Linking Microbial Community and Catabolic Gene Structures during the Adaptation of Three Contaminated Soils under Continuous Long-Term Pollutant Stress
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
26850298
PubMed Central
PMC4807512
DOI
10.1128/aem.03482-15
PII: AEM.03482-15
Knihovny.cz E-zdroje
- MeSH
- Bacteria klasifikace genetika izolace a purifikace metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- benzen metabolismus MeSH
- benzenové deriváty metabolismus MeSH
- biodegradace MeSH
- biodiverzita MeSH
- látky znečišťující půdu metabolismus MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- toluen metabolismus MeSH
- xyleny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Brazílie MeSH
- Česká republika MeSH
- Švýcarsko MeSH
- Názvy látek
- bakteriální proteiny MeSH
- benzen MeSH
- benzenové deriváty MeSH
- ethylbenzene MeSH Prohlížeč
- látky znečišťující půdu MeSH
- půda MeSH
- toluen MeSH
- xyleny MeSH
Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.
Zobrazit více v PubMed
Keith L, Telliard W. 1979. ES&T special report: priority pollutants: I—a perspective view. Environ Sci Technol 13:416–423. doi:10.1021/es60152a601. DOI
Bolden AL, Kwiatkowski CF, Colborn T. 2015. New look at BTEX: are ambient levels a problem? Environ Sci Technol 49:5261–5276. doi:10.1021/es505316f. PubMed DOI
Perez-Pantoja D, Gonzalez B, Pieper DH. 2009. Aerobic degradation of aromatic hydrocarbons, p 800–837. In Timmis KN. (ed), Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, Germany.
Vandera E, Samiotaki M, Parapouli M, Panayotou G, Koukkou AI. 2015. Comparative proteomic analysis of Arthrobacter phenanthrenivorans Sphe3 on phenanthrene, phthalate and glucose. J Proteomics 113:73–89. doi:10.1016/j.jprot.2014.08.018. PubMed DOI
Yagi JM, Sims D, Brettin T, Bruce D, Madsen EL. 2009. The genome of Polaromonas naphthalenivorans strain CJ2, isolated from coal tar-contaminated sediment, reveals physiological and metabolic versatility and evolution through extensive horizontal gene transfer. Environ Microbiol 11:2253–2270. doi:10.1111/j.1462-2920.2009.01947.x. PubMed DOI
Gibson DT, Koch JR, Schuld CL, Kallio RE. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802. PubMed
Newman LM, Wackett LP. 1995. Purification and characterization of toluene 2-monooxygenase from Burkholderia cepacia G4. Biochemistry 34:14066–14076. doi:10.1021/bi00043a012. PubMed DOI
Greated A, Lambertsen L, Williams PA, Thomas CM. 2002. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871. doi:10.1046/j.1462-2920.2002.00305.x. PubMed DOI
Davey JF, Gibson DT. 1974. Bacterial metabolism of para- and meta-xylene: oxidation of a methyl substituent. J Bacteriol 119:923–929. PubMed PMC
Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL. 2003. Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100:13591–13596. doi:10.1073/pnas.1735529100. PubMed DOI PMC
Witzig R, Junca H, Hecht HJ, Pieper DH. 2006. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl Environ Microbiol 72:3504–3514. doi:10.1128/AEM.72.5.3504-3514.2006. PubMed DOI PMC
Fahy A, McGenity TJ, Timmis KN, Ball AS. 2006. Heterogeneous aerobic benzene-degrading communities in oxygen-depleted groundwaters. FEMS Microbiol Ecol 58:260–270. doi:10.1111/j.1574-6941.2006.00162.x. PubMed DOI
Jechalke S, Franchini AG, Bastida F, Bombach P, Rosell M, Seifert J, von Bergen M, Vogt C, Richnow HH. 2013. Analysis of structure, function, and activity of a benzene-degrading microbial community. FEMS Microbiol Ecol 85:14–26. doi:10.1111/1574-6941.12090. PubMed DOI
Schurig C, Mueller CW, Hoschen C, Prager A, Kothe E, Beck H, Miltner A, Kastner M. 2015. Methods for visualising active microbial benzene degraders in in situ microcosms. Appl Microbiol Biotechnol 99:957–968. doi:10.1007/s00253-014-6037-4. PubMed DOI
