Antimicrobial resistance in Clostridioides (Clostridium) difficile derived from humans: a systematic review and meta-analysis
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem, přehledy, systematický přehled
PubMed
32977835
PubMed Central
PMC7517813
DOI
10.1186/s13756-020-00815-5
PII: 10.1186/s13756-020-00815-5
Knihovny.cz E-zdroje
- Klíčová slova
- Antimicrobial resistance, Clostridioides difficile, Meta-analysis, Metronidazole, Vancomycin,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální léková rezistence * MeSH
- Clostridioides difficile účinky léků genetika MeSH
- fluorochinolony farmakologie MeSH
- klindamycin farmakologie MeSH
- klostridiové infekce epidemiologie mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- systematický přehled MeSH
- Názvy látek
- antibakteriální látky MeSH
- fluorochinolony MeSH
- klindamycin MeSH
BACKGROUND: Clostridioides (Clostridium) difficile is an important pathogen of healthcare- associated diarrhea, however, an increase in the occurrence of C. difficile infection (CDI) outside hospital settings has been reported. The accumulation of antimicrobial resistance in C. difficile can increase the risk of CDI development and/or its spread. The limited number of antimicrobials for the treatment of CDI is matter of some concern. OBJECTIVES: In order to summarize the data on antimicrobial resistance to C. difficile derived from humans, a systematic review and meta-analysis were performed. METHODS: We searched five bibliographic databases: (MEDLINE [PubMed], Scopus, Embase, Cochrane Library and Web of Science) for studies that focused on antimicrobial susceptibility testing in C. difficile and were published between 1992 and 2019. The weighted pooled resistance (WPR) for each antimicrobial agent was calculated using a random- effects model. RESULTS: A total of 111 studies were included. The WPR for metronidazole and vancomycin was 1.0% (95% CI 0-3%) and 1% (95% CI 0-2%) for the breakpoint > 2 mg/L and 0% (95% CI 0%) for breakpoint ≥32 μg/ml. Rifampin and tigecycline had a WPRs of 37.0% (95% CI 18-58%) and 1% (95% CI 0-3%), respectively. The WPRs for the other antimicrobials were as follows: ciprofloxacin 95% (95% CI 85-100%), moxifloxacin 32% (95% CI 25-40%), clindamycin 59% (95% CI 53-65%), amoxicillin/clavulanate 0% (0-0%), piperacillin/tazobactam 0% (0-0%) and ceftriaxone 47% (95% CI 29-65%). Tetracycline had a WPR 20% (95% CI 14-27%) and meropenem showed 0% (95% CI 0-1%); resistance to fidaxomicin was reported in one isolate (0.08%). CONCLUSION: Resistance to metronidazole, vancomycin, fidaxomicin, meropenem and piperacillin/tazobactam is reported rarely. From the alternative CDI drug treatments, tigecycline had a lower resistance rate than rifampin. The high-risk antimicrobials for CDI development showed a high level of resistance, the highest was seen in the second generation of fluoroquinolones and clindamycin; amoxicillin/clavulanate showed almost no resistance. Tetracycline resistance was present in one fifth of human clinical C. difficile isolates.
