-3083.2007.01962.x. PubMed DOI
Du C., Khalil M.W., Sriram S. Administration of dehydroepiandrosterone suppresses experimental allergic encephalomyelitis in SJL/J mice. J. Immunol. 2001;167:7094–7101. doi: 10.4049/jimmunol.167.12.7094. PubMed DOI
Rontzsch A., Thoss K., Petrow P.K., Henzgen S., Brauer R. Amelioration of murine antigen-induced arthritis by dehydroepiandrosterone (DHEA) Inflamm. Res. 2004;53:189–198. PubMed
Tan X.D., Dou Y.C., Shi C.W., Duan R.S., Sun R.P. Administration of dehydroepiandrosterone ameliorates experimental autoimmune neuritis in Lewis rats. J. Neuroimmunol. 2009;207:39–44. doi: 10.1016/j.jneuroim.2008.11.011. PubMed DOI
Choi I.S., Cui Y., Koh Y.A., Lee H.C., Cho Y.B., Won Y.H. Effects of dehydroepiandrosterone on Th2 cytokine production in peripheral blood mononuclear cells from asthmatics. Korean J. Intern. Med. 2008;23:176–181. doi: 10.3904/kjim.2008.23.4.176. PubMed DOI PMC
Sudo N., Yu X.N., Kubo C. Dehydroepiandrosterone attenuates the spontaneous elevation of serum IgE level in NC/Nga mice. Immunol. Lett. 2001;79:177–179. doi: 10.1016/S0165-2478(01)00285-1. PubMed DOI
Noorbakhsh F., Ellestad K.K., Maingat F., Warren K.G., Han M.H., Steinman L., Baker G.B., Power C. Impaired neurosteroid synthesis in multiple sclerosis. Pt 9Brain. 2011;134:2703–2721. doi: 10.1093/brain/awr200. PubMed DOI PMC
Gubbels Bupp M.R., Jorgensen T.N. Androgen-Induced Immunosuppression. Front. Immunol. 2018;9:794. doi: 10.3389/fimmu.2018.00794. PubMed DOI PMC
Matuszewska A., Kowalski K., Jawien P., Tomkalski T., Gawel-Dabrowska D., Merwid-Lad A., Szelag E., Blaszczak K., Wiatrak B., Danielewski M., et al. The Hypothalamic-Pituitary-Gonadal Axis in Men with Schizophrenia. Int. J. Mol. Sci. 2023;24:6492. doi: 10.3390/ijms24076492. PubMed DOI PMC
Garcia-Estrada J., Del Rio J.A., Luquin S., Soriano E., Garcia-Segura L.M. Gonadal hormones down-regulate reactive gliosis and astrocyte proliferation after a penetrating brain injury. Brain Res. 1993;628:271–278. doi: 10.1016/0006-8993(93)90964-O. PubMed DOI
Bovolenta P., Wandosell F., Nieto-Sampedro M. CNS glial scar tissue: A source of molecules which inhibit central neurite outgrowth. Prog. Brain Res. 1992;94:367–379. PubMed
Burda J.E., Sofroniew M.V. Reactive gliosis and the multicellular response to CNS damage and disease. Neuron. 2014;81:229–248. doi: 10.1016/j.neuron.2013.12.034. PubMed DOI PMC
Dalal M., Kim S., Voskuhl R.R. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J. Immunol. 1997;159:3–6. doi: 10.4049/jimmunol.159.1.3. PubMed DOI
Caruso A., Di Giorgi Gerevini V., Castiglione M., Marinelli F., Tomassini V., Pozzilli C., Caricasole A., Bruno V., Caciagli F., Moretti A., et al. Testosterone amplifies excitotoxic damage of cultured oligodendrocytes. J. Neurochem. 2004;88:1179–1185. doi: 10.1046/j.1471-4159.2004.02284.x. PubMed DOI
Gogos A., Sbisa A.M., Sun J., Gibbons A., Udawela M., Dean B. A Role for Estrogen in Schizophrenia: Clinical and Preclinical Findings. Int. J. Endocrinol. 2015;2015:615356. doi: 10.1155/2015/615356. PubMed DOI PMC
McGregor C., Riordan A., Thornton J. Estrogens and the cognitive symptoms of schizophrenia: Possible neuroprotective mechanisms. Front. Neuroendocr. 2017;47:19–33. doi: 10.1016/j.yfrne.2017.06.003. PubMed DOI
Rao M.L., Kolsch H. Effects of estrogen on brain development and neuroprotection--implications for negative symptoms in schizophrenia. Psychoneuroendocrinology. 2003;28((Suppl. 2)):83–96. doi: 10.1016/S0306-4530(02)00126-9. PubMed DOI
Melnikov M., Pashenkov M., Boyko A. Dopaminergic Receptor Targeting in Multiple Sclerosis: Is There Therapeutic Potential? Int. J. Mol. Sci. 2021;22:5313. doi: 10.3390/ijms22105313. PubMed DOI PMC
Trenova A.G., Slavov G.S., Manova M.G., Kostadinova I.I., Vasileva T.V. Female sex hormones and cytokine secretion in women with multiple sclerosis. Neurol. Res. 2013;35:95–99. doi: 10.1179/1743132812Y.0000000120. PubMed DOI
Ghoumari A.M., Ibanez C., El-Etr M., Leclerc P., Eychenne B., O’Malley B.W., Baulieu E.E., Schumacher M. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J. Neurochem. 2003;86:848–859. doi: 10.1046/j.1471-4159.2003.01881.x. PubMed DOI
Bodhankar S., Wang C., Vandenbark A.A., Offner H. Estrogen-induced protection against experimental autoimmune encephalomyelitis is abrogated in the absence of B cells. Eur. J. Immunol. 2011;41:1165–1175. doi: 10.1002/eji.201040992. PubMed DOI PMC
Noorbakhsh F., Baker G.B., Power C. Allopregnanolone and neuroinflammation: A focus on multiple sclerosis. Front. Cell. Neurosci. 2014;8:134. doi: 10.3389/fncel.2014.00134. PubMed DOI PMC
Balan I., Beattie M.C., O’Buckley T.K., Aurelian L., Morrow A.L. Endogenous Neurosteroid (3 alpha, 5 alpha)3-Hydroxypregnan-20-one Inhibits Toll-like-4 Receptor Activation and Pro-inflammatory Signaling in Macrophages and Brain. Sci. Rep. 2019;9:1220. doi: 10.1038/s41598-018-37409-6. PubMed DOI PMC
Al-Shammri S., Rawoot P., Azizieh F., AbuQoora A., Hanna M., Saminathan T.R., Raghupathy R. Th1/Th2 cytokine patterns and clinical profiles during and after pregnancy in women with multiple sclerosis. J. Neurol. Sci. 2004;222:21–27. doi: 10.1016/j.jns.2004.03.027. PubMed DOI
Park-Chung M., Wu F.S., Purdy R.H., Malayev A.A., Gibbs T.T., Farb D.H. Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids. Mol. Pharmacol. 1997;52:1113–1123. doi: 10.1124/mol.52.6.1113. PubMed DOI
Park-Chung M., Malayev A., Purdy R.H., Gibbs T.T., Farb D.H. Sulfated and unsulfated steroids modulate gamma-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999;830:72–87. doi: 10.1016/S0006-8993(99)01381-5. PubMed DOI
Smejkalova T., Korinek M., Krusek J., Hrcka Krausova B., Candelas Serra M., Hajdukovic D., Kudova E., Chodounska H., Vyklicky L. Endogenous neurosteroids pregnanolone and pregnanolone sulfate potentiate presynaptic glutamate release through distinct mechanisms. Br. J. Pharmacol. 2021;178:3888–3904. doi: 10.1111/bph.15529. PubMed DOI PMC
Labrie F. Adrenal androgens and intracrinology. Semin. Reprod. Med. 2004;22:299–309. doi: 10.1055/s-2004-861547. PubMed DOI
Majewska M.D. Steroid regulation of the GABAA receptor: Ligand binding, chloride transport and behaviour. Ciba Found. Symp. 1990;153:83–97; Discussion 97–106. PubMed
Petrovic M., Sedlacek M., Horak M., Chodounska H., Vyklicky L., Jr. 20-oxo-5beta-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J. Neurosci. 2005;25:8439–8450. doi: 10.1523/JNEUROSCI.1407-05.2005. PubMed DOI PMC
Johansson T., Le Greves P. The effect of dehydroepiandrosterone sulfate and allopregnanolone sulfate on the binding of [(3)H]ifenprodil to the N-methyl-d-aspartate receptor in rat frontal cortex membrane. J. Steroid Biochem. Mol. Biol. 2005;94:263–266. doi: 10.1016/j.jsbmb.2005.01.020. PubMed DOI
Gupta M.K., Guryev O.L., Auchus R.J. 5alpha-reduced C21 steroids are substrates for human cytochrome P450c17. Arch. Biochem. Biophys. 2003;418:151–160. doi: 10.1016/j.abb.2003.07.003. PubMed DOI
Rege J., Nakamura Y., Wang T., Merchen T.D., Sasano H., Rainey W.E. Transcriptome profiling reveals differentially expressed transcripts between the human adrenal zona fasciculata and zona reticularis. J. Clin. Endocrinol. Metab. 2014;99:E518–E527. doi: 10.1210/jc.2013-3198. PubMed DOI PMC
Barnard L., Gent R., van Rooyen D., Swart A.C. Adrenal C11-oxy C(21) steroids contribute to the C11-oxy C(19) steroid pool via the backdoor pathway in the biosynthesis and metabolism of 21-deoxycortisol and 21-deoxycortisone. J. Steroid Biochem. Mol. Biol. 2017;174:86–95. doi: 10.1016/j.jsbmb.2017.07.034. PubMed DOI
do Nascimento F.V., Piccoli V., Beer M.A., von Frankenberg A.D., Crispim D., Gerchman F. Association of HSD11B1 polymorphic variants and adipose tissue gene expression with metabolic syndrome, obesity and type 2 diabetes mellitus: A systematic review. Diabetol. Metab. Syndr. 2015;7:38. doi: 10.1186/s13098-015-0036-1. PubMed DOI PMC
Edwards C.R., Stewart P.M., Burt D., Brett L., McIntyre M.A., Sutanto W.S., de Kloet E.R., Monder C. Localisation of 11 beta-hydroxysteroid dehydrogenase--tissue specific protector of the mineralocorticoid receptor. Lancet. 1988;2:986–989. doi: 10.1016/S0140-6736(88)90742-8. PubMed DOI
Gomez-Sanchez E.P., Gomez-Sanchez C.E. 11beta-hydroxysteroid dehydrogenases: A growing multi-tasking family. Mol. Cell Endocrinol. 2021;526:111210. doi: 10.1016/j.mce.2021.111210. PubMed DOI PMC
Kern S., Krause I., Horntrich A., Thomas K., Aderhold J., Ziemssen T. Cortisol awakening response is linked to disease course and progression in multiple sclerosis. PLoS ONE. 2013;8:e60647. doi: 10.1371/journal.pone.0060647. PubMed DOI PMC
Kasperska-Zajac A., Brzoza Z., Rogala B. Dehydroepiandrosterone and dehydroepiandrosterone sulphate in atopic allergy and chronic urticaria. Inflammation. 2008;31:141–145. doi: 10.1007/s10753-008-9059-1. PubMed DOI
Romagnani S., Kapsenberg M., Radbruch A., Adorini L. Th1 and Th2 cells. Res. Immunol. 1998;149:871–873. doi: 10.1016/S0923-2494(99)80016-9. PubMed DOI
Pratschke S., von Dossow-Hanfstingl V., Dietz J., Schneider C.P., Tufman A., Albertsmeier M., Winter H., Angele M.K. Dehydroepiandrosterone modulates T-cell response after major abdominal surgery. J. Surg. Res. 2014;189:117–125. doi: 10.1016/j.jss.2014.02.002. PubMed DOI
Sterzl I., Hampl R., Sterzl J., Votruba J., Starka L. 7Beta-OH-DHEA counteracts dexamethasone induced suppression of primary immune response in murine spleenocytes. J. Steroid Biochem. Mol. Biol. 1999;71:133–137. doi: 10.1016/S0960-0760(99)00134-X. PubMed DOI
Hennebert O., Chalbot S., Alran S., Morfin R. Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: Possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes. J. Steroid Biochem. Mol. Biol. 2007;104:326–333. doi: 10.1016/j.jsbmb.2007.03.026. PubMed DOI
Le Mee S., Hennebert O., Ferrec C., Wulfert E., Morfin R. 7beta-Hydroxy-epiandrosterone-mediated regulation of the prostaglandin synthesis pathway in human peripheral blood monocytes. Steroids. 2008;73:1148–1159. doi: 10.1016/j.steroids.2008.05.001. PubMed DOI
Pettersson H., Lundqvist J., Norlin M. Effects of CYP7B1-mediated catalysis on estrogen receptor activation. Biochim. Biophys. Acta. 2010;1801:1090–1097. doi: 10.1016/j.bbalip.2010.05.011. PubMed DOI
Tang W., Eggertsen G., Chiang J.Y., Norlin M. Estrogen-mediated regulation of CYP7B1: A possible role for controlling DHEA levels in human tissues. J. Steroid Biochem. Mol. Biol. 2006;100:42–51. doi: 10.1016/j.jsbmb.2006.02.005. PubMed DOI
Ahlem C.N., Page T.M., Auci D.L., Kennedy M.R., Mangano K., Nicoletti F., Ge Y., Huang Y., White S.K., Villegas S., et al. Novel components of the human metabolome: The identification, characterization and anti-inflammatory activity of two 5-androstene tetrols. Steroids. 2011;76:145–155. doi: 10.1016/j.steroids.2010.10.005. PubMed DOI
Reading C.L., Frincke J.M., White S.K. Molecular targets for 17alpha-ethynyl-5-androstene-3beta,7beta,17beta-triol, an anti-inflammatory agent derived from the human metabolome. PLoS ONE. 2012;7:e32147. doi: 10.1371/journal.pone.0032147. PubMed DOI PMC
Reddy D.S. Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 2010;186:113–137. PubMed PMC
Wang M.D., Borra V.B., Stromberg J., Lundgren P., Haage D., Backstrom T. Neurosteroids 3beta, 20 (R/S)-pregnandiols decrease offset rate of the GABA-site activation at the recombinant GABA A receptor. Eur. J. Pharmacol. 2008;586:67–73. doi: 10.1016/j.ejphar.2008.02.063. PubMed DOI
Stromberg J., Lundgren P., Taube M., Backstrom T., Wang M., Haage D. The effect of the neuroactive steroid 5 beta-pregnane-3 beta, 20(R)-diol on the time course of GABA evoked currents is different to that of pregnenolone sulphate. Eur. J. Pharmacol. 2009;605:78–86. doi: 10.1016/j.ejphar.2008.12.038. PubMed DOI
Lundgren P., Stromberg J., Backstrom T., Wang M. Allopregnanolone-stimulated GABA-mediated chloride ion flux is inhibited by 3beta-hydroxy-5alpha-pregnan-20-one (isoallopregnanolone) Brain Res. 2003;982:45–53. doi: 10.1016/S0006-8993(03)02939-1. PubMed DOI
Tchernof A., Mansour M.F., Pelletier M., Boulet M.M., Nadeau M., Luu-The V. Updated survey of the steroid-converting enzymes in human adipose tissues. J. Steroid Biochem. Mol. Biol. 2015;147:56–69. doi: 10.1016/j.jsbmb.2014.11.011. PubMed DOI
Nakamura Y., Hornsby P.J., Casson P., Morimoto R., Satoh F., Xing Y., Kennedy M.R., Sasano H., Rainey W.E. Type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) contributes to testosterone production in the adrenal reticularis. J. Clin. Endocrinol. Metab. 2009;94:2192–2198. doi: 10.1210/jc.2008-2374. PubMed DOI PMC
Ostinelli G., Vijay J., Vohl M.C., Grundberg E., Tchernof A. AKR1C2 and AKR1C3 expression in adipose tissue: Association with body fat distribution and regulatory variants. Mol. Cell. Endocrinol. 2021;527:111220. doi: 10.1016/j.mce.2021.111220. PubMed DOI PMC
Rizner T.L., Penning T.M. Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids. 2014;79:49–63. doi: 10.1016/j.steroids.2013.10.012. PubMed DOI PMC
Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. doi: 10.1210/er.2010-0013. PubMed DOI PMC
Murgia F., Giagnoni F., Lorefice L., Caria P., Dettori T., D’Alterio M.N., Angioni S., Hendren A.J., Caboni P., Pibiri M., et al. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines. 2022;10:3107. doi: 10.3390/biomedicines10123107. PubMed DOI PMC
Xu C., Liu W., You X., Leimert K., Popowycz K., Fang X., Wood S.L., Slater D.M., Sun Q., Gu H., et al. PGF2alpha modulates the output of chemokines and pro-inflammatory cytokines in myometrial cells from term pregnant women through divergent signaling pathways. Mol. Hum. Reprod. 2015;21:603–614. doi: 10.1093/molehr/gav018. PubMed DOI PMC
Zheng L., Fei J., Feng C.M., Xu Z., Fu L., Zhao H. Serum 8-iso-PGF2alpha Predicts the Severity and Prognosis in Patients With Community-Acquired Pneumonia: A Retrospective Cohort Study. Front. Med. 2021;8:633442. doi: 10.3389/fmed.2021.633442. PubMed DOI PMC
Sharma I., Dhaliwal L.K., Saha S.C., Sangwan S., Dhawan V. Role of 8-iso-prostaglandin F2alpha and 25-hydroxycholesterol in the pathophysiology of endometriosis. Fertil. Steril. 2010;94:63–70. doi: 10.1016/j.fertnstert.2009.01.141. PubMed DOI
Thompson A.J., Banwell B.L., Barkhof F., Carroll W.M., Coetzee T., Comi G., Correale J., Fazekas F., Filippi M., Freedman M.S., et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–173. doi: 10.1016/S1474-4422(17)30470-2. PubMed DOI
Hill M., Hana V., Jr., Velikova M., Parizek A., Kolatorova L., Vitku J., Skodova T., Simkova M., Simjak P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI
Effect of Treatment on Steroidome in Women with Multiple Sclerosis