Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas

. 2022 Aug ; 67 (4) : 591-604. [epub] 20220322

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35318574
Odkazy

PubMed 35318574
DOI 10.1007/s12223-022-00966-5
PII: 10.1007/s12223-022-00966-5
Knihovny.cz E-zdroje

One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.

Zobrazit více v PubMed

Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott Base, Antarctica. Polar Biol 23:183–188. https://doi.org/10.1007/s003000050025 DOI

Bacosa HP, Mabuhay-Omar JA, Balisco RAT, Omar DM, Inoue C (2021) Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. World J Microbiol Biotechnol 37:122. https://doi.org/10.1007/s11274-021-03093-4 PubMed DOI

Bartilson M, Nordlund I, Shingler V (1990) Location and organization of the dimethylphenol catabolic genes of Pseudomonas CF600. Mol Gen Genet MGG 220:294–300. https://doi.org/10.1007/BF00260497 PubMed DOI

Boronin AM, Poritz AL, Skryabin GK (1978) Inventor's certificate No 612958 [In Russian]

Brennerova MV, Josefiova J, Brenner V, Pieper DH, Junca H (2009) Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation. Environ Microbiol 11:2216–2227. https://doi.org/10.1111/j.1462-2920.2009.01943.x PubMed DOI PMC

Brown LM, Gunasekera TS, Ruiz ON (2014) Draft genome sequence of Pseudomonas aeruginosa ATCC 33988, a bacterium highly adapted to fuel-polluted environments. Genome Announc 2:e01113-e1114. https://doi.org/10.1128/genomeA.01113-14 PubMed DOI PMC

Brzeszcz J, Kaszycki P (2018) Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility. Biodegradation 29:359–407. https://doi.org/10.1007/s10532-018-9837-x PubMed DOI

Buonocore C, Tedesco P, Vitale GA, Esposito FP, Giugliano R, Monti MC, D’Auria MV, de Pascale D (2020) Characterization of a new mixture of mono-rhamnolipids produced by Pseudomonas gessardii isolated from Edmonson Point (Antarctica). Mar Drugs. https://doi.org/10.3390/md18050269 PubMed DOI PMC

Cao H, Zhang X, Wang S, Liu J, Han D, Zhao B, Wang H (2021) Insights into mechanism of the naphthalene-enhanced biodegradation of phenanthrene by Pseudomonas sp. SL-6 based on omics analysis. Front Microbiol 12:761216. https://doi.org/10.3389/fmicb.2021.761216

Chaerun SK, Tazaki K, Asada R, Kogure K (2004) Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environ Int 30:911–922. https://doi.org/10.1016/j.envint.2004.02.007 PubMed DOI

Chakrabarty AM (1992) Microorganisms having multiple compatible degradative energy-generating plasmids and preparation thereof. 1980. Biotechnology 24:535–545 PubMed

Chakrabarty AM (1972) Genetic basis of the biodegradation of salicylate in Pseudomonas. J Bacteriol 112:815–823. https://doi.org/10.1128/JB.112.2.815-823.1972 PubMed DOI PMC

Chebbi A, Hentati D, Zaghden H, Baccar N, Rezgui F, Chalbi M, Sayadi S, Chamkha M (2017) Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. Int Biodeterior Biodegradation 122:128–140. https://doi.org/10.1016/J.IBIOD.2017.05.006 DOI

Collier DN, Hager PW, Phibbs PV (1996) Catabolite repression control in the Pseudomonads. Res Microbiol 147:551–561. https://doi.org/10.1016/0923-2508(96)84011-3 PubMed DOI

Dennis JJ, Zylstra GJ (2004) Complete sequence and genetic crganization of pDTG1, the 83 Kilobase naphthalene degradation plasmid from Pseudomonas putida strain NCIB 9816–4. J Mol Biol 341:753–768. https://doi.org/10.1016/j.jmb.2004.06.034 PubMed DOI

Eaton RW, Selifonova OV, Gedney RM (1998) Isopropylbenzene catabolic pathway in Pseudomonas putida RE204: nucleotide sequence analysis of the ipb operon and neighboring DNA from pRE4. Biodegradation 9:119–132. https://doi.org/10.1023/a:1008386221961 PubMed DOI

Eltoukhy A, Jia Y, Nahurira R, Abo-Kadoum MA, Khokhar I, Wang J, Yan Y (2020) Biodegradation of endocrine disruptor bisphenol A by Pseudomonas putida strain YC-AE1 isolated from polluted soil, Guangdong. China BMC Microbiol 20:11. https://doi.org/10.1186/s12866-020-1699-9 PubMed DOI

Farrell RL, Rhodes PL, Aislabie J (2003) Toluene-degrading antarctic Pseudomonas strains from fuel-contaminated soil. Biochem Biophys Res Commun 312:235–240. https://doi.org/10.1016/j.bbrc.2003.09.163 PubMed DOI

Ferguson DK, Li C, Jiang C, Chakraborty A, Grasby SE, Hubert CRJ (2020) Natural attenuation of spilled crude oil by cold-adapted soil bacterial communities at a decommissioned high arctic oil well site. Sci Total Environ 722:137258. https://doi.org/10.1016/j.scitotenv.2020.137258 PubMed DOI

Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15:93–120. https://doi.org/10.1159/000121324 PubMed DOI

Foght JM, Fedorak PM, Westlake DWS (1990) Mineralization of [ PubMed DOI

Foght JM, Westlake DWS (1996) Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens. Biodegradation 7:353–366. https://doi.org/10.1007/BF00115749 PubMed DOI

Fuentes S, Barra B, Caporaso JG, Seeger M (2016) From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl Environ Microbiol 82:888–896. https://doi.org/10.1128/AEM.02625-15 PubMed DOI PMC

Fukuyama AK, Shigenaka G, Coats DA (2014) Status of intertidal infaunal communities following the Exxon Valdez oil spill in Prince William Sound, Alaska. Mar Pollut Bull 84:56–69. https://doi.org/10.1016/j.marpolbul.2014.05.043 PubMed DOI

Gai Z, Zhang Z, Wang X, Tao F, Tang H, Xu P (2012) Genome sequence of Pseudomonas aeruginosa DQ8, an efficient degrader of n-alkanes and polycyclic aromatic hydrocarbons. J Bacteriol 194:6304–6305. https://doi.org/10.1128/JB.01499-12 PubMed DOI PMC

Ghosal D, Ghosh S, Dutta TK, Ahn Y (2016) Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): A review. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01369 PubMed DOI PMC

Ghosh M, Ganguli A, Mallik M (2006) Evidence of indigenous NAH plasmid of naphthalene degrading Pseudomonas putida PpG7 strain implicated in limonin degradation. J Microbiol 44:473–479 PubMed

Görke B, Stülke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613–624. https://doi.org/10.1038/nrmicro1932 PubMed DOI

Grosso-Becerra M-V, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G (2014) Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 15:318. https://doi.org/10.1186/1471-2164-15-318 PubMed DOI PMC

Guermouche M’rassi A, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22:15332–15346. https://doi.org/10.1007/s11356-015-4343-8 DOI

Gunasekera TS, Bowen LL, Zhou CE, Howard-Byerly SC, Foley WS, Striebich RC, Dugan LC, Ruiz ON (2017) Transcriptomic analyses elucidate adaptive differences of closely related strains of Pseudomonas aeruginosa in fuel. Appl Environ Microbiol. https://doi.org/10.1128/AEM.03249-16 PubMed DOI PMC

Gunasekera TS, Striebich RC, Mueller SS, Strobel EM, Ruiz ON (2013) Transcriptional profiling suggests that multiple metabolic adaptations are required for effective proliferation of Pseudomonas aeruginosa in jet fuel. Environ Sci Technol 47:13449–13458. https://doi.org/10.1021/es403163k PubMed DOI

Habe H, Omori T (2003) Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem 67:225–243. https://doi.org/10.1271/bbb.67.225 PubMed DOI

Hadadi N, Pandey V, Chiappino-Pepe A, Morales M, Gallart-Ayala H, Mehl F, Ivanisevic J, Sentchilo V, van der Meer JR (2020) Mechanistic insights into bacterial metabolic reprogramming from omics-integrated genome-scale models. npj Syst Biol Appl 6:1. https://doi.org/10.1038/s41540-019-0121-4

He S, Ni Y, Lu L, Chai Q, Liu H, Yang C (2019) Enhanced biodegradation of n-hexane by Pseudomonas sp. strain NEE2. Sci Rep 9:16615. https://doi.org/10.1038/s41598-019-52661-0

Heinaru E, Vedler E, Jutkina J, Aava M, Heinaru A (2009) Conjugal transfer and mobilization capacity of the completely sequenced naphthalene plasmid pNAH20 from multiplasmid strain Pseudomonas fluorescens PC20. FEMS Microbiol Ecol 70:563–574. https://doi.org/10.1111/j.1574-6941.2009.00763.x PubMed DOI

Herrmann H, Müller C, Schmidt I, Mahnke J, Petruschka L, Hahnke K (1995) Localization and organization of phenol degradation genes of Pseudomonas putida strain H. Mol Gen Genet MGG 247:240–246. https://doi.org/10.1007/BF00705655 PubMed DOI

Hu B, Wang M, Geng S, Wen L,Wu M, Nie Y, Tang YQ, Wu XL (2020) Metabolic exchange with non-alkane-consuming Pseudomonas stutzeri SLG510A3–8 improves n-alkane biodegradation by the alkane degrader Dietzia sp. strain DQ12–45–1b. Appl Environ Microbiol 86. https://doi.org/10.1128/AEM.02931-19

Hueso-Gil Á, Calles B, O’Toole GA, Lorenzo V (2020) Gross transcriptomic analysis of Pseudomonas putida for diagnosing environmental shifts. Microb Biotechnol 13:263–273. https://doi.org/10.1111/1751-7915.13404 PubMed DOI

Imperato V, Portillo-Estrada M, McAmmond BM, Douwen Y, Van Hamme JD, Gawronski SW, Vangronsveld J, Thijs S (2019) Genomic diversity of two hydrocarbon-degrading and plant growth-promoting pseudomonas species isolated from the oil field of Bóbrka (Poland). Genes (basel) 10:443. https://doi.org/10.3390/genes10060443 DOI

Izmalkova TY, Sazonova OI, Nagornih MO, Sokolov SL, Kosheleva IA, Boronin AM (2013) The organization of naphthalene degradation genes in Pseudomonas putida strain AK5. Res Microbiol 164:244–253. https://doi.org/10.1016/j.resmic.2012.12.007 PubMed DOI

Ji D, Mao Z, He J, Peng S, Wen H (2020) Characterization and genomic function analysis of phenanthrene-degrading bacterium Pseudomonas sp. Lphe-2. J Environ Sci Heal Part A 55:549–562. https://doi.org/10.1080/10934529.2019.1711352 DOI

Jouanneau Y (2010) Oxidative inactivation of ring-cleavage extradiol dioxygenases: mechanism and ferredoxin-mediated reactivation. In: McGenity T, van der Meer JR, de Lorenzo V (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1071–1079 DOI

Keil H, Keil S, Pickup RW, Williams PA (1985) Evolutionary conservation of genes coding for meta pathway enzymes within TOL plasmids pWW0 and pWW53. J Bacteriol 164:887–895. https://doi.org/10.1128/JB.164.2.887-895.1985 PubMed DOI PMC

Kim J, Goñi-Moreno A, de Lorenzo V (2021) Subcellular architecture of the xyl gene expression flow of the TOL catabolic plasmid of Pseudomonas putida mt-2. Mbio. https://doi.org/10.1128/mBio.03685-20 PubMed DOI PMC

Kim J, Oliveros JC, Nikel PI, de Lorenzo V, Silva-Rocha R (2013) Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Environ Microbiol Rep 5:883–891. https://doi.org/10.1111/1758-2229.12090 PubMed DOI

Kim J, Park W (2018) Genome analysis of naphthalene-degrading Pseudomonas sp. AS1 harboring the megaplasmid pAS1. J Microbiol Biotechnol 28:330–337. https://doi.org/10.4014/jmb.1709.09002 PubMed DOI

Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V (2016) High-resolution analysis of the m -xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environ Microbiol 18:3327–3341. https://doi.org/10.1111/1462-2920.13054 PubMed DOI

Kimura N, Watanabe T, Suenaga H, Oliveros JC, de Lorenzo V (2018) Pseudomonas furukawaii sp. nov., a polychlorinated biphenyl-degrading bacterium isolated from biphenyl-contaminated soil in Japan. Int J Syst Evol Microbiol 68:1429–1435. https://doi.org/10.1099/ijsem.0.002670 PubMed DOI

Kurth EG, Doughty DM, Bottomley PJ, Arp DJ, Sayavedra-Soto LA (2008) Involvement of BmoR and BmoG in n-alkane metabolism in ‘Pseudomonas butanovora’. Microbiology 154:139–147. https://doi.org/10.1099/mic.0.2007/012724-0 PubMed DOI

Ławniczak Ł, Woźniak-Karczewska M, Loibner AP, Heipieper HJ, Chrzanowski Ł (2020) Microbial degradation of hydrocarbons — basic principles for bioremediation: a review. Molecules 25:856. https://doi.org/10.3390/molecules25040856 DOI PMC

Lee M, Jung J-Y (2013) Risk assessment and national measure plan for oil and HNS spill accidents near Korea. Mar Pollut Bull 73:339–344. https://doi.org/10.1016/j.marpolbul.2013.05.021 PubMed DOI

Lei YL, Li TG, Bi H, Cui WL, Song WP, Li JY, Li CC (2015) Responses of benthic foraminifera to the 2011 oil spill in the Bohai Sea, PR China. Mar Pollut Bull 96:245–260. https://doi.org/10.1016/j.marpolbul.2015.05.020 PubMed DOI

Li J, Lu Q, Odey EA, Lok KS, Pan B, Zhang Y, Shim H (2021a) Coupling of biostimulation and bioaugmentation for enhanced bioremoval of chloroethylenes and BTEX from clayey soil. Ecotoxicology. https://doi.org/10.1007/s10646-020-02323-z PubMed DOI PMC

Li J, Xu Y, Song Q, Yang J, Xie L, Yu S, Zheng L (2021b) Polycyclic aromatic hydrocarbon and n-alkane pollution characteristics and structural and functional perturbations to the microbial community: a case-study of historically petroleum-contaminated soil. Environ Sci Pollut Res 28:10589–10602. https://doi.org/10.1007/s11356-020-11301-1 DOI

Li S, Qin K, Li H, Guo J, Li D, Liu F, Tan Z, Yan W, Qu S, Zhao H (2018) Cloning and characterisation of four catA genes located on the chromosome and large plasmid of Pseudomonas putida ND6. Electron J Biotechnol 34:83–90. https://doi.org/10.1016/j.ejbt.2018.06.001 DOI

Li W, Shi J, Wang X, Han Y, Tong W, Ma L, Liu B, Cai B (2004) Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene 336:231–240. https://doi.org/10.1016/j.gene.2004.03.027 PubMed DOI

Lin M, Hu X, Chen W, Wang H, Wang C (2014) Biodegradation of phenanthrene by Pseudomonas sp. BZ-3, isolated from crude oil contaminated soil. Int Biodeterior Biodegradation 94:176–181. https://doi.org/10.1016/j.ibiod.2014.07.011 DOI

Liu H, Sun W-B, Liang R-B, Huang L, Hou JL, Liu JH (2015) iTRAQ-based quantitative proteomic analysis of Pseudomonas aeruginosa SJTD-1: A global response to n-octadecane induced stress. J Proteomics 123:14–28. https://doi.org/10.1016/j.jprot.2015.03.034 PubMed DOI

Liu H, Tan X, Guo J, Liang X, Xie Q, Chen S (2020) Bioremediation of oil-contaminated soil by combination of soil conditioner and microorganism. J Soils Sediments 20:2121–2129. https://doi.org/10.1007/s11368-020-02591-6 DOI

Liu H, Yang G, Jia H, Sun B (2022) Crude oil degradation by a novel strain Pseudomonas aeruginosa AQNU-1 isolated from an oil-contaminated lake Wetland. Processes 10:307. https://doi.org/10.3390/pr10020307 DOI

Lloyd-Jones G, de Jong C, Ogden RC, Duetz WA, Williams PA (1994) Recombination of the bph (biphenyl) catabolic genes from plasmid pWW100 and their deletion during growth on benzoate. Appl Environ Microbiol 60:691–696. https://doi.org/10.1128/AEM.60.2.691-696.1994 PubMed DOI PMC

Lo Giudice A, Casella P, Caruso C, Mangano S, Bruni V, De DM, Michaud L (2010) Occurrence and characterization of psychrotolerant hydrocarbon-oxidizing bacteria from surface seawater along the Victoria Land coast (Antarctica). Polar Biol 33:929–943. https://doi.org/10.1007/s00300-010-0770-7 DOI

Lyratzakis A, Valsamidis G, Kanavaki I, Nikolaki A, Rupprecht F, Langer JD, Tsiotis G (2021) Proteomic characterization of the Pseudomonas sp. strain phDV1 response to monocyclic aromatic compounds. Proteomics 21:2000003. https://doi.org/10.1002/pmic.202000003

Meckenstock RU, Boll M, Mouttaki H, Koelschbach JS, Cunha TP, Weyrauch P, Dong X, Himmelberg AM (2016) Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. J Mol Microbiol Biotechnol 26:92–118. https://doi.org/10.1159/000441358 PubMed DOI

Medić A, Lješević M, Inui H, Beškoski V, Kojić I, Stojanović K, Karadžić I (2020) Efficient biodegradation of petroleum n-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic Pseudomonas aeruginosa san ai with multidegradative capacity. RSC Adv 24:14060–14070. https://doi.org/10.1039/C9RA10371F DOI

Michael E, Gomila M, Lalucat J, Nitzan Y, Pechatnikov I, Cahan R (2017) Proteomic assessment of the expression of genes related to toluene catabolism and porin synthesis in Pseudomonas stutzeri ST-9. J Proteome Res 16:1683–1692. https://doi.org/10.1021/acs.jproteome.6b01044 PubMed DOI

Miri S, Naghdi M, Rouissi T, Brar SK, Martel R (2019) Recent biotechnological advances in petroleum hydrocarbons degradation under cold climate conditions: a review. Crit Rev Environ Sci Technol 49:553–586. https://doi.org/10.1080/10643389.2018.1552070 DOI

Molina-Santiago C, Udaondo Z, Gómez-Lozano M, Molin S, Ramos JL (2017) Global transcriptional response of solvent-sensitive and solvent-tolerant Pseudomonas putida strains exposed to toluene. Environ Microbiol 19:645–658. https://doi.org/10.1111/1462-2920.13585 PubMed DOI

Moreno R, Rojo F (2017) Enzymes for aerobic degradation of alkanes in bacteria. In: Rojo F (ed) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham, pp 1–25

Mukherjee AK, Bhagowati P, Biswa BB, Chanda A, Kalita B (2017) A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. J Proteomics 167:25–35. https://doi.org/10.1016/j.jprot.2017.07.020 PubMed DOI

Müller C, Petruschka L, Cuypers H, Burchhardt G, Herrmann H (1996) Carbon catabolite repression of phenol degradation in Pseudomonas putida is mediated by the inhibition of the activator protein PhlR. J Bacteriol 178:2030–2036. https://doi.org/10.1128/JB.178.7.2030-2036.1996 PubMed DOI PMC

Nontaleerak B, Duang-nkern J, Wongsaroj L, Trinachartvanit W, Romsang A, Mongkolsuk S (2020) Roles of RcsA, an AhpD Family protein, in reactive chlorine stress resistance and virulence in Pseudomonas aeruginosa. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01480-20 PubMed DOI PMC

Palleroni NJ, Pieper DH, Moore ERB (2010) Microbiology of hydrocarbon-degrading Pseudomonas. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 1787–1798 DOI

Park W, Jeon CO, Hohnstock-Ashe AM, Winans SC, Zylstra GJ, Madsen EL (2003) Identification and characterization of the conjugal transfer region of the pCg1 plasmid from naphthalene-degrading Pseudomonas putida Cg1. Appl Environ Microbiol 69:3263–3271. https://doi.org/10.1128/AEM.69.6.3263-3271.2003 PubMed DOI PMC

Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2018) Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci Total Environ 636:968–974. https://doi.org/10.1016/j.scitotenv.2018.04.379 PubMed DOI

Reunamo A, Riemann L, Leskinen P, Jørgensen KS (2013) Dominant petroleum hydrocarbon-degrading bacteria in the Archipelago Sea in South-West Finland (Baltic Sea) belong to different taxonomic groups than hydrocarbon degraders in the oceans. Mar Pollut Bull 72:174–180. https://doi.org/10.1016/j.marpolbul.2013.04.006 PubMed DOI

Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11:2477–2490. https://doi.org/10.1111/j.1462-2920.2009.01948.x PubMed DOI

Rojo F (2010) Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34:658–684. https://doi.org/10.1111/j.1574-6976.2010.00218.x PubMed DOI

Roy A, Dutta A, Pal S, Gupta A, Sarkar J, Chatterjee A, Saha A, Sarkar P, Sar P, Kazy SK (2018) Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour Technol 253:22–32. https://doi.org/10.1016/j.biortech.2018.01.004 PubMed DOI

Safari M, Yakhchali B, Shariati JV (2019) Comprehensive genomic analysis of an indigenous Pseudomonas pseudoalcaligenes degrading phenolic compounds. Sci Rep 9:12736. https://doi.org/10.1038/s41598-019-49048-6 PubMed DOI PMC

Sakshi, Haritash AK (2020) A comprehensive review of metabolic and genomic aspects of PAH-degradation. Arch Microbiol 202:2033–2058. https://doi.org/10.1007/s00203-020-01929-5 PubMed DOI

Sakthipriya N, Doble M, Sangwai JS (2016) Systematic investigations on the biodegradation and viscosity reduction of long chain hydrocarbons using Pseudomonas aeruginosa and Pseudomonas fluorescens. Environ Sci Process Impacts 18:386–397. https://doi.org/10.1039/C5EM00597C PubMed DOI

Salam LB (2016) Metabolism of waste engine oil by Pseudomonas species. 3 Biotech 6:98. https://doi.org/10.1007/s13205-016-0419-5

Sentchilo VS, Perebituk AN, Zehnder AJB, van der Meer JR (2000) Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated sites in Belarus. Appl Environ Microbiol 66:2842–2852. https://doi.org/10.1128/AEM.66.7.2842-2852.2000 PubMed DOI PMC

Sluis MK, Sayavedra-Soto LA, Arp DJ (2002) Molecular analysis of the soluble butane monooxygenase from ‘Pseudomonas butanovora’. Microbiology 148:3617–3629. https://doi.org/10.1099/00221287-148-11-3617 PubMed DOI

Smalla K, Jechalke S, Top EM (2015) Plasmid detection, characterization, and ecology. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.PLAS-0038-2014 PubMed DOI

Smith CA, O’Reilly KT, Hyman MR (2003) Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C PubMed DOI PMC

Sotsky JB, Greer CW, Atlas RM (1994) Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Can J Microbiol 40:981–985. https://doi.org/10.1139/m94-157 PubMed DOI

Tarhriz V, Nouioui I, Spröer C, Verbarg S, Ebrahimi V, Cortés-Albayay C, Schumann P, Hejazi MA, Klenk HP, Hejazi MS (2020) Pseudomonas khazarica sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from Khazar Sea sediments. Antonie Van Leeuwenhoek 113:521–532. https://doi.org/10.1007/s10482-019-01361-w PubMed DOI

Touw DS, Patel DR, van den Berg B (2010) The crystal structure of OprG from Pseudomonas aeruginosa, a potential channel for transport of hydrophobic molecules across the outer membrane. PLoS ONE 5:e15016. https://doi.org/10.1371/journal.pone.0015016 PubMed DOI PMC

Tribelli PM, Rossi L, Ricardi MM, Gomez-Lozano M, Molin S, Iustman LJR, Lopez NI (2018) Microaerophilic alkane degradation in Pseudomonas extremaustralis: a transcriptomic and physiological approach. J Ind Microbiol Biotechnol 45:15–23. https://doi.org/10.1007/s10295-017-1987-z PubMed DOI

Vaidya S, Devpura N, Jain K, Madamwar D (2018) Degradation of chrysene by enriched bacterial consortium. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01333 PubMed DOI PMC

van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. https://doi.org/10.1007/s00253-006-0748-0 PubMed DOI

van Beilen JB, Panke S, Lucchini S, Franchini AG, Röthlisberger M, Witholt B (2001) Analysis of Pseudomonas putida alkane-degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk genes. Microbiology 147:1621–1630. https://doi.org/10.1099/00221287-147-6-1621 PubMed DOI

Van Hamme JD, Singh A, Ward OP (2003) Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549. https://doi.org/10.1128/MMBR.67.4.503-549.2003 PubMed DOI PMC

Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037 PubMed DOI

Vilchez-Vargas R, Junca H, Pieper DH (2010) Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 12:3089–3104. https://doi.org/10.1111/j.1462-2920.2010.02340.x PubMed DOI

Wang J-D, Li X-X, Qu C-T (2017) Exploration of up-regulated key proteins in Pseudomonas aeruginosa for high-efficiency petroleum degradation by proteomic analysis. Curr Microbiol 74:1178–1184. https://doi.org/10.1007/s00284-017-1302-2 PubMed DOI

Wang J-D, Li X-X, Qu C-T (2019) A global proteomic change in petroleum hydrocarbon-degrading Pseudomonas aeruginosa in response to high and low concentrations of petroleum hydrocarbons. Curr Microbiol 76:1270–1277. https://doi.org/10.1007/s00284-019-01754-0 PubMed DOI

Wanichthanarak K, Fahrmann JF, Grapov D (2015) Genomic, proteomic, and metabolomic data integration strategies. Biomark Insights 10s4:BMI.S29511. https://doi.org/10.4137/BMI.S29511

Wasi S, Tabrez S, Ahmad M (2013) Use of Pseudomonas spp. for the bioremediation of environmental pollutants: a review. Environ Monit Assess 185:8147–8155. https://doi.org/10.1007/s10661-013-3163-x PubMed DOI

Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB, Throne-Holst M (2007) Bacterial metabolism of long-chain n-alkanes. Appl Microbiol Biotechnol 76:1209–1221. https://doi.org/10.1007/s00253-007-1119-1 PubMed DOI

Whyte LG, Bourbonniére L, Greer CW (1997) Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl Environ Microbiol 63:3719–3723. https://doi.org/10.1128/AEM.63.9.3719-3723.1997 PubMed DOI PMC

Xia W, Du Z, Cui Q, Dong H, Wang F, He P, Tang YC (2014) Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. J Hazard Mater 276:489–498. https://doi.org/10.1016/j.jhazmat.2014.05.062 PubMed DOI

Yan S, Wu G (2017) Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. J Appl Genet 58:545–563. https://doi.org/10.1007/s13353-017-0402-9 PubMed DOI PMC

Zhang Z, Hou Z, Yang C, Ma C, Tao F, Xu P (2011) Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8. Bioresour Technol 102:4111–4116. https://doi.org/10.1016/j.biortech.2010.12.064 PubMed DOI

Zhu S, Wang H, Jiang W, Yang Z, Zhou Y, He J, Qiu J, Hong Q (2019) Genome analysis of carbaryl-degrading strain Pseudomonas putida XWY-1. Curr Microbiol 76:927–929. https://doi.org/10.1007/s00284-019-01637-4 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace