A Critical Overview of FDA and EMA Statistical Methods to Compare In Vitro Drug Dissolution Profiles of Pharmaceutical Products
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ QK1810221
Ministry of Agriculture
MUNI/A/1574/2020
Masaryk University
SGS 2021 006
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34683995
PubMed Central
PMC8539859
DOI
10.3390/pharmaceutics13101703
PII: pharmaceutics13101703
Knihovny.cz E-resources
- Keywords
- EMA and FDA strategy, dissolution profile comparison, drug dissolution,
- Publication type
- Journal Article MeSH
A drug dissolution profile is one of the most critical dosage form characteristics with immediate and controlled drug release. Comparing the dissolution profiles of different pharmaceutical products plays a key role before starting the bioequivalence or stability studies. General recommendations for dissolution profile comparison are mentioned by the EMA and FDA guidelines. However, neither the EMA nor the FDA provides unambiguous instructions for comparing the dissolution curves, except for calculating the similarity factor f2. In agreement with the EMA and FDA strategy for comparing the dissolution profiles, this manuscript provides an overview of suitable statistical methods (CI derivation for f2 based on bootstrap, CI derivation for the difference between reference and test samples, Mahalanobis distance, model-dependent approach and maximum deviation method), their procedures and limitations. However, usage of statistical approaches for the above-described methods can be met with difficulties, especially when combined with the requirement of practice for robust and straightforward techniques for data evaluation. Therefore, the bootstrap to derive the CI for f2 or CI derivation for the difference between reference and test samples was selected as the method of choice.
See more in PubMed
Wen H., Park K., editors. Introduction and Overview of Oral Controlled Release Formulation Design, Oral Controlled Release Formulation Design and Drug Delivery. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2010. pp. 5, 10–11.
Guidance for Industry . SUPAC-MR: Modified Release Solid Oral Dosage Forms. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER); Rockville, MD, USA: 1997.
Piscitelli D.A., Young D. Setting Dissolution Specifications for Modified-Release Dosage Forms. Adv. Exp. Med. Biol. 1997;423:159–166. PubMed
Brown W.E. In: Compendial Requirements of Dissolution Testing—European Pharmacopoeia, Japanese Pharmacopoeia, United States Pharmacopoeia, Pharmaceutical Dissolution Testing. Dressman J.J., Kramer J., editors. Taylor & Francis; Boca Raton, FL, USA: 2005. pp. 69–78.
Zhang H., Surian J.M. In: Biopharmaceutic Consideration and Assessment for Oral Controlled Release Formulations, Oral Controlled Release Formulation Design and Drug Delivery. Wen H., Park K., editors. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2010. pp. 33–42.
FDA Dissolution Methods. [(accessed on 2 October 2018)];2018 Available online: https://www.accessdata.fda.gov/scripts/cder/dissolution/dsp_getallData.cfm.
Costa P. An alternative method to the evaluation of similarity factor in dissolution testing. Int. J. Pharm. 2001;220:77–83. doi: 10.1016/S0378-5173(01)00651-2. PubMed DOI
Avachat A., Kotwal V. Design and evaluation of matrix-based controlled release tablets of diclofenac sodium and chondroitin sulphate. AAPS PharmSciTech. 2007;8:51–56. doi: 10.1208/pt0804088. PubMed DOI PMC
Samani S.M., Montaseri H., Kazemi A. The effect of polymer blends on release profiles of diclofenac sodium from matrices. Eur. J. Pharm. Biopharm. 2003;55:351–355. doi: 10.1016/S0939-6411(03)00030-4. PubMed DOI
Sood A., Panchagnula R. Drug release evaluation of diltiazem CR preparations. Int. J. Pharm. 1998;175:95–107. doi: 10.1016/S0378-5173(98)00268-3. DOI
Moore J., Flanner H. Mathematical comparison of dissolution profiles. Pharm. Technol. 1996;20:64–74.
EMA Guideline on the Investigation of Bioequivalence. [(accessed on 2 October 2018)];2010 Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf.
FDA Dissolution Testing of Immediate Release Solid Oral Dosage Forms. Guidance for Industry. [(accessed on 14 April 2019)];1997 Available online: https://www.fda.gov/downloads/drugs/guidances/ucm070237.pdf.
Islam M.M., Begum M. Bootstrap confidence intervals for dissolution similarity factor f2. Biom. Biostat. Int. J. 2018;7:397–403. doi: 10.15406/bbij.2018.07.00237. DOI
Leblond D., Altan S., Novick S., Peterson J., Shen Y., Yang H. In Vitro Dissolution Curve Comparisons: A Critique of Current Practice. Dissolution Technol. 2016;23:14–23. doi: 10.14227/DT230116P14. DOI
Rescigno A. Bioequivalence. Pharm. Res. 1992;9:925–928. doi: 10.1023/A:1015809201503. PubMed DOI
Polli J.E., Rekhi G.S., Augsburger L.L., Shah V.P. Methods to Compare Dissolution Profiles and a Rationale for Wide Dissolution Specifications for Metoprolol Tartrate tablets. J. Pharm. Sci. 1997;86:690–700. doi: 10.1021/js960473x. PubMed DOI
Wang Y., Snee R.D., Keyvan G., Muzzio F.J. Statistical comparison of dissolution profiles. Drug Dev. Ind. Pharm. 2016;42:796–807. doi: 10.3109/03639045.2015.1078349. PubMed DOI
Yuksel N. Comparison of in vitro dissolution profiles by ANOVA-based, model-dependent and -independent methods. Int. J. Pharm. 2000;209:57–67. doi: 10.1016/S0378-5173(00)00554-8. PubMed DOI
Zhang Y., Huo M., Zhou J., Zou A., Li W., Yao C., Xie S. DDSolver: An Add-In Program for Modeling and Comparison of Drug Dissolution Profiles. AAPS J. 2010;12:263–271. doi: 10.1208/s12248-010-9185-1. PubMed DOI PMC
Khan K.A., Rhodes C.T. Effect of compaction pressure on the dissolution efficiency of some direct compression systems. Pharm. Acta Helv. 1972;47:594–607. PubMed
Khan K.A. The concept of dissolution efficiency. J. Pharm. Pharmacol. 1975;27:48–49. doi: 10.1111/j.2042-7158.1975.tb09378.x. PubMed DOI
EMA The Adequacy of the Mahalanobis Distance to Assess the Comparability of Drug Dissolution Profiles. [(accessed on 2 October 2018)];2018 Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/question-answer-adequacy-mahalanobis-distance-assess-comparability-drug-dissolution-profiles_en.pdf.
Mendyk A., Pacławski A., Szlek J., Jachowicz R. PhEq_bootstrap: Open-Source Software for the Simulation of f2 Distribution in Cases of Large Variability in Dissolution Profiles. Dissolution Technol. 2013;20:13–17. doi: 10.14227/DT200113P13. DOI
Stevens R.E., Gray V., Dorantes A., Gold L., Pham L. Scientific and regulatory standards for assessing product performance using the similarity factor, f2. AAPS J. 2015;17:301–306. doi: 10.1208/s12248-015-9723-y. PubMed DOI PMC
Saranadasa H. Defining the Similarity of Dissolution Profiles Using Hotelling’s T2 Statistic. Pharm. Tech. 2001;24:46–54.
Mahalanobis P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. India. 1936;2:49–55.
Hoffelder T. Author response to the Letter to the Editor “Equivalence analyses of dissolution profiles with the Mahalanobis distance: A regulatory perspective and a comparison with a parametric maximum deviation-based approach”. Biom. J. 2019;61:1138–1140. doi: 10.1002/bimj.201900047. PubMed DOI
Collignon O., Möllenhoff K., Dette H. Equivalence analyses of dissolution profiles with the Mahalanobis distance: A regulatory perspective and a comparison with a parametric maximum deviation-based approach. Biom. J. 2019;61:779–782. doi: 10.1002/bimj.201800325. PubMed DOI
Hoffelder T. Equivalence analyses of dissolution profiles with the Mahalanobis distance. Biom. J. 2019;61:1120–1137. doi: 10.1002/bimj.201700257. PubMed DOI
Muselík J., Komersová A., Lochař V., Kubová K. Regression Analysis of the Drug Dissolution Profile and Estimation of the Drug Release Mechanism. Chem. Listy. 2019;113:328–336.
Bretz F., Hothorn T., Westfall P. Multiple Comparisons Using R. Chapman & Hall/CRC; Boca Raton, FL, USA: 2011.
Moellenhoff K., Dette H., Kotzagiorgis E., Volgushev S., Collignon O. Regulatory assessment of drug dissolution profiles comparability via maximum deviation. Stat. Med. 2018;37:2968–2981. doi: 10.1002/sim.7689. PubMed DOI
Gibaldi M., Feldman S. Establishment of sink conditions in dissolution rate determinations. Theoretical considerations and appliparameters cation to nondisintegrating dosage forms. J. Pharm. Sci. 1967;56:1238–1242. doi: 10.1002/jps.2600561005. PubMed DOI
Weibull W. A Statistical Distribution Function of Wide Applicability. J. Appl. Mech.-T ASME. 1951;18:293–297. doi: 10.1115/1.4010337. DOI
Langenbucher F. Letters to the Editor: Linearization of dissolution rate curves by the Weibull distribution. J. Pharm. Pharmacol. 1972;24:979–981. doi: 10.1111/j.2042-7158.1972.tb08930.x. PubMed DOI
Korsmeyer R.W., Gurny R., Doelker E., Buri P., Peppas N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983;15:25–35. doi: 10.1016/0378-5173(83)90064-9. PubMed DOI
Peppas N.A. Analysis of Fickian and non-Fickian drug release from polymers. Pharm. Acta Helv. 1985;60:110–111. PubMed
Ritger P.L., Peppas N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release. 1987;5:23–36. doi: 10.1016/0168-3659(87)90034-4. PubMed DOI
Ritger P.L., Peppas N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release. 1987;5:37–42. doi: 10.1016/0168-3659(87)90035-6. PubMed DOI
Siepmann J., Siepmann F. Modeling of diffusion controlled drug delivery. J. Control. Release. 2012;161:351–362. doi: 10.1016/j.jconrel.2011.10.006. PubMed DOI
Higuchi T. Rate of Release of Medicaments from Ointment Bases Containing Drugs in Suspension. J. Pharm. Sci. 1961;50:874–875. doi: 10.1002/jps.2600501018. PubMed DOI
Higuchi T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963;52:1145–1149. doi: 10.1002/jps.2600521210. PubMed DOI
Desai S., Simonelli A., Higuchi W. Investigation of Factors Influencing Release of Solid Drug Dispersed in Inert Matrices. J. Pharm. Sci. 1965;54:1459–1464. doi: 10.1002/jps.2600541012. PubMed DOI
Desai S.J., Singh P., Simonelli A.P., Higuchi W.I. Investigation of factors influencing release of solid drug dispersed in inert matrices, 3. Quantitative studies involving the polyethylene plastic matrix. J. Pharm. Sci. 1966;55:1230–1234. doi: 10.1002/jps.2600551113. PubMed DOI
Lapidus H., Lordi N.G. Some Factors Affecting the Release of a Water-Soluble Drug from a Compressed Hydrophilic Matrix. J. Pharm. Sci. 1966;55:840–843. doi: 10.1002/jps.2600550818. PubMed DOI
Siepmann J., Peppas N.A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 2011;418:6–12. doi: 10.1016/j.ijpharm.2011.03.051. PubMed DOI
Lapidus H., Lordi N. Drug Release from Compressed Hydrophilic Matrices. J. Pharm. Sci. 1968;57:1292–1301. doi: 10.1002/jps.2600570803. PubMed DOI
Hixson A.W., Crowell J.H. Dependence of Reaction Velocity upon surface and Agitation. Ind. Eng. Chem. 1931;23:923–931. doi: 10.1021/ie50260a018. DOI
Hopfenberg H.B. Controlled Release from Erodible Slabs, Cylinders, and Spheres. In: Paul D.R., Harris F.W., editors. Controlled Release Polymeric Formulations. American Chemical Society; Washington, DC, USA: 1976. pp. 26–31. ACS Symposium Series 33. DOI