Rational Design of Self-Emulsifying Pellet Formulation of Thymol: Technology Development Guided by Molecular-Level Structure Characterization and Ex Vivo Testing
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA22-03187S
Czech Science Foundation
MUNI/A/1251/2021
Masaryk University
PubMed
35893801
PubMed Central
PMC9394426
DOI
10.3390/pharmaceutics14081545
PII: pharmaceutics14081545
Knihovny.cz E-zdroje
- Klíčová slova
- ex vivo testing, rational design, self-emulsifying pellet, solid-state NMR, structure, thymol,
- Publikační typ
- časopisecké články MeSH
The growing need for processing natural lipophilic and often volatile substances such as thymol, a promising candidate for topical treatment of intestinal mucosa, led us to the utilization of solid-state nuclear magnetic resonance (ss-NMR) spectroscopy for the rational design of enteric pellets with a thymol self-emulsifying system (SES). The SES (triacylglycerol, Labrasol®, and propylene glycol) provided a stable o/w emulsion with particle size between 1 and 7 µm. The ex vivo experiment confirmed the SES mucosal permeation and thymol delivery to enterocytes. Pellets W90 (MCC, Neusilin®US2, chitosan) were prepared using distilled water (90 g) by the M1−M3 extrusion/spheronisation methods varying in steps number and/or cumulative time. The pellets (705−740 µm) showed mostly comparable properties—zero friability, low intraparticular porosity (0−0.71%), and relatively high density (1.43−1.45%). They exhibited similar thymol release for 6 h (burst effect in 15th min ca. 60%), but its content increased (30−39.6 mg/g) with a shorter process time. The M3-W90 fluid-bed coated pellets (Eudragit®L) prevented undesirable thymol release in stomach conditions (<10% for 3 h). A detailed, ss-NMR investigation revealed structural differences across samples prepared by M1−M3 methods concerning system stability and internal interactions. The suggested formulation and methodology are promising for other lipophilic volatiles in treating intestinal diseases.
Zobrazit více v PubMed
Javed H., Meeran M.F.N., Jha N.K., Ojha S. Carvacrol, a Plant Metabolite Targeting Viral Protease (Mpro) and ACE2 in Host Cells Can Be a Possible Candidate for COVID-19. Front. Plant Sci. 2021;11:601335. doi: 10.3389/fpls.2020.601335. PubMed DOI PMC
Kumar A., Choudhir G., Shukla S.K., Sharma M., Tyagi P., Bhushan A., Rathore M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn. 2020;39:3760–3770. doi: 10.1080/07391102.2020.1772112. PubMed DOI PMC
Sperber A.D., Bangdiwala S.I., Drossman D.A., Ghoshal U.C., Simren M., Tack J., Whitehead W.E., Dumitrascu D.L., Fang X., Fukudo S., et al. Worldwide Prevalence and Burden of Functional Gastrointestinal Disorders, Results of Rome Foundation Global Study. Gastroenterology. 2021;160:99–114.e3. doi: 10.1053/j.gastro.2020.04.014. PubMed DOI
Pithadia A.B., Jain S. Treatment of inflammatory bowel disease (IBD) Pharmacol. Rep. 2011;63:629–642. doi: 10.1016/S1734-1140(11)70575-8. PubMed DOI
Chan W., Chen A., Tiao D., Selinger C., Leong R. Medication adherence in inflammatory bowel disease. Intest. Res. 2017;15:434–445. doi: 10.5217/ir.2017.15.4.434. PubMed DOI PMC
Marchese A., Orhan I.E., Daglia M., Barbieri R., Di Lorenzo A., Nabavi S.F., Gortzi O., Izadi M., Nabavi S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402–414. doi: 10.1016/j.foodchem.2016.04.111. PubMed DOI
Nabavi S.M., Marchese A., Izadi M., Curti V., Daglia M., Nabavi S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015;173:339–347. doi: 10.1016/j.foodchem.2014.10.042. PubMed DOI
Chamanara M., Abdollahi A., Rezayat S.M., Ghazi-Khansari M., Dehpour A., Nassireslami E., Rashidian A. Thymol reduces acetic acid-induced inflammatory response through inhibition of NF-kB signaling pathway in rat colon tissue. Inflammopharmacology. 2019;27:1275–1283. doi: 10.1007/s10787-019-00583-8. PubMed DOI
Liu D.-M., Zhou C.-Y., Meng X.-L., Wang P., Li W. Thymol exerts anti-inflammatory effect in dextran sulfate sodium-induced experimental murine colitis. Trop. J. Pharm. Res. 2018;17:1803. doi: 10.4314/tjpr.v17i9.18. DOI
Van Noten N., Degroote J., Van Liefferinge E., Taminiau B., De Smet S., Desmet T., Michiels J. Effects of Thymol and Thymol α-D-Glucopyranoside on Intestinal Function and Microbiota of Weaned Pigs. Animals. 2020;10:329. doi: 10.3390/ani10020329. PubMed DOI PMC
Tahmasebi P., Abtahi Froushani S.M., Afzale Ahangaran N. Thymol has beneficial effects on the experimental model of ulcerative colitis. Avicenna J. Phytomed. 2019;9:538–550. doi: 10.22038/AJP.2019.13383. PubMed DOI PMC
Lorenzo J.M., Khaneghah A.M., Gavahian M., Marszałek K., Es I., Munekata P.E.S., Ferreira I.C.F.R., Barba F.J. Understanding the potential benefits of thyme and its derived products for food industry and consumer health: From extraction of value-added compounds to the evaluation of bioaccessibility, bioavailability, anti-inflammatory, and antimicrobial activities. Crit. Rev. Food Sci. Nutr. 2018;59:2879–2895. doi: 10.1080/10408398.2018.1477730. PubMed DOI
Salehi B., Mishra A.P., Shukla I., Sharifi-Rad M., del Mar Contreras M., Segura-Carretero A., Fathi H., Nasrabadi N.N., Kobarfard F., Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and Potential Uses: Thymol, Health and Potential Uses. Phytother. Res. 2018;32:1688–1706. doi: 10.1002/ptr.6109. PubMed DOI
Kohlert C., Schindler G., März R., Abel G., Brinkhaus B., Derendorf H., Gräfe E.-U., Veit M. Systemic Availability and Pharmacokinetics of Thymol in Humans. J. Clin. Pharmacol. 2002;42:731–737. doi: 10.1177/009127002401102678. PubMed DOI
Meeran M.F.N., Javed H., Al Taee H., Azimullah S., Ojha S.K. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front. Pharmacol. 2017;8:380. doi: 10.3389/fphar.2017.00380. PubMed DOI PMC
Sahu R.K., Khan J. Formulation strategies to improve the bioavailability of poorly absorbed drugs. Adv. Chall. Pharm. Technol. Mater. Process Dev. Drug Deliv. Strateg. 2021;2013:229–242. doi: 10.1016/b978-0-12-820043-8.00009-8. DOI
Abdulkarim M., Sharma P.K., Gumbleton M. Self-emulsifying drug delivery system: Mucus permeation and innovative quantification technologies. Adv. Drug Deliv. Rev. 2019;142:62–74. doi: 10.1016/j.addr.2019.04.001. PubMed DOI
Nikolakakis I., Partheniadis I. Self-Emulsifying Granules and Pellets: Composition and Formation Mechanisms for Instant or Controlled Release. Pharmaceutics. 2017;9:50. doi: 10.3390/pharmaceutics9040050. PubMed DOI PMC
Serratoni M., Newton M., Booth S., Clarke A. Controlled drug release from pellets containing water-insoluble drugs dissolved in a self-emulsifying system. Eur. J. Pharm. Biopharm. 2007;65:94–98. doi: 10.1016/j.ejpb.2006.07.011. PubMed DOI
Rassu G., Nieddu M., Bosi P., Trevisi P., Colombo M., Priori D., Manconi P., Giunchedi P., Gavini E., Boatto G. Encapsulation and modified-release of thymol from oral microparticles as adjuvant or substitute to current medications. Phytomedicine. 2014;21:1627–1632. doi: 10.1016/j.phymed.2014.07.017. PubMed DOI
Muley S., Nandgude T., Poddar S. Extrusion–spheronization a promising pelletization technique: In-depth review. Asian J. Pharm. Sci. 2016;11:684–699. doi: 10.1016/j.ajps.2016.08.001. DOI
Krupa A., Jachowicz R., Kurek M., Figiel W., Kwiecień M. Preparation of solid self-emulsifying drug delivery systems using magnesium aluminometasilicates and fluid-bed coating process. Powder Technol. 2014;266:329–339. doi: 10.1016/j.powtec.2014.06.043. DOI
Brus J., Albrecht W., Lehmann F., Geier J., Czernek J., Urbanova M., Kobera L., Jegorov A. Exploring the Molecular-Level Architecture of the Active Compounds in Liquisolid Drug Delivery Systems Based on Mesoporous Silica Particles: Old Tricks for New Challenges. Mol. Pharm. 2017;14:2070–2078. doi: 10.1021/acs.molpharmaceut.7b00167. PubMed DOI
Urbanova M., Pavelkova M., Czernek J., Kubova K., Vyslouzil J., Pechova A., Molinkova D., Vyslouzil J., Vetchy D., Brus J. Interaction Pathways and Structure–Chemical Transformations of Alginate Gels in Physiological Environments. Biomacromolecules. 2019;20:4158–4170. doi: 10.1021/acs.biomac.9b01052. PubMed DOI
Policianova O., Brus J., Hruby M., Urbanova M., Zhigunov A., Kredatusova J., Kobera L. Structural Diversity of Solid Dispersions of Acetylsalicylic Acid As Seen by Solid-State NMR. Mol. Pharm. 2014;11:516–530. doi: 10.1021/mp400495h. PubMed DOI
Geppi M., Mollica G., Borsacchi S., Veracini C.A. Solid-State NMR Studies of Pharmaceutical Systems. Appl. Spectrosc. Rev. 2008;43:202–302. doi: 10.1080/05704920801944338. DOI
Jang J.-H., Jeong S.-H., Lee Y.-B. Enhanced Lymphatic Delivery of Methotrexate Using W/O/W Nanoemulsion: In Vitro Characterization and Pharmacokinetic Study. Pharmaceutics. 2020;12:978. doi: 10.3390/pharmaceutics12100978. PubMed DOI PMC
Merchant H.A., McConnell E.L., Liu F., Ramaswamy C., Kulkarni R.P., Basit A.W., Murdan S. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur. J. Pharm. Sci. 2011;42:3–10. doi: 10.1016/j.ejps.2010.09.019. PubMed DOI
Pavoni J.M.F., Luchese C.L., Tessaro I.C. Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. Int. J. Biol. Macromol. 2019;138:693–703. doi: 10.1016/j.ijbiomac.2019.07.089. PubMed DOI
Steckel H., Mindermann-Nogly F. Production of chitosan pellets by extrusion/spheronization. Eur. J. Pharm. Biopharm. 2003;57:107–114. doi: 10.1016/S0939-6411(03)00156-5. PubMed DOI
Boyandin A.N., Dvoinina L.M., Sukovatyi A.G., Sukhanova A.A. Production of Porous Films Based on Biodegradable Polyesters by the Casting Solution Technique Using a Co-Soluble Porogen (Camphor) Polymers. 2020;12:1950. doi: 10.3390/polym12091950. PubMed DOI PMC
Koizumi K.-I., Watanabe Y., Morita K., Utoguchi N., Matsumoto M. New method of preparing high-porosity rapidly saliva soluble compressed tablets using mannitol with camphor, a subliming material. Int. J. Pharm. 1997;152:127–131. doi: 10.1016/S0378-5173(97)04924-7. DOI
Al-Khattawi A., Mohammed A.-U. Compressed orally disintegrating tablets: Excipients evolution and formulation strategies. Expert Opin. Drug Deliv. 2013;10:651–663. doi: 10.1517/17425247.2013.769955. PubMed DOI
Zhou M., Wang Y., Wu F., Shen L., Lin X., Feng Y. Development on porous particles of Pueraria lobatae Radix for improving its compactibility and dissolution. RSC Adv. 2018;8:24250–24260. doi: 10.1039/C8RA04125C. PubMed DOI PMC
Baranauskaite J., Ockun M.A., Uner B., Tas C., Ivanauskas L. Effect of the Amount of Polysorbate 80 and Oregano Essential Oil on the Emulsion Stability and Characterization Properties of Sodium Alginate Microcapsules. Molecules. 2021;26:6304. doi: 10.3390/molecules26206304. PubMed DOI PMC
Bechgaard H., Ladefoged K. Distribution of pellets in the gastrointestinal tract. The influence on transit time exerted by the density or diameter of pellets. J. Pharm. Pharmacol. 1978;30:690–692. doi: 10.1111/j.2042-7158.1978.tb13366.x. PubMed DOI
Clarke G., Newton J., Short M. Gastrointestinal transit of pellets of differing size and density. Int. J. Pharm. 1993;100:81–92. doi: 10.1016/0378-5173(93)90078-T. DOI
Tuleu C., Andrieux C., Boy P., Chaumeil J. Gastrointestinal transit of pellets in rats: Effect of size and density. Int. J. Pharm. 1999;180:123–131. doi: 10.1016/S0378-5173(98)00400-1. PubMed DOI
Vertomrnen J., Kinget R. The Influence of Five Selected Processing and Formulation Variables on the Particle Size, Particle Size Distribution, and Friability of Pellets Produced in a Rotary Processor. Drug Dev. Ind. Pharm. 1997;23:39–46. doi: 10.3109/03639049709148480. DOI
Yang S.T., Van Savage G., Weiss J., Ghebre-Sellassie I. The effect of spray mode and chamber geometry of fluid-bed coating equipment and other parameters on an aqueous-based ethylcellulose coating. Int. J. Pharm. 1992;86:247–257. doi: 10.1016/0378-5173(92)90203-E. DOI
Zheng B., Zhang X., Peng S., McClements D.J. Impact of curcumin delivery system format on bioaccessibility: Nanocrystals, Nanoemulsion droplets, and natural oil bodies. Food Funct. 2019;10:4339–4349. doi: 10.1039/C8FO02510J. PubMed DOI
Charoenthai N., Kleinebudde P., Puttipipatkhachorn S. Influence of chitosan type on the properties of extruded pellets with low amount of microcrystalline cellulose. AAPS PharmSciTech. 2007;8:E99–E109. doi: 10.1208/pt0803064. PubMed DOI
Nilsen-Nygaard J., Strand S.P., Vårum K.M., Draget K.I., Nordgård C.T. Chitosan: Gels and Interfacial Properties. Polymers. 2015;7:552–579. doi: 10.3390/polym7030552. DOI
Muselík J., Komersová A., Kubová K., Matzick K., Skalická B. A Critical Overview of FDA and EMA Statistical Methods to Compare In Vitro Drug Dissolution Profiles of Pharmaceutical Products. Pharmaceutics. 2021;13:1703. doi: 10.3390/pharmaceutics13101703. PubMed DOI PMC
Mullarney M.P., Beach L.E., Dave R., Langdon B.A., Polizzi M., Blackwood D.O. Applying dry powder coatings to pharmaceutical powders using a comil for improving powder flow and bulk density. Powder Technol. 2011;212:397–402. doi: 10.1016/j.powtec.2011.06.008. DOI
Goh H.P., Heng P.W.S., Liew C.V. Comparative evaluation of powder flow parameters with reference to particle size and shape. Int. J. Pharm. 2018;547:133–141. doi: 10.1016/j.ijpharm.2018.05.059. PubMed DOI
Zhao Y., Wang C., Chow A.H.L., Ren K., Gong T., Zhang Z., Zheng Y. Self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of Zedoary essential oil: Formulation and bioavailability studies. Int. J. Pharm. 2010;383:170–177. doi: 10.1016/j.ijpharm.2009.08.035. PubMed DOI
Pedro A.S., Santo I.E., Silva C.V., Detoni C., Albuquerque E. The Use of Nanotechnology as an Approach for Essential Oil-Based Formulations with Antimicrobial Activity. In: Méndez-Vilas A., editor. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education. 4th ed. Formatex; Badajoz, Spain: 2013. pp. 1364–1374.
Ujilestari T., Dono N.D., Ariyadi B., Martien R., Zuprizal Z. Formulation and characterization of self-nano emulsifying drug delivery systems of lemongrass (cymbopogon citratus) essential oil. Malays. J. Fundam. Appl. Sci. 2018;14:360–363. doi: 10.11113/mjfas.v14n3.1070. DOI
Bruce L.D., Koleng J.J., Mcginity J.W. The Influence of Polymeric Subcoats and Pellet Formulation on the Release of Chlorpheniramine Maleate from Enteric Coated Pellets. Drug Dev. Ind. Pharm. 2003;29:909–924. doi: 10.1081/DDC-120024187. PubMed DOI
Zhu Z., Min T., Zhang X., Wen Y. Microencapsulation of Thymol in Poly(lactide-co-glycolide) (PLGA): Physical and Antibacterial Properties. Materials. 2019;12:1133. doi: 10.3390/ma12071133. PubMed DOI PMC
Long M., Chen Y. Dissolution Testing of Solid Products. In: Qiu Y., Chen Y., Zhang G., Yu L., Mantri R.V., editors. Developing Solid Oral Dosage Forms. 2nd ed. Academic Press; Cambridge, UK: 2009. pp. 319–340. DOI
Amidon G.L., Lennernäs H., Shah V.P., Crison J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995;12:413–420. doi: 10.1023/A:1016212804288. PubMed DOI
Park S.-H., Choi H.-K. The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int. J. Pharm. 2006;321:35–41. doi: 10.1016/j.ijpharm.2006.05.004. PubMed DOI
Pharma Excipients. [(accessed on 20 June 2022)]. Available online: https://www.pharmaexcipients.com/wp-content/uploads/2020/05/Technical-Data-Sheet_Neusilin-US2_Pharma.pdf.
Moine L., Canali M., Porporatto C., Correa S. Reviewing the biological activity of chitosan in the mucosa: Focus on intestinal immunity. Int. J. Biol. Macromol. 2021;189:324–334. doi: 10.1016/j.ijbiomac.2021.08.098. PubMed DOI