Xie S, Sun W, Luo C, M CA. 2011. Novel aerobic benzene degrading microorganisms identified in three soils by stable isotope probing. Biodegradation 22:71–81. doi:10.1007/s10532-010-9377-5. PubMed DOI
Tancsics A, Farkas M, Szoboszlay S, Szabo I, Kukolya J, Vajna B, Kovacs B, Benedek T, Kriszt B. 2013. One-year monitoring of meta-cleavage dioxygenase gene expression and microbial community dynamics reveals the relevance of subfamily I.2.C extradiol dioxygenases in hypoxic, BTEX-contaminated groundwater. Syst Appl Microbiol 36:339–350. doi:10.1016/j.syapm.2013.03.008. PubMed DOI
Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J 6:1715–1727. doi:10.1038/ismej.2012.59. PubMed DOI PMC
Sutton NB, Maphosa F, Morillo JA, Abu Al-Soud W, Langenhoff AA, Grotenhuis T, Rijnaarts HH, Smidt H. 2013. Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630. doi:10.1128/AEM.02747-12. PubMed DOI PMC
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624. doi:10.1038/ismej.2012.8. PubMed DOI PMC
Degnan PH, Ochman H. 2012. Illumina-based analysis of microbial community diversity. ISME J 6:183–194. doi:10.1038/ismej.2011.74. PubMed DOI PMC
Camarinha-Silva A, Jauregui R, Chaves-Moreno D, Oxley AP, Schaumburg F, Becker K, Wos-Oxley ML, Pieper DH. 2014. Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 16:2939–2952. doi:10.1111/1462-2920.12362. PubMed DOI
Jayamani I, Cupples AM. 2015. A comparative study of microbial communities in four soil slurries capable of RDX degradation using Illumina sequencing. Biodegradation 26:247–257. doi:10.1007/s10532-015-9731-8. PubMed DOI
Vilchez-Vargas R, Junca H, Pieper DH. 2010. Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12:3089–3104. doi:10.1111/j.1462-2920.2010.02340.x. PubMed DOI
Stralis-Pavese N, Abell GC, Sessitsch A, Bodrossy L. 2011. Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat Protoc 6:609–624. doi:10.1038/nprot.2010.191. PubMed DOI
Vilchez-Vargas R, Geffers R, Suarez-Diez M, Conte I, Waliczek A, Kaser VS, Kralova M, Junca H, Pieper DH. 2013. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 15:1016–1039. doi:10.1111/j.1462-2920.2012.02752.x. PubMed DOI
Perez-Pantoja D, Donoso R, Junca H, Gonzalez B, Pieper DH. 2009. Phylogenomics of aerobic bacterial degradation of aromatics, p 1356–1397. In Timmis KN. (ed), Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, Germany.
Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper DH. 2014. AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database 2014:bau118. doi:10.1093/database/bau118. PubMed DOI PMC
Jeon CO, Madsen EL. 2013. In situ microbial metabolism of aromatic-hydrocarbon environmental pollutants. Curr Opin Biotechnol 24:474–481. doi:10.1016/j.copbio.2012.09.001. PubMed DOI
Machackova J, Wittlingerova Z, Vlk K, Zima J, Linka A. 2008. Comparison of two methods for assessment of in situ jet-fuel remediation efficiency. Water Air Soil Pollut 187:181–194.
Bohorquez LC, Delgado-Serrano L, Lopez G, Osorio-Forero C, Klepac-Ceraj V, Kolter R, Junca H, Baena S, Zambrano MM. 2012. In-depth characterization via complementing culture-independent approaches of the microbial community in an acidic hot spring of the Colombian Andes. Microb Ecol 63:103–115. doi:10.1007/s00248-011-9943-3. PubMed DOI
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09. PubMed DOI PMC
Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07. PubMed DOI PMC
Oksanen J, Guillaume-Blanchet F, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H. 2015. vegan: Community Ecology Package. R package version 2.3-2. http://CRAN.R-project.org/package=vegan.
McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi:10.1371/journal.pone.0061217. PubMed DOI PMC
Janssen PH. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72:1719–1728. doi:10.1128/AEM.72.3.1719-1728.2006. PubMed DOI PMC
Naether A, Foesel BU, Naegele V, Wust PK, Weinert J, Bonkowski M, Alt F, Oelmann Y, Polle A, Lohaus G, Gockel S, Hemp A, Kalko EK, Linsenmair KE, Pfeiffer S, Renner S, Schoning I, Weisser WW, Wells K, Fischer M, Overmann J, Friedrich MW. 2012. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl Environ Microbiol 78:7398–7406. doi:10.1128/AEM.01325-12. PubMed DOI PMC
Anderson I, Held B, Lapidus A, Nolan M, Lucas S, Tice H, Del Rio TG, Cheng JF, Han C, Tapia R, Goodwin LA, Pitluck S, Liolios K, Mavromatis K, Pagani I, Ivanova N, Mikhailova N, Pati A, Chen A, Palaniappan K, Land M, Brambilla EM, Rohde M, Spring S, Goker M, Detter JC, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Klenk HP, Kyrpides NC. 2012. Genome sequence of the homoacetogenic bacterium Holophaga foetida type strain (TMBS4T). Stand Genomic Sci 6:174–184. doi:10.4056/sigs.2746047. PubMed DOI PMC
Stamps BW, Losey NA, Lawson PA, Stevenson BS. 2014. Genome sequence of Thermoanaerobaculum aquaticum MP-01T, the first cultivated member of Acidobacteria subdivision 23, isolated from a hot spring. Genome Announc 2:e00570-14. doi:10.1128/genomeA.00570-14. PubMed DOI PMC
Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, Creasy T, Daugherty SC, Davidsen TM, DeBoy RT, Detter JC, Dodson RJ, Durkin AS, Ganapathy A, Gwinn-Giglio M, Han CS, Khouri H, Kiss H, Kothari SP, Madupu R, Nelson KE, Nelson WC, Paulsen I, Penn K, Ren Q, Rosovitz MJ, Selengut JD, Shrivastava S, Sullivan SA, Tapia R, Thompson LS, Watkins KL, Yang Q, Yu C, Zafar N, Zhou L, Kuske CR. 2009. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. doi:10.1128/AEM.02294-08. PubMed DOI PMC
Liesack W, Bak F, Kreft JU, Stackebrandt E. 1994. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch Microbiol 162:85–90. doi:10.1007/BF00264378. PubMed DOI
Feris KP, Hristova K, Gebreyesus B, Mackay D, Scow KM. 2004. A shallow BTEX and MTBE contaminated aquifer supports a diverse microbial community. Microb Ecol 48:589–600. doi:10.1007/s00248-004-0001-2. PubMed DOI
Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H. 2009. Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11:2216–2227. doi:10.1111/j.1462-2920.2009.01943.x. PubMed DOI PMC
Stapleton RD, Bright NG, Sayler GS. 2000. Catabolic and genetic diversity of degradative bacteria from fuel-hydrocarbon contaminated aquifers. Microb Ecol 39:211–221. PubMed
Kabelitz N, Machackova J, Imfeld G, Brennerova M, Pieper DH, Heipieper HJ, Junca H. 2009. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl Microbiol Biotechnol 82:565–577. doi:10.1007/s00253-009-1868-0. PubMed DOI
Pieper DH. 2005. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 67:170–191. doi:10.1007/s00253-004-1810-4. PubMed DOI
Hong KW, Thinagaran D, Gan HM, Yin WF, Chan KG. 2012. Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium. J Bacteriol 194:6324. doi:10.1128/JB.01608-12. PubMed DOI PMC
O'Loughlin EJ, Sims GK, Traina SJ. 1999. Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation 10:93–104. doi:10.1023/A:1008309026751. PubMed DOI
Fahy A, Ball AS, Lethbridge G, McGenity TJ, Timmis KN. 2008. High benzene concentrations can favour Gram-positive bacteria in groundwaters from a contaminated aquifer. FEMS Microbiol Ecol 65:526–533. doi:10.1111/j.1574-6941.2008.00518.x. PubMed DOI
McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci U S A 103:15582–15587. PubMed PMC
Hernandez BS, Koh SC, Chial M, Focht DD. 1997. Terpene-utilizing isolates and their relevance to enhanced biotransformation of polychlorinated biphenyls in soil. Biodegradation 8:153–158. doi:10.1023/A:1008255218432. DOI
Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA. 1999. Purification and characterization of a novel naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038. J Bacteriol 181:6200–6204. PubMed PMC
Iida T, Mukouzaka Y, Nakamura K, Yamaguchi I, Kudo T. 2002. Isolation and characterization of dibenzofuran-degrading actinomycetes: analysis of multiple extradiol dioxygenase genes in dibenzofuran-degrading Rhodococcus species. Biosci Biotechnol Biochem 66:1462–1472. doi:10.1271/bbb.66.1462. PubMed DOI
Shen XH, Zhou NY, Liu SJ. 2012. Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95:77–89. doi:10.1007/s00253-012-4139-4. PubMed DOI
Nordin K, Unell M, Jansson JK. 2005. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544. doi:10.1128/AEM.71.11.6538-6544.2005. PubMed DOI PMC
Golovleva LA, Pertsova RN, Evtushenko LI, Baskunov BP. 1990. Degradation of 2,4,5-trichlorophenoxyacetic acid by a Nocardioides simplex culture. Biodegradation 1:263–271. doi:10.1007/BF00119763. PubMed DOI
Yen KM, Karl MR, Blatt LM, Simon MJ, Winter RB, Fausset PR, Lu HS, Harcourt AA, Chen KK. 1991. Cloning and characterization of a Pseudomonas mendocina KR1 gene cluster encoding toluene-4-monooxygenase. J Bacteriol 173:5315–5327. PubMed PMC
Gibson DT, Koch JR, Kallio RE. 1968. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662. PubMed
Gross R, Guzman CA, Sebaihia M, dos Santos VA, Pieper DH, Koebnik R, Lechner M, Bartels D, Buhrmester J, Choudhuri JV, Ebensen T, Gaigalat L, Herrmann S, Khachane AN, Larisch C, Link S, Linke B, Meyer F, Mormann S, Nakunst D, Ruckert C, Schneiker-Bekel S, Schulze K, Vorholter FJ, Yevsa T, Engle JT, Goldman WE, Puhler A, Gobel UB, Goesmann A, Blocker H, Kaiser O, Martinez-Arias R. 2008. The missing link: Bordetella petrii is endowed with both the metabolic versatility of environmental bacteria and virulence traits of pathogenic Bordetellae. BMC Genomics 9:449. doi:10.1186/1471-2164-9-449. PubMed DOI PMC
Fukuda K, Hosoyama A, Tsuchikane K, Ohji S, Yamazoe A, Fujita N, Shintani M, Kimbara K. 2014. Complete genome sequence of polychlorinated biphenyl degrader Comamonas testosteroni TK102 (NBRC 109938). Genome Announc 2:e00865-14. doi:10.1128/genomeA.00865-14. PubMed DOI PMC
Sul WJ, Park J, Quensen JF III, Rodrigues JL, Seliger L, Tsoi TV, Zylstra GJ, Tiedje JM. 2009. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 75:5501–5506. doi:10.1128/AEM.00121-09. PubMed DOI PMC
Cladera AM, Bennasar A, Barcelo M, Lalucat J, Garcia-Valdes E. 2004. Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. J Bacteriol 186:5239–5248. doi:10.1128/JB.186.16.5239-5248.2004. PubMed DOI PMC
Bosch R, Garcia-Valdes E, Moore ERB. 1999. Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene 236:149–157. doi:10.1016/S0378-1119(99)00241-3. PubMed DOI
Eulberg D, Golovleva LA, Schlomann M. 1997. Characterization of catechol catabolic genes from Rhodococcus erythropolis 1CP. J Bacteriol 179:370–381. PubMed PMC
Heipieper HJ, Weber FJ, Sikkema J, Keweloh H, de Bont JAM. 1994. Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol 12:409–415. doi:10.1016/0167-7799(94)90029-9. DOI
Duldhardt I, Nijenhuis I, Schauer F, Heipieper HJ. 2007. Anaerobically grown Thauera aromatica, Desulfococcus multivorans, Geobacter sulfurreducens are more sensitive towards organic solvents than aerobic bacteria. Appl Microbiol Biotechnol 77:705–711. doi:10.1007/s00253-007-1179-2. PubMed DOI
Paje MLF, Neilan BA, Couperwhite I. 1997. A Rhodococcus species that thrives on medium saturated with liquid benzene. Microbiology 143:2975–2981. doi:10.1099/00221287-143-9-2975. PubMed DOI
Cafaro V, Izzo V, Scognamiglio R, Notomista E, Capasso P, Casbarra A, Pucci P, Di Donato A. 2004. Phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas stutzeri OX1: interplay between two enzymes. Appl Environ Microbiol 70:2211–2219. doi:10.1128/AEM.70.4.2211-2219.2004. PubMed DOI PMC
Jung IG, Park CH. 2004. Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. J Biosci Bioeng 97:429–431. doi:10.1016/S1389-1723(04)70232-7. PubMed DOI
Eltis LD, Bolin JT. 1996. Evolutionary relationships among extradiol dioxygenases. J Bacteriol 178:5930–5937. PubMed PMC