Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation

. 2009 Sep ; 11 (9) : 2216-27. [epub] 20090219

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid19575758

The extradiol dioxygenase diversity of a site highly contaminated with aliphatic and aromatic hydrocarbons under air-sparging treatment was assessed by functional screening of a fosmid library in Escherichia coli with catechol as substrate. The 235 positive clones from inserts of DNA extracted from contaminated soil were equivalent to one extradiol dioxygenase-encoding gene per 3.6 Mb of DNA screened, indicating a strong selection for genes encoding this function. Three subfamilies were identified as being predominant, with 72, 55 and 43 fosmid inserts carrying genes, related to those encoding TbuE of Ralstonia pickettii PK01 (EXDO-D), IpbC of Pseudomonas sp. JR1 (EXDO-K2) or DbtC of Burkholderia sp. DBT1 (EXDO-Dbt), respectively, whereas genes encoding enzymes related to XylE of Pseudomonas putida mt-2 were not observed. Genes encoding oxygenases related to isopropylbenzene dioxygenases were usually colocalized with genes encoding EXDO-K2 dioxygenases. Functional analysis of representative proteins indicated a subcluster of EXDO-D proteins to show exceptional high affinity towards different catecholic substrates. Based on V(max)/K(m) specificity constants, a task-sharing between different extradiol dioxygenases in the community of the contaminated site can be supposed, attaining a complementary and community-balanced catalytic power against diverse catecholic derivatives, as necessary for effective degradation of mixtures of aromatics.

Zobrazit více v PubMed

Andujar E, Santero E. Site-directed mutagenesis of an extradiol dioxygenase involved in tetralin biodegradation identifies residues important for activity or substrate specificity. Microbiology. 2003;149:1559–1567. PubMed

Andujar E, Hernaez MJ, Kaschabek SR, Reineke W, Santero E. Identification of an extradiol dioxygenase involved in tetralin biodegradation: gene sequence analysis and purification and characterization of the gene product. J Bacteriol. 2000;182:789–795. PubMed PMC

Beil S, Timmis KN, Pieper DH. Genetic and biochemical analyses of the tec operon suggest a route for evolution of chlorobenzene degradation genes. J Bacteriol. 1999;181:341–346. PubMed PMC

Beloqui A, Pita M, Polaina J, Martinez-Arias A, Golyshina OV, Zumarraga M, et al. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships. J Biol Chem. 2006;281:22933–22942. PubMed

Bradford MM. A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. PubMed

Chablain PA, Zgoda AL, Sarde CO, Truffaut N. Genetic and molecular organization of the alkylbenzene catabolism operon in the psychrotrophic strain Pseudomonas putida 01G3. Appl Environ Microbiol. 2001;67:453–458. PubMed PMC

Di Gregorio S, Zocca C, Sidler S, Toffanin A, Lizzari D, Vallini G. Identification of two new sets of genes for dibenzothiophene transformation in Burkholderia sp. DBT1. Biodegradation. 2004;15:111–123. PubMed

Diaz E, Ferrandez A, Prieto MA, Garcia JL. Biodegradation of aromatic compounds by Escherichia coli. Microbiol Mol Biol Rev. 2001;65:523–569. PubMed PMC

Dunwell JM, Khuri S, Gane PJ. Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev. 2000;64:153–179. PubMed PMC

Eaton RW, Timmis KN. Characterization of a plasmid-specified pathway for catabolism of isopropylbenzene in Pseudomonas putida RE204. J Bacteriol. 1986;168:123–131. PubMed PMC

Eltis LD, Bolin JT. Evolutionary relationships among extradiol dioxygenases. J Bacteriol. 1996;178:5930–5937. PubMed PMC

Ferrer M, Golyshina OV, Chernikova TN, Khachane AN, Reyes-Duarte D, Santos VA, et al. Novel hydrolase diversity retrieved from a metagenome library of bovine rumen microflora. Environ Microbiol. 2005;7:1996–2010. PubMed

Gibson DT, Parales RE. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol. 2000;11:236–243. PubMed

Gobel M, Kranz OH, Kaschabek SR, Schmidt E, Pieper DH, Reineke W. Microorganisms degrading chlorobenzene via a meta-cleavage pathway harbor highly similar chlorocatechol 2,3-dioxygenase-encoding gene clusters. Arch Microbiol. 2004;182:147–156. PubMed

Habe H, Kimura T, Nojiri H, Yamane H, Omori T. Cloning and nucleotide sequences of the genes involved in the meta-cleavage pathway of cumene degradation in Pseudomonas fluorescens IP01. J Ferment Bioeng. 1996;81:247–254.

Harayama S, Mermod N, Rekik M, Lehrbach PR, Timmis KN. Roles of the divergent branches of the meta-cleavage pathway in the degradation of benzoate and substituted benzoates. J Bacteriol. 1987;169:558–564. PubMed PMC

Harwood CS, Parales RE. The beta-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol. 1996;50:553–590. PubMed

Hatta T, Mukerjee-Dhar G, Damborsky J, Kiyohara H, Kimbara K. Characterization of a novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl 1,2-dioxygenase from a polychlorinated biphenyl- and naphthalene-degrading Bacillus sp. JF8. J Biol Chem. 2003;278:21483–21492. PubMed

Heiss G, Stolz A, Kuhm AE, Müller C, Klein J, Altenbuchner J, Knackmuss H-J. Characterization of a 2,3-dihydroxybiphenyl dioxygenase from the naphthalenesulfonate-degrading bacterium strain BN6. J Bacteriol. 1995;177:5865–5871. PubMed PMC

Hirose J, Kimura N, Suyama A, Kobayashi A, Hayashida S, Furukawa K. Functional and structural relationship of various extradiol aromatic ring-cleavage dioxygenases of Pseudomonas origin. FEMS Microbiol Lett. 1994;118:273–277. PubMed

Hofer B, Backhaus S, Timmis KN. The biphenyl/poychlorinated biphenyl-degradation locus (bph) of Pseudomonas sp. LB400 encodes four additional metabolic enzymes. Gene. 1994;144:9–16. PubMed

Iida T, Nakamura K, Izumi A, Mukouzaka Y, Kudo T. Isolation and characterization of a gene cluster for dibenzofuran degradation in a new dibenzofuran-utilizing bacterium, Paenibacillus sp. strain YK5. Arch Microbiol. 2006;184:305–315. PubMed

Jeong JJ, Kim JH, Kim CK, Hwang I, Lee K. 3- and 4-Alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3-dioxygenase. Microbiology. 2003;149:3265–3277. PubMed

Junca H, Plumeier I, Hecht HJ, Pieper DH. Difference in kinetic behaviour of catechol 2,3-dioxygenase variants from a polluted environment. Microbiology. 2004;150:4181–4187. PubMed

Kabelitz N, Macháčkova J, Imfeld G, Brennerova M, Přeper DH, Heipieper HJ, Junca H. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl Microbiol Biotechnol. 2009;82:565–577. PubMed

Kasuga I, Nakajima F, Furumai H. Diversity of catechol 2,3-dioxygenase genes of bacteria responding to dissolved organic matter derived from different sources in a eutrophic lake. FEMS Microbiol Ecol. 2007;61:449–458. PubMed

Keil H, Lebens MR, Williams PA. TOL plasmid pWW15 contains two nonhomologous, independently regulated catechol 2,3-oxygenase genes. J Bacteriol. 1985;163:248–255. PubMed PMC

Kuhm AE, Stolz A, Ngai KL, Knackmuss HJ. Purification and characterization of a 1,2-dihydroxynaphthalene dioxygenase from a bacterium that degrades naphthalenesulfonic acids. J Bacteriol. 1991a;173:3795–3802. PubMed PMC

Kuhm AE, Stolz A, Knackmuss H-J. Metabolism of naphthalene by the biphenyl-degrading bacterium Pseudomonas paucimobilis Q1. Biodegradation. 1991b;2:115–120. PubMed

Kukor JJ, Olsen RH. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. J Bacteriol. 1991;173:4587–4594. PubMed PMC

Kukor JJ, Olsen RH. Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol. 1996;62:1728–1740. PubMed PMC

Laurie AD, LloydJones G. Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochem Biophys Res Commun. 1999;262:308–314. PubMed

Leahy JG, Batchelor PJ, Morcomb SM. Evolution of the soluble diiron monooxygenases. FEMS Microbiol Rev. 2003;27:449–479. PubMed

Machackova J, Wittlingerova Z, Vlk K, Zima J, Linka A. Comparison of two methods for assessment of in situ jet-fuel remediation efficiency. Water Air Soil Pollut. 2008;187:181–194.

McKay DB, Prucha M, Reineke W, Timmis KN, Pieper DH. Substrate specificity and expression of three 2,3-dihydroxybiphenyl 1,2-dioxygenases from Rhodococcus globerulus strain P6. J Bacteriol. 2003;185:2944–2951. PubMed PMC

Margesin R, Labbe D, Schinner F, Greer CW, Whyte LG. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol. 2003;69:3085–3092. PubMed PMC

Monferran MV, Echenique JR, Wunderlin DA. Degradation of chlorobenzenes by a strain of Acidovorax avenae isolated from a polluted aquifer. Chemosphere. 2005;61:98–106. PubMed

Moonen MJ, Synowsky SA, van den Berg WA, Westphal AH, Heck AJ, van den Heuvel RH, et al. Hydroquinone dioxygenase from Pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases. J Bacteriol. 2008;190:5199–5209. PubMed PMC

Nogales J, Canales A, Jimenez-Barbero J, Garcia JL, Diaz E. Molecular characterization of the gallate dioxygenase from Pseudomonas putida KT2440. The prototype of a new subgroup of extradiol dioxygenases. J Biol Chem. 2005;280:35382–35390. PubMed

Pflugmacher U, Averhoff B, Gottschalk G. Cloning, sequencing, and expression of isopropylbenzene degradation genes from Pseudomonas sp. strain JR1: identification of isopropylbenzene dioxygenase that mediates trichloroethene oxidation. Appl Environ Microbiol. 1996;62:3967–3977. PubMed PMC

Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol. 2005;67:170–191. PubMed

Riesenfeld CS, Goodman RM, Handelsman J. Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol. 2004;6:981–989. PubMed

Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:4606–4425. PubMed

Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY, USA: Cold Spring Harbor Laboratory Press; 1989.

Sei K, Asano K, Tateishi N, Mori K, Ike M, Fujita M. Design of PCR primers and gene probes for the general detection of bacterial populations capable of degrading aromatic compounds via catechol cleavage pathways. J Biosci Bioeng. 1999;88:542–550. PubMed

Selenska-Pobell S, Kampf G, Hemming K, Radeva G, Satchanska G. Bacterial diversity in soil samples from two uranium waste piles as determined by rep-APD, RISA and 16S rDNA retrieval. Antonie Van Leeuwenhoek. 2001;79:149–161. PubMed

Shinoda Y, Sakai Y, Uenishi H, Uchihashi Y, Hiraishi A, Yukawa H, et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl Environ Microbiol. 2004;70:1385–1392. PubMed PMC

Sipila TP, Riisio H, Yrjala K. Novel upper meta-pathway extradiol dioxygenase gene diversity in polluted soil. FEMS Microbiol Ecol. 2006;58:134–144. PubMed

Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol. 2007;9:2289–2297. PubMed

Sugimoto K, Senda T, Aoshima H, Masai E, Fukuda M, Mitsui Y. Crystal structure of an aromatic ring opening dioxygenase LigAB, a protocatechuate 4,5-dioxygenase, under aerobic conditions. Structure. 1999;7:953–965. PubMed

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–1599. PubMed

Vaillancourt FH, Labbe G, Drouin NM, Fortin PD, Eltis LD. The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J Biol Chem. 2002;277:2019–2027. PubMed

Witzig R, Junca H, Hecht HJ, Pieper DH. Assessment of toluene/biphenyl dioxygenase gene diversity in benzene-polluted soils: links between benzene biodegradation and genes similar to those encoding isopropylbenzene dioxygenases. Appl Environ Microbiol. 2006;72:3504–3514. PubMed PMC

Yeates C, Holmes AJ, Gillings MR. Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ Microbiol. 2000;2:644–653. PubMed

Zobrazit více v PubMed

GENBANK
EU555067, EU555068, EU555069, EU555070, EU555071, EU555072, EU555073, EU555074, EU555075, EU555076, EU555077, EU555078, EU555079, EU555080, EU555081, EU555082, EU555083, EU555084, EU555085, EU555086, EU555087, EU555088, EU555089, EU555090, EU555091, EU555092, EU555093, EU555094, EU555095, EU555096, EU555097, EU555098, EU555099, EU555100, EU555101, EU555102, EU555103, EU555104, EU555105, EU555106, EU555107, EU555108, EU555109, EU555110, EU555111, EU555112, EU555113, EU555114, EU555115, EU555116, EU555117

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace