The Utility of Ground Bryophytes in the Assessment of Soil Condition in Heavy Metal-Polluted Grasslands
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
research was partially funded by the National Science Centre, Poland (project number 2016
National Science Centre, Poland
N18/DBS/000002
Jagiellonian University project
CZ.1.05/2.1.00/19.0388
EU structural funding Operational Programme
LO1208
TEWEP
SGS14/PřF/2022
University of Ostrava project
PubMed
36015394
PubMed Central
PMC9416651
DOI
10.3390/plants11162091
PII: plants11162091
Knihovny.cz E-zdroje
- Klíčová slova
- bioindication, bryophytes, heavy metals, soil pH, soil pollution, species richness,
- Publikační typ
- časopisecké články MeSH
Bryophytes are commonly used in biomonitoring heavy metal pollution, whereas the bioindicative value of bryophyte communities is a less known issue. The aim of the present study is to recognize the utility of the bryophyte community's structure in the assessment of soil condition in heavy metal-polluted, dry grasslands. The study plots are examined with respect to bryophytes; vascular plants; concentrations of Zn, Pb, Cd, and As in the soil; total nitrogen and organic carbon content in the soil; and soil pH. The results show that both bryophyte species richness and composition greatly depend on soil chemical characteristics, including heavy-metal pollution levels and soil pH. Three groups of species are distinguished: (1) species sensitive to pollution growing on acidic soils, (2) nonspecific species inhabiting a wide spectrum of heavy metal-polluted sites, and (3) species preferring polluted and alkaline soils. Our study reveals a gradual replacement of the bryophyte species alongside increasing soil pollution and alkalinity. This proves that bryophytes are highly responsive to soil factors and the changes in bryophyte composition may indicate the soil condition of a certain site. Furthermore, high concentrations of heavy metals in the soil and an alkaline pH positively affect bryophyte species richness. Consequently, such sites could be considered as biodiversity hotspots for terrestrial bryophytes in post-industrial landscapes.
Institute of Biology University of Opole Oleska 22 45 052 Opole Poland
Institute of Botany Faculty of Biology Jagiellonian University Gronostajowa 3 30 387 Kraków Poland
Zobrazit více v PubMed
Crum H. Structural Diversity of Bryophytes. University of Michigan Herbarium; Ann Arbor, MI, USA: 2001.
Bramley-Alves J., King D.H., Robinson S.A., Miller R.E. Dominating the Antarctic environment: Bryophytes in a time of change. In: Hanson D.T., Rice S.K., editors. Photosynthesis in Bryophytes and Early Land Plants. Springer; Berlin, Germany: 2014. pp. 309–324.
Klaus V.H., Müller J. The role of bryophytes in Central European grasslands. In: Mariotte P., Kardol P., editors. Grasslands Biodiversity and Conservation in a Changing World. Nova Science Publishers Inc.; Hauppauge, NY, USA: 2014. pp. 251–278.
Cuny D., Denayer F.O., de Foucault B., Schumacker R., Colein P., van Haluwyn C. Patterns of metal soil contamination and changes in terrestrial cryptogamic communities. Environ. Pollut. 2014;129:289–297. doi: 10.1016/j.envpol.2003.10.009. PubMed DOI
Rola K., Osyczka P. Cryptogamic communities as a useful bioindication tool for estimating the degree of soil pollution with heavy metals. Ecol. Indic. 2018;88:454–464. doi: 10.1016/j.ecolind.2018.01.013. DOI
Tyler G. Bryophytes and heavy metals—A literature review. Bot. J. Linn. Soc. 1990;104:231–253. doi: 10.1111/j.1095-8339.1990.tb02220.x. DOI
Proctor M.C.F. Physiological ecology: Water relations, light and temperature responses, carbon balance. In: Smith A.J.E., editor. Bryophyte Ecology. Chapman and Hall; London, UK: 1982. pp. 45–57.
Roberts A.W., Roberts E.M., Haigler C.H. Moss cell walls: Structure and biosynthesis. Front. Plant Sci. 2012;3:166. doi: 10.3389/fpls.2012.00166. PubMed DOI PMC
Zechmeister H.G., Dirnbock T., Hulber K., Mirtl M. Assessing airborne pollution effects on bryophytes—Lessons learned through long-term integrated monitoring in Austria. Environ. Pollut. 2007;147:696–705. doi: 10.1016/j.envpol.2006.09.008. PubMed DOI
Salemaa M., Vanha-Majamaa I., Derome J. Understorey vegetation along a heavy-metal pollution gradient in SW Finland. Environ. Pollut. 2001;112:339–350. doi: 10.1016/S0269-7491(00)00150-0. PubMed DOI
Grime J.P. Plant Strategies, Vegetation Processes, and Ecosystem Properties. 2nd ed. Wiley; Chichester, UK: 2001.
Jules E.S., Shaw A.J. Adaptation to metal-contaminated soils in populations of the moss, Ceratodon purpureus: Vegetative growth and reproductive expression. Am. J. Bot. 1994;81:791–797. doi: 10.1002/j.1537-2197.1994.tb15516.x. DOI
Denayer F.O., van Haluwyn C., de Foucault B., Schumacker R., Colein P. Use of bryological communities as a diagnostic tool of heavy metal soil contamination (Cd, Pb, Zn) in northern France. Plant Ecol. 1999;140:191–201. doi: 10.1023/A:1009771209869. DOI
Zvereva E., Kozlov M. Impacts of industrial polluters on bryophytes: A meta-analysis of observational studies. Water Air Soil Pollut. 2011;218:573–586. doi: 10.1007/s11270-010-0669-5. DOI
Bergamini A., Pauli D., Peintinger M., Schmid B. Relationships between productivity, number of shoots and number of species in bryophytes and vascular plants. J. Ecol. 2001;89:920–929. doi: 10.1111/j.1365-2745.2001.00613.x. DOI
Rola K., Osyczka P. Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient. Environ. Monit. Assess. 2014;186:5897–5910. doi: 10.1007/s10661-014-3827-1. PubMed DOI
Kassen R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 2002;15:173–190. doi: 10.1046/j.1420-9101.2002.00377.x. DOI
Choudhury S., Panda S.K. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water Air Soil Pollut. 2005;167:73–90. doi: 10.1007/s11270-005-8682-9. DOI
Nash T.H., Nash E.H. Sensitivity of mosses to sulfur dioxide. Oecologia. 1974;17:257–263. doi: 10.1007/BF00344925. PubMed DOI
Plášek V., Nowak A., Nobis M., Kusza G., Kochanowska K. Effect of 30 years of road traffic abandonment on epiphytic moss diversity. Environ. Monit. Assess. 2014;186:8943–8959. doi: 10.1007/s10661-014-4056-3. PubMed DOI PMC
Taoda H. Mapping of atmospheric pollution in Tokyo based upon epiphytic bryophytes. Jpn. J. Ecol. 1972;22:125–133.
Burton M.A.S. Terrestrial and aquatic bryophytes as monitors of environmental contaminants in urban and industrial habitats. Bot. J. Linn. Soc. 1990;104:267–280. doi: 10.1111/j.1095-8339.1990.tb02222.x. DOI
Holyoak D.T., Lockhart N. A survey of bryophytes and metallophyte vegetation of metalliferous mine spoil in Ireland. J. Min. Herit. Trust Irel. 2011;11:3–16.
Becker T., Brändel M. Vegetation-environment relationships in a heavy metal-dry grassland complex. Folia Geobot. 2007;42:11–28. doi: 10.1007/BF02835100. DOI
Kannukene L. Bryophytes in the forest ecosystem influenced by cement dust. In: Mandre M., editor. Dust Pollution and Forest Ecosystems. A Study of Conifers in an Alkalized Environment. Institute of Ecology; Tallinn, Estonia: 1995. pp. 141–147.
Paal J., Degtjarenko P. Impact of alkaline cement-dust pollution on boreal Pinus sylvestris forest communities: A study at the bryophyte synusiae level. Ann. Bot. Fenn. 2015;52:120–134. doi: 10.5735/085.052.0213. DOI
Cooke J.A. Mining. In: Walker L.R., editor. Ecosystems of Disturbed Ground, Ecosystems of the World. Volume 16. Elsevier; Amsterdam, The Netherlands: 1999. pp. 365–384.
Simon E. Heavy metals in soils, vegetation development and heavy metal tolerance in plant populations from metalliferous areas. New Phytol. 1978;81:175–188. doi: 10.1111/j.1469-8137.1978.tb01616.x. DOI
Ingerpuu L., Liira J., Pärtel M. Vascular plants facilitated bryophytes in a grassland experiment. Plant Ecol. 2005;180:69–75. doi: 10.1007/s11258-005-2508-0. DOI
Löbel S., Dengler J., Hobohm C. Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment landscape structure and competition. Folia Geobot. 2006;41:377–393. doi: 10.1007/BF02806555. DOI
Grace J.P. The factors controlling species density in herbaceous plant communities: An assessment. Perspect. Plant Ecol. 1999;2:1–28. doi: 10.1078/1433-8319-00063. DOI
During H.J., Lloret F. The species-pool hypothesis from a bryological perspective. Folia Geobot. 2001;36:63–70. doi: 10.1007/BF02803139. DOI
Bu Z.J., Chen X., Jiang L.H., Li H.K., Zhao H.Y. Research advances on interactions among bryophytes. Chin. J. Appl. Ecol. 2009;20:460–466. PubMed
Shacklette H.T. Copper Mosses as Indicators of Metal Concentration. Geological Survey Bulletin 1198G, United States Government Printing Office; Washington, DC, USA: 1967.
Crundwell A.C. Ditrichum plumbicola, a new species from lead-mine waste. J. Bryol. 1976;9:167–169. doi: 10.1179/jbr.1976.9.2.167. DOI
Stebel A., Ochyra R., Godzik B., Bednarek-Ochyra H. Bryophytes of the Olkusz Ore-Bearing Region (Southern Poland) W. Szafer Institute of Botany, Polish Academy of Sciences; Kraków, Poland: 2015.
Tsikritzis L.I., Ganatsios S.S., Duliu O.G., Sawidis T.D. Heavy metals distribution in some lichens, mosses, and trees in the vicinity of lignite power plants from West Macedonia, Greece. J. Trace Microprobe Tech. 2002;20:395–413. doi: 10.1081/TMA-120006685. DOI
Becker T., Dierschke H. Vegetation response to high concentrations of heavy metals in the Harz Mountains, Germany. Phytocoenologia. 2008;38:255–265. doi: 10.1127/0340-269X/2008/0038-0255. DOI
Rola K., Osyczka P. Data on cryptogamic biota in relation to heavy metal concentrations in soil. Data Brief. 2018;19:1110–1119. doi: 10.1016/j.dib.2018.05.137. PubMed DOI PMC
Zechmeister H.G., Grodzińska K., Szarek-Łukaszewska G. Bryophytes. In: Markert B.A., Breure A.M., Zechmeister H.G., editors. Bioindicators and Biomonitors: Principles, Concepts and Applications. Elsevier; Amsterdam, The Netherlands: 2003. pp. 329–375.
Holyoak D.T. Bryophytes and Metalophyte Vegetation on Metalliferous Mine-Waste in Ireland: Report to the National Parks and Wildlife Service of a Survey in 2008. Unpublished Report of the National Parks and Wildlife Service. 2008. [(accessed on 7 April 2020)]. Available online: https://www.npws.ie/sites/default/files/publications/pdf/Holyoak_2008_Metalliferous_mine_survey.pdf.
Baumbach H. Metallophytes and metallicolous vegetation: Evolutionary aspects, taxonomic changes and conservational status in Central Europe. In: Tiefenbacher J., editor. Perspectives on Nature Conservation—Patterns, Pressures and Prospects. InTech; Rijeka, Croatia: 2012. pp. 93–118.
Rola K., Osyczka P., Nobis M., Drozd P. How do soil factors determine vegetation structure and species richness in post-smelting dumps? Ecol. Eng. 2015;75:332–342. doi: 10.1016/j.ecoleng.2014.11.026. DOI
Dierssen K. Distribution: Ecological amplitude and phytosociological characterization of European bryophytes. Bryophyt. Bibl. 2001;56:1–289.
Dąbrowski J., Seniczak S., Dąbrowska B., Hermann J., Lipnicki L. The arboreal mites (Acari) and epiphytes of young Scots pine forests, in the region polluted by a cement and lime factory ‘Kujawy’ at Bielawy. Akad. Tech.-Rol. Im. Jana I Jędrzeja Śniadeckich Bydg. Zesz. Nauk. (Ochr. Sr. 1) 1997;208:71–82.
Folkeson L. Depauperation of the moss and lichen vegetation in a forest polluted by copper and zinc. In: Klimo E., Saly R., editors. Air Pollution and Stability of Coniferous Forest Ecosystems. University of Agriculture; Brno, Czech Republic: 1985. pp. 297–307.
Gignac L.D. Distribution of bryophytes on peatlands contaminated by metals in the vicinity of Sudbury, Ontario, Canada. Cryptogam. Bryol. 1987;8:339–351.
Ruokolainen L., Salo K. The succession of boreal forest vegetation during ten years after slash-burning in Koli National Park, eastern Finland. Ann. Bot. Fenn. 2006;43:363–378.
Lepp N.W., Salmon D. A field study of the ecotoxicology of copper to bryophytes. Environ. Pollut. 1999;106:153–156. doi: 10.1016/S0269-7491(99)00080-9. PubMed DOI
Kozlov M.V., Zvereva E.L. Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Rev. Environ. Sci. Bio/Technol. 2007;6:231–259. doi: 10.1007/s11157-006-9117-9. DOI
Glime J.M. Adaptive strategies: Life cycles. In: Glime J.M., editor. Bryophyte Ecology, Vol 1., Physiological Ecology. Michigan Technological University and the International Association of Bryologists; Houghton, MI, USA: 2017. pp. 446–461.
Fabure J., Meyer C., Denayer F., Gaundry A., Gilbert D., Bernard N. Accumulation capacities of particulate matter in an acrocarpous and pleurocarpous moss exposed at three differently polluted sites (industrial, urban and rural) Water Air Soil Pollut. 2010;212:205–217. doi: 10.1007/s11270-010-0333-0. DOI
Hill M.O., Preston C.D., Bosanquet S.D.S., Roy D.B. BRYOATT: Attributes of British and Irish Mosses, Liverworts and Hornworts. Centre for Ecology and Hydrology; Wallingford, UK: 2007.
Blanár D., Guttová A., Mihál I., Plášek V., Hauer T., Palice Z., Ujházy K. Effect of magnesite dust pollution on biodiversity and species composition of oak-hornbeam woodlands in the Western Carpathians. Biologia. 2019;74:1591–1611. doi: 10.2478/s11756-019-00344-6. DOI
van Haluwyn C., van Herk C.M. Bioindication: The community approach. In: Nimis P.L., Scheidegger C., Wolseley P., editors. Monitoring with Lichens—Monitoring Lichens. Kluwer Academic; Dordrecht, The Netherlands: 2002. pp. 39–64.
Degtjarenko P., Marmor L., Randlane T. Changes in bryophyte and lichen communities on Scots pines along an alkaline dust pollution gradient. Environ. Sci. Pollut. Res. 2016;23:17413–17425. doi: 10.1007/s11356-016-6933-5. PubMed DOI
Chrastný V., Vaněk A., Teper L., Cabala J., Procházka J., Pechar L., Drahota P., Penížek V., Komárek M., Novák M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012;184:2517–2536. doi: 10.1007/s10661-011-2135-2. PubMed DOI
Gruszecka A.M., Wdowin M. Characteristics and distribution of analyzed metals in soil profiles in the vicinity of a postflotation waste site in the Bukowno region, Poland. Environ. Monit. Assess. 2013;185:8157–8168. doi: 10.1007/s10661-013-3164-9. PubMed DOI PMC
Stefanowicz A.M., Woch M.W., Kapusta P. Inconspicuous waste heaps left by historical Zn-Pb mining are hot spots of soil contamination. Geoderma. 2014;235–236:1–8. doi: 10.1016/j.geoderma.2014.06.020. DOI
Kottek M., Grieser J., Beck C., Rudolf B., Rubel F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006;15:259–263. doi: 10.1127/0941-2948/2006/0130. DOI
Rożek K., Rola K., Błaszkowski J., Leski T., Zubek S. How do monocultures of fourteen forest tree species affect arbuscular mycorrhizal fungi abundance and species richness and composition in soil? Forest Ecol. Manag. 2020;465:118091. doi: 10.1016/j.foreco.2020.118091. DOI
Hill M.O., Bell N., Bruggeman-Nannenga M.A., Brugués M., Cano M.J., Enroth J., Flatberg K.I., Frahm J.P., Gallego M.T., Garilleti R., et al. An annotated checklist of the mosses of Europe and Macaronesia. J. Bryol. 2006;28:198–267. doi: 10.1179/174328206X119998. DOI
Varol M. Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J. Hazard. Mater. 2011;195:355–364. doi: 10.1016/j.jhazmat.2011.08.051. PubMed DOI
Kabata-Pendias A. Trace Elements of Soils and Plants. CRC Press, Taylor & Francis Group; Boca Raton, FL, USA: 2011.
Clarke K.R., Somerfield P.J., Gorley R.N. Testing of null hypotheses in exploratory community analyses: Similarity profiles and biota-environment linkage. J. Exp. Mar. Biol. Ecol. 2008;366:56–69. doi: 10.1016/j.jembe.2008.07.009. DOI
Taguchi Y.H., Oono Y. Relational patterns of gene expression via non-metric multidimensional scaling analysis. Bioinformatics. 2005;21:730–740. doi: 10.1093/bioinformatics/bti067. PubMed DOI
Cattell R.B. The scree plot test for the number of factors. Multivar. Behav. Res. 1966;1:140–161. doi: 10.1207/s15327906mbr0102_10. PubMed DOI
Anderson M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001;26:32–46.
Brower J.C., Kile K.M. Seriation of an original data matrix as applied to palaeoecology. Lethaia. 1988;21:79–93. doi: 10.1111/j.1502-3931.1988.tb01756.x. DOI
Ellenberg H., Düll R., Wirth V., Werner W., Paulißen D. Zeigerwerte von Pflanzen in Mitteleuropa, Scripta Geobotanica. 2nd ed. Verlag Erich Goltze KG; Göttingen, Germany: 1991.
Anderson M.J., Gorley R.N., Clarke K.R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods. PRIMER-E; Plymouth, UK: 2016.
Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001;4:9.