Endogenous neurosteroids pregnanolone and pregnanolone sulfate potentiate presynaptic glutamate release through distinct mechanisms
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33988248
PubMed Central
PMC8518729
DOI
10.1111/bph.15529
Knihovny.cz E-zdroje
- Klíčová slova
- Munc13-1, glutamate, neurosteroid, phorbol ester, pregnanolone, presynaptic,
- MeSH
- HEK293 buňky MeSH
- krysa rodu Rattus MeSH
- kyselina glutamová MeSH
- lidé MeSH
- neurosteroidy * MeSH
- pregnanolon * farmakologie MeSH
- sírany MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyselina glutamová MeSH
- neurosteroidy * MeSH
- pregnanolon * MeSH
- sírany MeSH
BACKGROUND AND PURPOSE: Neurosteroids influence neuronal function and have multiple promising clinical applications. Direct modulation of postsynaptic neurotransmitter receptors by neurosteroids is well characterized, but presynaptic effects remain poorly understood. Here, we report presynaptic glutamate release potentiation by neurosteroids pregnanolone and pregnanolone sulfate and compare their mechanisms of action to phorbol 12,13-dibutyrate (PDBu), a mimic of the second messenger DAG. EXPERIMENTAL APPROACH: We use whole-cell patch-clamp electrophysiology and pharmacology in rat hippocampal microisland cultures and total internal reflection fluorescence (TIRF) microscopy in HEK293 cells expressing GFP-tagged vesicle priming protein Munc13-1, to explore the mechanisms of neurosteroid presynaptic modulation. KEY RESULTS: Pregnanolone sulfate and pregnanolone potentiate glutamate release downstream of presynaptic Ca2+ influx, resembling the action of a phorbol ester PDBu. PDBu partially occludes the effect of pregnanolone, but not of pregnanolone sulfate. Calphostin C, an inhibitor that disrupts DAG binding to its targets, reduces the effect PDBu and pregnanolone, but not of pregnanolone sulfate, suggesting that pregnanolone might interact with a well-known DAG/phorbol ester target Munc13-1. However, TIRF microscopy experiments found no evidence of pregnanolone-induced membrane translocation of GFP-tagged Munc13-1, suggesting that pregnanolone may regulate Munc13-1 indirectly or interact with other DAG targets. CONCLUSION AND IMPLICATIONS: We describe a novel presynaptic effect of neurosteroids pregnanolone and pregnanolone sulfate to potentiate glutamate release downstream of presynaptic Ca2+ influx. The mechanism of action of pregnanolone, but not of pregnanolone sulfate, partly overlaps with that of PDBu. Presynaptic effects of neurosteroids may contribute to their therapeutic potential in the treatment of disorders of the glutamate system.
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Alexander, S. P. H. , Mathie, A. , Peters, J. A. , Veale, E. L. , Striessnig, J. , Kelly, E. , Armstrong, J. F. , Faccenda, E. , Harding, S. D. , Pawson, A. J. , Sharman, J. L. , Southan, C. , Davies, J. A. , CGTP Collaborators , Aldrich, R. W. , Becirovic, E. , Biel, M. , Catterall, W. A. , Conner, A. C. , … Zhu, M. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology, 176(S1), S142–S228. 10.1111/bph.14749 PubMed DOI PMC
Andrews‐Zwilling, Y. S. , Kawabe, H. , Reim, K. , Varoqueaux, F. , & Brose, N. (2006). Binding to Rab3A‐interacting molecule RIM regulates the presynaptic recruitment of Munc13‐1 and ubMunc13‐2. Journal of Biological Chemistry, 281(28), 19720–19731. 10.1074/jbc.M601421200 PubMed DOI
Arnostova, L. M. , Pouzar, V. , & Drasar, P. (1992). Synthesis of the sulfates derived from 5α‐cholestane‐3β,6α‐diol. Steroids, 57, 1991–1993. PubMed
Augustin, I. , Rosenmund, C. , Südhof, T. C. , & Brose, N. (1999). Munc13‐1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature, 400(6743), 457–461. 10.1038/22768 PubMed DOI
Basu, J. , Betz, A. , Brose, N. , & Rosenmund, C. (2007). Munc13‐1 C1 domain activation lowers the energy barrier for synaptic vesicle fusion. Journal of Neuroscience, 27(5), 1200–1210. 10.1523/JNEUROSCI.4908-06.2007 PubMed DOI PMC
Belelli, D. , & Lambert, J. J. (2005). Neurosteroids: Endogenous regulators of the GABAA receptor. Nature Reviews Neuroscience, 6(7), 565–575. 10.1038/nrn1703 PubMed DOI
Betz, A. , Ashery, U. , Rickmann, M. , Augustin, I. , Neher, E. , Südhof, T. C. , Rettig, J. , & Brose, N. (1998). Munc13‐1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron, 21(1), 123–136. 10.1016/S0896-6273(00)80520-6 PubMed DOI
Brose, N. , Hofmann, K. , Hata, Y. , & Südhof, T. C. (1995). Mammalian homologues of Caenorhabditis elegans unc‐13 gene define novel family of C2‐domain proteins. Journal of Biological Chemistry, 270(42), 25273–25280. 10.1074/jbc.270.42.25273 PubMed DOI
Brose, N. , & Rosemund, C. (2002). Move over protein kinase C, you've got company: Alternative cellular effectors of diacylglycerol and phorbol esters. Journal of Cell Science, 115(23), 4399–4411. 10.1242/jcs.00122 PubMed DOI
Burgalossi, A. , Jung, S. Y. , Man, K.‐n. M. , Nair, R. , Jockusch, W. J. , Wojcik, S. M. , Brose, N. , & Rhee, J.‐S. (2012). Analysis of neurotransmitter release mechanisms by photolysis of caged Ca2+ in an autaptic neuron culture system. Nature Protocols, 7(7), 1351–1365. 10.1038/nprot.2012.074 PubMed DOI
Capogna, M. , Gähwiler, B. H. , & Thompson, S. M. (1996). Presynaptic inhibition of calcium‐dependent and ‐independent release elicited with ionomycin, gadolinium, and α‐latrotoxin in the hippocampus. Journal of Neurophysiology, 75(5), 2017–2028. 10.1152/jn.1996.75.5.2017 PubMed DOI
Capogna, M. , McKinney, A. R. , O'Connor, V. , Gähwiler, B. H. , & Thompson, S. M. (1997). Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin. Journal of Neuroscience, 17(19), 7190–7202. 10.1523/jneurosci.17-19-07190.1997 PubMed DOI PMC
Chakroborty, S. , Hill, E. S. , Christian, D. T. , Helfrich, R. , Riley, S. , Schneider, C. , Kapecki, N. , Mustaly‐Kalimi, S. , Seiler, F. A. , Peterson, D. A. , West, A. R. , Vertel, B. M. , Frost, W. N. , & Stutzmann, G. E. (2019). Reduced presynaptic vesicle stores mediate cellular and network plasticity defects in an early‐stage mouse model of Alzheimer's disease. Molecular Neurodegeneration, 14(1), 1–21. 10.1186/s13024-019-0307-7 PubMed DOI PMC
Corpechot, C. , Robel, P. , Axelson, M. , Sjövall, J. , & Baulieu, E. E. (1981). Characterization and measurement of dehydroepiandrosterone sulfate in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 78, 4704–4707. 10.1073/pnas.78.8.4704 PubMed DOI PMC
Crabtree, G. , & Gogos, J. A. (2014). Synaptic plasticity, neural circuits and the emerging role of altered short‐term information processing in schizophrenia. Frontiers in Synaptic Neuroscience, 6(OCT), 1–27. 10.3389/fnsyn.2014.00028 PubMed DOI PMC
Curtis, M. J. , Alexander, S. , Cirino, G. , Docherty, J. R. , George, C. H. , Giembycz, M. A. , Hoyer, D. , Insel, P. A. , Izzo, A. A. , Ji, Y. , MacEwan, D. J. , Sobey, C. G. , Stanford, S. C. , Teixeira, M. M. , Wonnacott, S. , & Ahluwalia, A. (2018). Experimental design and analysis and their reporting II: Updated and simplified guidance for authors and peer reviewers. British Journal of Pharmacology, 175(7), 987–993. 10.1111/bph.14153 PubMed DOI PMC
Drews, A. , Mohr, F. , Rizun, O. , Wagner, T. F. J. , Dembla, S. , Rudolph, S. , Lambert, S. , Konrad, M. , Philipp, S. E. , Behrendt, M. , Marchais‐Oberwinkler, S. , Covey, D. F. , & Oberwinkler, J. (2014). Structural requirements of steroidal agonists of transient receptor potential melastatin 3 (TRPM3) cation channels. British Journal of Pharmacology, 171(4), 1019–1032. 10.1111/bph.12521 PubMed DOI PMC
Duman, R. S. , Sanacora, G. , & Krystal, J. H. (2019). Altered connectivity in depression: GABA and glutamate neurotransmitter deficits and reversal by novel treatments. Neuron, 102(1), 75–90. 10.1016/j.neuron.2019.03.013 PubMed DOI PMC
Emptage, N. J. , Reid, C. A. , & Fine, A. (2001). Calcium stores in hippocampal synaptic boutons mediate short‐term plasticity, store‐operated Ca2+ entry, and spontaneous transmitter release. Neuron, 29(1), 197–208. 10.1016/S0896-6273(01)00190-8 PubMed DOI
Groffen, A. J. , Martens, S. , Arazola, R. D. , Cornelisse, L. N. , Lozovaya, N. , de Jong, A. P. H. , Goriounova, N. A. , Habets, R. L. P. , Takai, Y. , Borst, J. G. , Brose, N. , & Mcmahon, H. T. (2010). Doc2b is a high affinity Ca2+ sensor for spontaneous neurotransmitter release. Science, 327(5973), 1614–1618. 10.1126/science.1183765.Doc2b PubMed DOI PMC
Harrison, N. L. , Majewska, M. D. , Harrington, J. W. , & Barker, J. L. (1987). Structure‐activity relationships for steroid interaction with the gamma‐aminobutyric acidA receptor complex. Journal of Pharmacology and Experimental Therapeutics, 241(1), 346–353. PubMed
Hiratani, N. , & Fukai, T. (2014). Interplay between short‐ and long‐term plasticity in cell‐assembly formation. PLoS ONE, 9(7), e101535. 10.1371/journal.pone.0101535 PubMed DOI PMC
Horak, M. , Vlcek, K. , Petrovic, M. , Chodounska, H. , & Vyklicky, L. (2004). Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. Journal of Neuroscience, 24(46), 10318–10325. 10.1523/JNEUROSCI.2099-04.2004 PubMed DOI PMC
Hori, T. , Takai, Y. , & Takahashi, T. (1999). Presynaptic mechanism for phorbol ester‐induced synaptic potentiation. Journal of Neuroscience, 19(17), 7262–7267. 10.1523/jneurosci.19-17-07262.1999 PubMed DOI PMC
Jain, A. , Huang, G. Z. , & Woolley, C. S. (2019). Latent sex differences in molecular signaling that underlies excitatory synaptic potentiation in the hippocampus. Journal of Neuroscience, 39(9), 1552–1565. 10.1523/JNEUROSCI.1897-18.2018 PubMed DOI PMC
Kim, B. G. , Cho, J. H. , Choi, I. S. , Lee, M. G. , & Jang, I. S. (2011). Modulation of presynaptic GABAA receptors by endogenous neurosteroids. British Journal of Pharmacology, 164(6), 1698–1710. 10.1111/j.1476-5381.2011.01491.x PubMed DOI PMC
Krausova, B. , Slavikova, B. , Nekardova, M. , Hubalkova, P. , Vyklicky, V. , Chodounska, H. , Vyklicky, L. , & Kudova, E. (2018). Positive modulators of the N‐methyl‐d‐aspartate receptor: Structure–activity relationship study of steroidal 3‐hemiesters. Journal of Medicinal Chemistry, 61(10), 4505–4516. 10.1021/acs.jmedchem.8b00255 PubMed DOI
Lee, K. H. , Cho, J. H. , Choi, I. S. , Park, H. M. , Lee, M. G. , Choi, B. J. , & Jang, I. S. (2010). Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+‐induced Ca2+ release. Neuroscience, 171(1), 106–116. 10.1016/j.neuroscience.2010.07.057 PubMed DOI
Lilley, E. , Stanford, S. C. , Kendall, D. E. , Alexander, S. P. , Cirino, G. , Docherty, J. R. , George, C. H. , Insel, P. A. , Izzo, A. A. , Ji, Y. , Panettieri, R. A. , Sobey, C. G. , Stefanska, B. , Stephens, G. , Teixeira, M. , & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177(16), 3611–3616. 10.1111/bph.15178 PubMed DOI PMC
Liu, X. , Seven, A. B. , Camacho, M. , Esser, V. , Xu, J. , Trimbuch, T. , Quade, B. , Su, L. , Ma, C. , Rosenmund, C. , & Rizo, J. (2016). Functional synergy between the Munc13 C‐terminal C1 and C2 domains. eLife, 5(MAY2016), 1–27. 10.7554/eLife.13696 PubMed DOI PMC
Lou, X. , Korogod, N. , Brose, N. , & Schneggenburger, R. (2008). Phorbol esters modulate spontaneous and Ca2+‐evoked transmitter release via acting on both Munc13 and protein kinase C. Journal of Neuroscience, 28(33), 8257–8267. 10.1523/JNEUROSCI.0550-08.2008 PubMed DOI PMC
Lou, X. , Scheuss, V. , & Schneggenburger, R. (2005). Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion. Nature, 435(7041), 497–501. 10.1038/nature03568 PubMed DOI
Majewska, M. D. , Harrison, N. L. , Schwartz, R. D. , Barker, J. L. , & Paul, S. M. (1986). Steroid hormone metabolites are barbiturate‐like modulators of the GABA receptor. Science, 232(4753), 1004–1007. 10.1126/science.2422758 PubMed DOI
Majewska, M. D. , Mienville, J. M. , & Vicini, S. (1988). Neurosteroid pregnenolone sulfate antagonizes electrophysiological responses to GABA in neurons. Neuroscience Letters, 90(3), 279–284. 10.1016/0304-3940(88)90202-9 PubMed DOI
Majewska, M. D. , & Schwartz, R. D. (1987). Pregnenolone‐sulfate: An endogenous antagonist of the γ‐aminobutyric acid receptor complex in brain? Brain Research, 404(1–2), 355–360. 10.1016/0006-8993(87)91394-1 PubMed DOI
Mameli, M. , Carta, M. , Partridge, L. D. , & Valenzuela, C. F. (2005). Neurosteroid‐induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors. Journal of Neuroscience, 25(9), 2285–2294. 10.1523/JNEUROSCI.3877-04.2005 PubMed DOI PMC
Meltzer‐Brody, S. , Colquhoun, H. , Riesenberg, R. , Epperson, C. N. , Deligiannidis, K. M. , Rubinow, D. R. , Li, H. , Sankoh, A. J. , Clemson, C. , Schacterle, A. , Jonas, J. , & Kanes, S. (2018). Brexanolone injection in post‐partum depression: Two multicentre, double‐blind, randomised, placebo‐controlled, phase 3 trials. The Lancet, 392(10152), 1058–1070. 10.1016/S0140-6736(18)31551-4 PubMed DOI
Mennerick, S. , & Zorumski, C. F. (1995). Paired‐pulse modulation of fast excitatory synaptic currents in microcultures of rat hippocampal neurons. The Journal of Physiology, 488(1), 85–101. 10.1113/jphysiol.1995.sp020948 PubMed DOI PMC
Meyer, D. A. , Carta, M. , Partridge, L. D. , Covey, D. F. , & Valenzuela, C. F. (2002). Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. The Journal of Biological Chemistry, 277(32), 28725–28732. 10.1074/jbc.M202592200 PubMed DOI
Newton, A. C. (2018). Protein kinase C: Perfectly balanced. Critical Reviews in Biochemistry and Molecular Biology, 53(2), 208–230. 10.1080/10409238.2018.1442408 PubMed DOI PMC
Park‐Chung, M. , Wu, F. S. , & Farb, D. H. (1994). 3α‐Hydroxy‐5β‐pregnan‐20‐one sulfate: A negative modulator of the NMDA‐induced current in cultured neurons. Molecular Pharmacology, 46(1), 146–150. PubMed
Park‐Chung, M. , Malayev, A. , Purdy, R. H. , Gibbs, T. T. , & Farb, D. H. (1999). Sulfated and unsulfated steroids modulate γ‐aminobutyric acidA receptor function through distinct sites. Brain Research, 830(1), 72–87. 10.1016/S0006-8993(99)01381-5 PubMed DOI
Percie du Sert, N. , Hurst, V. , Ahluwalia, A. , Alam, S. , Avey, M. T. , Baker, M. , Browne, W. J. , Clark, A. , Cuthill, I. C. , Dirnagl, U. , Emerson, M. , Garner, P. , Holgate, S. T. , Howells, D. W. , Karp, N. A. , Lazic, S. E. , Lidster, K. , MacCallum, C. J. , Macleod, M. , … Würbel, H. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. 10.1371/journal.pbio.3000410 PubMed DOI PMC
Petrovic, M. , Sedlacek, M. , Horak, M. , Chodounska, H. , & Vyklický, L. (2005). 20‐Oxo‐5β‐pregnan‐3α‐yl sulfate is a use‐dependent NMDA receptor inhibitor. Journal of Neuroscience, 25(37), 8439–8450. 10.1523/JNEUROSCI.1407-05.2005 PubMed DOI PMC
Puia, G. , Santi, M. R. , Vicini, S. , Pritchett, D. B. , Purdy, R. H. , Paul, S. M. , Seeburg, P. H. , & Costa, E. (1990). Neurosteroids act on recombinant human GABAA receptors. Neuron, 4(5), 759–765. https://doi.org/10.1016/0896-6273(90)90202-Q, 10.1016/0896-6273(90)90202-Q PubMed DOI
Rambousek, L. , Bubenikova‐Valesova, V. , Kacer, P. , Syslova, K. , Kenney, J. , Holubova, K. , Najmanova, V. , Zach, P. , Svoboda, J. , Stuchlik, A. , Chodounska, H. , Kapras, V. , Adamusova, E. , Borovska, J. , Vyklicky, L. , & Vales, K. (2011). Cellular and behavioural effects of a new steroidal inhibitor of the N‐methyl‐d‐aspartate receptor 3α5β‐pregnanolone glutamate. Neuropharmacology, 61(1–2), 61–68. 10.1016/j.neuropharm.2011.02.018 PubMed DOI
Rhee, J. S. , Betz, A. , Pyott, S. , Reim, K. , Varoqueaux, F. , Augustin, I. , Hesse, D. , Südhof, T. C. , Takahashi, M. , Rosenmund, C. , & Brose, N. (2002). β phorbol ester‐ and diacylglycerol‐induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell, 108(1), 121–133. 10.1016/S0092-8674(01)00635-3 PubMed DOI
Rotman, Z. , Deng, P. Y. , & Klyachko, V. A. (2011). Short‐term plasticity optimizes synaptic information transmission. Journal of Neuroscience, 31(41), 14800–14809. 10.1523/JNEUROSCI.3231-11.2011 PubMed DOI PMC
Ruiz, A. , Campanac, E. , Scott, R. S. , Rusakov, D. A. , & Kullmann, D. M. (2010). Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nature Neuroscience, 13(4), 431–438. 10.1038/nn.2512 PubMed DOI PMC
Selye, H. (1941). Anesthetic effect of steroid hormones. Proceedings of the Society for Experimental Biology and Medicine, 46(1), 116–121. 10.3181/00379727-46-11907 DOI
Stastna, E. , Chodounska, H. , Pouzar, V. , Kapras, V. , Borovska, J. , Cais, O. , & Vyklicky, L. (2009). Synthesis of C3, C5, and C7 pregnane derivatives and their effect on NMDA receptor responses in cultured rat hippocampal neurons. Steroids, 74(2), 256–263. 10.1016/j.steroids.2008.11.011 PubMed DOI
Vyklicky, V. , Krausova, B. , Cerny, J. , Ladislav, M. , Smejkalova, T. , Kysilov, B. , Korinek, M. , Danacikova, S. , Horak, M. , Chodounska, H. , Kudova, E. , & Vyklicky, L. (2018). Surface expression, function, and pharmacology of disease‐associated mutations in the membrane domain of the human GluN2B subunit. Frontiers in Molecular Neuroscience, 11(April), 1–20. 10.3389/fnmol.2018.00110 PubMed DOI PMC
Vyklicky, V. , Smejkalova, T. , Krausova, B. , Balik, A. , Korinek, M. , Borovska, J. , Horak, M. , Chvojkova, M. , Kleteckova, L. , Vales, K. , Cerny, J. , Nekardova, M. , Chodounska, H. , Kudova, E. , & Vyklicky, L. (2016). Preferential inhibition of tonically over phasically activated NMDA receptors by pregnane derivatives. Journal of Neuroscience, 36(7), 2161–2175. 10.1523/JNEUROSCI.3181-15.2016 PubMed DOI PMC
Wierda, K. D. B. , Toonen, R. F. G. , de Wit, H. , Brussaard, A. B. , & Verhage, M. (2007). Interdependence of PKC‐dependent and PKC‐independent pathways for presynaptic plasticity. Neuron, 54(2), 275–290. 10.1016/j.neuron.2007.04.001 PubMed DOI
Wu, F. S. , Gibbs, T. T. , & Farb, D. H. (1991). Pregnenolone sulfate: A positive allosteric modulator at the N‐methyl‐d‐aspartate receptor. Molecular Pharmacology, 40(3), 333–336. PubMed
Xu, J. , Camacho, M. , Xu, Y. , Esser, V. , Liu, X. , Trimbuch, T. , Pan, Y. Z. , Ma, C. , Tomchick, D. R. , Rosenmund, C. , & Rizo, J. (2017). Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13‐1 C1C2BMUN. eLife, 6(FEB2017), 1–27. 10.7554/eLife.22567 PubMed DOI PMC
Zamudio‐Bulcock, P. A. , Everett, J. , Harteneck, C. , & Valenzuela, C. F. (2011). Activation of steroid‐sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats. Journal of Neurochemistry, 119(3), 474–485. 10.1111/j.1471-4159.2011.07441.x PubMed DOI PMC
Zamudio‐Bulcock, P. A. , & Valenzuela, C. F. (2011). Pregnenolone sulfate increases glutamate release at neonatal climbing fiber‐to‐Purkinje cell synapses. Neuroscience, 175, 24–36. 10.1016/j.neuroscience.2010.11.063 PubMed DOI PMC
Zeng, G. , Huang, X. , Jiang, T. , & Yu, S. (2019). Short‐term synaptic plasticity expands the operational range of long‐term synaptic changes in neural networks. Neural Networks, 118, 140–147. 10.1016/j.neunet.2019.06.002 PubMed DOI
Zorumski, C. F. , Paul, S. M. , Covey, D. F. , & Mennerick, S. (2019). Neurosteroids as novel antidepressants and anxiolytics: GABA‐A receptors and beyond. Neurobiology of Stress, 11(September), 100196. 10.1016/j.ynstr.2019.100196 PubMed DOI PMC
Altered Steroidome in Women with Multiple Sclerosis
Characterization of Mice Carrying a Neurodevelopmental Disease-Associated GluN2B(L825V) Variant