Assistant professor of Legal medicine Research Center Legal Medicine organization Tehran Iran
Clinical Microbiology Research Center Ilam University of Medical Sciences Ilam Iran
Dept of Epidemiology School of Public Health Iran University of Medical Sciences Tehran Iran
Dept of Microbiology Faculty of Medicine Iran University of Medical Sciences Tehran Iran
Laboratory Sciences Research Center Golestan University of Medical Sciences Gorgan Iran
Student Research Committee Ilam University of Medical Sciences Ilam Iran
Zobrazit více v PubMed
Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of clostridium difficile as clostridioides difficile (Hall and O’Toole 1935) Prévot 1938. Anaerobe. 2016;40:95–99. doi: 10.1016/j.anaerobe.2016.06.008. PubMed DOI
Krutova M, Kinross P, Barbut F, Hajdu A, Wilcox M, Kuijper E, et al. How to: surveillance of Clostridium difficile infections. Clin Microbiol Infect. 2018;24(5):469–475. doi: 10.1016/j.cmi.2017.12.008. PubMed DOI
Fawley WN, Davies KA, Morris T, Parnell P, Howe R, Wilcox MH. Enhanced surveillance of Clostridium difficile infection occurring outside hospital, England, 2011 to 2013. Eurosurveillance. 2016;21(29):30295. doi: 10.2807/1560-7917.ES.2016.21.29.30295. PubMed DOI
Barbut F, Day N, Bouée S, Youssouf A, Grandvoinnet L, Lalande V, et al. Toxigenic Clostridium difficile carriage in general practice: results of a laboratory-based cohort study. Clin Microbiol Infect. 2019;25(5):588–594. doi: 10.1016/j.cmi.2018.12.024. PubMed DOI
Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol. 2009;7(7):526–536. doi: 10.1038/nrmicro2164. PubMed DOI
Lawes T, Lopez-Lozano J-M, Nebot CA, Macartney G, Subbarao-Sharma R, Wares KD, et al. Effect of a national 4C antibiotic stewardship intervention on the clinical and molecular epidemiology of Clostridium difficile infections in a region of Scotland: a non-linear time-series analysis. Lancet Infect Dis. 2017;17(2):194–206. doi: 10.1016/S1473-3099(16)30397-8. PubMed DOI
Debast SB, Bauer MP, Kuijper EJ. Committee. European Society of Clinical Microbiology and Infectious Diseases: update of the treatment guidance document for Clostridium difficile infection. Clin Microbiol Infect. 2014;20:1–26. doi: 10.1111/1469-0691.12418. PubMed DOI
McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, et al. Clinical practice guidelines for Clostridium difficile infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA) Clin Infect Dis. 2018;66(7):e1–e48. doi: 10.1093/cid/cix1085. PubMed DOI PMC
Ooijevaar R, Van Beurden Y, Terveer E, Goorhuis A, Bauer M, Keller J, et al. Update of treatment algorithms for Clostridium difficile infection. Clin Microbiol Infect. 2018;24(5):452–462. doi: 10.1016/j.cmi.2017.12.022. PubMed DOI
Kechagias KS, Chorepsima S, Triarides NA, Falagas ME. Tigecycline for the treatment of patients with Clostridium difficile infection: an update of the clinical evidence. Eur J Clin Microbiol Infect Dis. 2020;39:1053–8. PubMed
Garey KW, Ghantoji SS, Shah DN, Habib M, Arora V, Jiang Z-D, et al. A randomized, double-blind, placebo-controlled pilot study to assess the ability of rifaximin to prevent recurrent diarrhoea in patients with Clostridium difficile infection. J Antimicrob Chemother. 2011;66(12):2850–2855. doi: 10.1093/jac/dkr377. PubMed DOI
Stabler RA, Dawson LF, Valiente E, Cairns MD, Martin MJ, Donahue EH, et al. Macro and micro diversity of Clostridium difficile isolates from diverse sources and geographical locations. PLoS One. 2012;7(3):e31559. doi: 10.1371/journal.pone.0031559. PubMed DOI PMC
Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Marwick CA, et al. A role for tetracycline selection in recent evolution of agriculture-associated Clostridium difficile PCR Ribotype 078. MBio. 2019;10(2):e02790–e02718. doi: 10.1128/mBio.02790-18. PubMed DOI PMC
Lim S-C, Riley TV, Knight DR. One health: the global challenge of Clostridium difficile infection. Microbiology Australia. 2020;41(1):23–27. doi: 10.1071/MA20007. DOI
Elshamy AA, Aboshanab KM. A review on bacterial resistance to carbapenems: epidemiology, detection and treatment options. Future Science OA. 2020;6(3):FSO438. doi: 10.2144/fsoa-2019-0098. PubMed DOI PMC
Modesti PA, Reboldi G, Cappuccio FP, Agyemang C, Remuzzi G, Rapi S, et al. Panethnic differences in blood pressure in Europe: a systematic review and meta-analysis. PLoS One. 2016;11(1):e0147601. doi: 10.1371/journal.pone.0147601. PubMed DOI PMC
Eucast T. European Society of Clinical Microbiology and Infectious Diseases Basel. 2018. European committee on antimicrobial susceptibility testing, breakpoint tables for interpretation of MICs and zone diameters.
Wayne P. Clinical and Laboratory Standards Institute (CLSI) performance standards for antimicrobial disk diffusion susceptibility tests 28th ed. approved standard. CLSI doc M100-S28. 2009;29(2011):M100–S128.
DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–188. doi: 10.1016/0197-2456(86)90046-2. PubMed DOI
Ackermann G, Degner A, Cohen SH, Silva J, Jr, Rodloff AC. Prevalence and association of macrolide–lincosamide–streptogramin B (MLSB) resistance with resistance to moxifloxacin in Clostridium difficile. J Antimicrob Chemother. 2003;51(3):599–603. doi: 10.1093/jac/dkg112. PubMed DOI
Ackermann G, Löffler B, Adler D, Rodloff AC. In vitro activity of OPT-80 against Clostridium difficile. Antimicrob Agents Chemother. 2004;48(6):2280–2282. doi: 10.1128/AAC.48.6.2280-2282.2004. PubMed DOI PMC
Álvarez-Pérez S, Blanco JL, Harmanus C, Kuijper E, García ME. Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype 078/126 isolates of human and animal origin. Vet Microbiol. 2017;199:15–22. doi: 10.1016/j.vetmic.2016.12.001. PubMed DOI
Androga GO, Knight DR, Lim S-C, Foster NF, Riley TV. Antimicrobial resistance in large clostridial toxin-negative, binary toxin-positive Clostridium difficile ribotypes. Anaerobe. 2018;54:55–60. doi: 10.1016/j.anaerobe.2018.07.007. PubMed DOI
Aoki K, Takeda S, Miki T, Ishii Y, Tateda K. Antimicrobial susceptibility and molecular characterization using whole-genome sequencing of Clostridioides difficile collected in 82 hospitals in Japan between 2014 and 2016. Antimicrob Agents Chemother. 2019;63(12):e01259–e01219. doi: 10.1128/AAC.01259-19. PubMed DOI PMC
Aptekorz M, Szczegielniak A, Wiechuła B, Harmanus C, Kuijper E, Martirosian G. Occurrence of Clostridium difficile ribotype 027 in hospitals of Silesia, Poland. Anaerobe. 2017;45:106–113. doi: 10.1016/j.anaerobe.2017.02.002. PubMed DOI
Arca-Suárez J, Galán-Sánchez F, Cano-Cano F, García-Santos G, Rodríguez-Iglesias M. Antimicrobial susceptibility and molecular typing of toxigenic clinical isolates of Clostridium difficile causing infections in the south of Spain. Anaerobe. 2018;54:146–150. doi: 10.1016/j.anaerobe.2018.09.006. PubMed DOI
Baghani A, Ghourchian S, Aliramezani A, Yaseri M, Mesdaghinia A, Douraghi M. Highly antibiotic-resistant Clostridium difficile isolates from Iranian patients. J Appl Microbiol. 2018;125(5):1518–1525. doi: 10.1111/jam.14035. PubMed DOI
Balassiano IT, dos Santos-Filho J, Vital-Brazil JM, Nouér SA, Souza CR, Brazier JS, et al. Detection of cross-infection associated to a Brazilian PCR-ribotype of Clostridium difficile in a university hospital in Rio de Janeiro, Brazil. Antonie Van Leeuwenhoek. 2011;99(2):249–255. doi: 10.1007/s10482-010-9483-8. PubMed DOI
Beran V, Chmelar D, Vobejdova J, Konigova A, Nemec J, Tvrdik J. Sensitivity to antibiotics of Clostridium difficile toxigenic nosocomial strains. Folia Microbiol. 2014;59(3):209–215. doi: 10.1007/s12223-013-0283-1. PubMed DOI
Beran V, Kuijper E, Harmanus C, Sanders I, van Dorp S, Knetsch C, et al. Molecular typing and antimicrobial susceptibility testing to six antimicrobials of Clostridium difficile isolates from three Czech hospitals in eastern Bohemia in 2011–2012. Folia Microbiol. 2017;62(5):445–451. doi: 10.1007/s12223-017-0515-x. PubMed DOI
Berger FK, Rasheed SS, Araj GF, Mahfouz R, Rimmani HH, Karaoui WR, et al. Molecular characterization, toxin detection and resistance testing of human clinical Clostridium difficile isolates from Lebanon. Int J Med Microbiol. 2018;308(3):358–363. doi: 10.1016/j.ijmm.2018.01.004. PubMed DOI
Bourgault A-M, Lamothe F, Loo VG, Poirier L. Group C-Cs. In vitro susceptibility of Clostridium difficile clinical isolates from a multi-institutional outbreak in southern Quebec, Canada. Antimicrob Agents Chemother. 2006;50(10):3473–3475. doi: 10.1128/AAC.00479-06. PubMed DOI PMC
Büchler AC, Rampini SK, Stelling S, Ledergerber B, Peter S, Schweiger A, et al. Antibiotic susceptibility of Clostridium difficile is similar worldwide over two decades despite widespread use of broad-spectrum antibiotics: an analysis done at the University Hospital of Zurich. BMC Infect Dis. 2014;14(1):607. doi: 10.1186/s12879-014-0607-z. PubMed DOI PMC
Byun J-H, Kim H, Kim JL, Kim D, Jeong SH, Shin JH, et al. A nationwide study of molecular epidemiology and antimicrobial susceptibility of Clostridioides difficile in South Korea. Anaerobe. 2019;60:102106. doi: 10.1016/j.anaerobe.2019.102106. PubMed DOI
Chatedaki C, Voulgaridi I, Kachrimanidou M, Hrabak J, Papagiannitsis C, Petinaki E. Antimicrobial susceptibility and mechanisms of resistance of Greek Clostridium difficile clinical isolates. J Global Antimicrob Resist. 2019;16:53–58. doi: 10.1016/j.jgar.2018.09.009. PubMed DOI
Chen Y-B, Gu S-L, Shen P, Lv T, Fang Y-H, Tang L-L, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from hospitals during a 4-year period in China. J Med Microbiol. 2018;67(1):52–59. doi: 10.1099/jmm.0.000646. PubMed DOI
Cheng J-W, Yang Q-W, Xiao M, Yu S-Y, Zhou M-L, Kudinha T, et al. High in vitro activity of fidaxomicin against Clostridium difficile isolates from a university teaching hospital in China. J Microbiol Immunol Infect. 2018;51(3):411–416. doi: 10.1016/j.jmii.2017.06.007. PubMed DOI
Chia J-H, Lai H-C, Su L-H, Kuo A-J, Wu T-L. Molecular epidemiology of Clostridium difficile at a medical center in Taiwan: persistence of genetically clustering of A− B+ isolates and increase of A+ B+ isolates. PLoS One. 2013;8(10):e75471. doi: 10.1371/journal.pone.0075471. PubMed DOI PMC
Chow VC, Kwong TN, So EW, Ho YI, Wong SH, Lai RW, et al. Surveillance of antibiotic resistance among common Clostridium difficile ribotypes in Hong Kong. Sci Rep. 2017;7(1):1–6. doi: 10.1038/s41598-016-0028-x. PubMed DOI PMC
Costa CL, de Carvalho CBM, González RH, Gifoni MAC, de Albuquerque RR, Quesada-Gómez C, et al. Molecular epidemiology of Clostridium difficile infection in a Brazilian cancer hospital. Anaerobe. 2017;48:232–236. doi: 10.1016/j.anaerobe.2017.10.001. PubMed DOI
Dong D, Zhang L, Chen X, Jiang C, Yu B, Wang X, et al. Antimicrobial susceptibility and resistance mechanisms of clinical Clostridium difficile from a Chinese tertiary hospital. Int J Antimicrob Agents. 2013;41(1):80–84. doi: 10.1016/j.ijantimicag.2012.08.011. PubMed DOI
Dong D, Peng Y, Zhang L, Jiang C, Wang X, Mao E. Clinical and microbiological characterization ofClostridium difficileinfection in a tertiary care hospital in Shanghai, China. Chin Med J. 2014;127(9):1601–1607. PubMed
Ebrahim-Saraie HS, Heidari H, Amanati A, Bazargani A, Taghavi SA, Nikokar I, et al. A multicenter-based study on epidemiology, antibiotic susceptibility and risk factors of toxigenic Clostridium difficile in hospitalized patients in southwestern Iran. Infez Med. 2018;26(4):308–315. PubMed
Eckert C, Coignard B, Hebert M, Tarnaud C, Tessier C, Lemire A, et al. Clinical and microbiological features of Clostridium difficile infections in France: the ICD-RAISIN 2009 national survey. Med Mal Infect. 2013;43(2):67–74. doi: 10.1016/j.medmal.2013.01.004. PubMed DOI
Eitel Z, Terhes G, Sóki J, Nagy E, Urbán E. Investigation of the MICs of fidaxomicin and other antibiotics against Hungarian Clostridium difficile isolates. Anaerobe. 2015;31:47–49. doi: 10.1016/j.anaerobe.2014.08.002. PubMed DOI
Fenner L, Frei R, Gregory M, Dangel M, Stranden A, Widmer A. Epidemiology of Clostridium difficile-associated disease at university hospital Basel including molecular characterisation of the isolates 2006–2007. Eur J Clin Microbiol Infect Dis. 2008;27(12):1201. doi: 10.1007/s10096-008-0564-9. PubMed DOI
Fraga EG, Nicodemo AC, Sampaio JLM. Antimicrobial susceptibility of Brazilian Clostridium difficile strains determined by agar dilution and disk diffusion. Braz J Infect Dis. 2016;20(5):476–481. doi: 10.1016/j.bjid.2016.07.004. PubMed DOI PMC
Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015;21(3):248. e249–248. e216. doi: 10.1016/j.cmi.2014.09.017. PubMed DOI
Gao Q, Wu S, Huang H, Ni Y, Chen Y, Hu Y, et al. Toxin profiles, PCR ribotypes and resistance patterns of Clostridium difficile: a multicentre study in China, 2012–2013. Int J Antimicrob Agents. 2016;48(6):736–739. doi: 10.1016/j.ijantimicag.2016.09.009. PubMed DOI
Giufrè M, Accogli M, Ricchizzi E, Barbanti F, Farina C, Fazii P, et al. Multidrug-resistant infections in long-term care facilities: extended-spectrum β-lactamase–producing Enterobacteriaceae and hypervirulent antibiotic resistant Clostridium difficile. Diagn Microbiol Infect Dis. 2018;91(3):275–281. doi: 10.1016/j.diagmicrobio.2018.02.018. PubMed DOI
Goudarzi M, Goudarzi H, Alebouyeh M, Rad MA, Mehr FSS, Zali MR, et al. Antimicrobial susceptibility of Clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J. 2013;15(8):704. doi: 10.5812/ircmj.5189. PubMed DOI PMC
Harvala H, Alm E, Åkerlund T, Rizzardi K. Emergence and spread of moxifloxacin-resistant Clostridium difficile ribotype 231 in Sweden between 2006 and 2015. New Microbes New Infect. 2016;14:58–66. doi: 10.1016/j.nmni.2016.09.002. PubMed DOI PMC
Hastey CJ, Dale SE, Nary J, Citron D, Law JH, Roe-Carpenter DE, et al. Comparison of Clostridium difficile minimum inhibitory concentrations obtained using agar dilution vs broth microdilution methods. Anaerobe. 2017;44:73–77. doi: 10.1016/j.anaerobe.2017.02.006. PubMed DOI
Hecht DW, Galang MA, Sambol SP, Osmolski JR, Johnson S, Gerding DN. In vitro activities of 15 antimicrobial agents against 110 toxigenic Clostridium difficile clinical isolates collected from 1983 to 2004. Antimicrob Agents Chemother. 2007;51(8):2716–2719. doi: 10.1128/AAC.01623-06. PubMed DOI PMC
Hidalgo-Villeda F, Tzoc E, Torres L, Bu E, Rodríguez C, Quesada-Gómez C. Diversity of multidrug-resistant epidemic Clostridium difficile NAP1/RT027/ST01 strains in tertiary hospitals from Honduras. Anaerobe. 2018;52:75–78. doi: 10.1016/j.anaerobe.2018.06.001. PubMed DOI
Huang H, Wu S, Wang M, Zhang Y, Fang H, Palmgren A-C, et al. Clostridium difficile infections in a Shanghai hospital: antimicrobial resistance, toxin profiles and ribotypes. Int J Antimicrob Agents. 2009;33(4):339–342. doi: 10.1016/j.ijantimicag.2008.09.022. PubMed DOI
Huang H, Weintraub A, Fang H, Wu S, Zhang Y, Nord CE. Antimicrobial susceptibility and heteroresistance in Chinese Clostridium difficile strains. Anaerobe. 2010;16(6):633–635. doi: 10.1016/j.anaerobe.2010.09.002. PubMed DOI
Hung Y-P, Tsai P-J, Lee Y-T, Tang H-J, Lin H-J, Liu H-C, et al. Nationwide surveillance of ribotypes and antimicrobial susceptibilities of toxigenic Clostridium difficile isolates with an emphasis on reduced doxycycline and tigecycline susceptibilities among ribotype 078 lineage isolates in Taiwan. Infect Drug Resist. 2018;11:1197. doi: 10.2147/IDR.S162874. PubMed DOI PMC
Jamal WY, Mokaddas EM, Verghese TL, Rotimi V. In vitro activity of 15 antimicrobial agents against clinical isolates of Clostridium difficile in Kuwait. Int J Antimicrob Agents. 2002;20(4):270–274. doi: 10.1016/S0924-8579(02)00180-2. PubMed DOI
Jamal WY, Rotimi VO. Surveillance of antibiotic resistance among hospital-and community-acquired toxigenic Clostridium difficile isolates over 5-year period in Kuwait. PLoS One. 2016;11(8):e0161411. doi: 10.1371/journal.pone.0161411. PubMed DOI PMC
Jiang Z, DuPont H, La Rocco M, Garey K. In vitro susceptibility of Clostridium difficile to rifaximin and rifampin in 359 consecutive isolates at a university hospital in Houston, Texas. J Clin Pathol. 2010;63(4):355–358. doi: 10.1136/jcp.2009.071688. PubMed DOI
Jiménez A, Araya R, Paniagua D, Camacho-Mora Z, Du T, Golding G, et al. Molecular epidemiology and antimicrobial resistance of Clostridium difficile in a national geriatric hospital in Costa Rica. J Hosp Infect. 2018;99(4):475–480. doi: 10.1016/j.jhin.2018.03.027. PubMed DOI
Jin D, Luo Y, Huang C, Cai J, Ye J, Zheng Y, et al. Molecular epidemiology of Clostridium difficile infection in hospitalized patients in eastern China. J Clin Microbiol. 2017;55(3):801–810. doi: 10.1128/JCM.01898-16. PubMed DOI PMC
John R, Brazier J. Antimicrobial susceptibility of polymerase chain reaction ribotypes of Clostridium difficile commonly isolated from symptomatic hospital patients in the UK. J Hosp Infect. 2005;61(1):11–14. doi: 10.1016/j.jhin.2005.01.020. PubMed DOI
Karlowsky JA, Zhanel GG, Hammond GW, Rubinstein E, Wylie J, Du T, et al. Multidrug-resistant north American pulsotype 2 Clostridium difficile was the predominant toxigenic hospital-acquired strain in the province of Manitoba, Canada, in 2006–2007. J Med Microbiol. 2012;61(5):693–700. doi: 10.1099/jmm.0.041053-0. PubMed DOI
Karlowsky JA, Adam HJ, Kosowan T, Baxter MR, Nichol KA, Laing NM, et al. PCR ribotyping and antimicrobial susceptibility testing of isolates of Clostridium difficile cultured from toxin-positive diarrheal stools of patients receiving medical care in Canadian hospitals: the Canadian Clostridium difficile surveillance study (CAN-DIFF) 2013–2015. Diagn Microbiol Infect Dis. 2018;91(2):105–111. doi: 10.1016/j.diagmicrobio.2018.01.017. PubMed DOI
Kim J, Kang JO, Pai H, Choi TY. Association between PCR ribotypes and antimicrobial susceptibility among Clostridium difficile isolates from healthcare-associated infections in South Korea. Int J Antimicrob Agents. 2012;40(1):24–29. doi: 10.1016/j.ijantimicag.2012.03.015. PubMed DOI
Knight DR, Giglio S, Huntington PG, Korman TM, Kotsanas D, Moore CV, et al. Surveillance for antimicrobial resistance in Australian isolates of Clostridium difficile, 2013–14. J Antimicrob Chemother. 2015;70(11):2992–2999. doi: 10.1093/jac/dkv220. PubMed DOI
Knight DR, Riley TV. Clostridium difficile clade 5 in Australia: antimicrobial susceptibility profiling of PCR ribotypes of human and animal origin. J Antimicrob Chemother. 2016;71(8):2213–2217. doi: 10.1093/jac/dkw124. PubMed DOI
Kociolek LK, Gerding DN, Osmolski JR, Patel SJ, Snydman DR, McDermott LA, et al. Differences in the molecular epidemiology and antibiotic susceptibility of Clostridium difficile isolates in pediatric and adult patients. Antimicrob Agents Chemother. 2016;60(8):4896–4900. doi: 10.1128/AAC.00714-16. PubMed DOI PMC
Kouhsari E, Douraghi M, Krutova M, Yaseri HF, Talebi M, Baseri Z, et al. The emergence of metronidazole and vancomycin reduced susceptibility in Clostridium difficile isolates in Iran. J Global Antimicrob Resist. 2019;18:28–33. doi: 10.1016/j.jgar.2019.01.027. PubMed DOI
Krutova M, Matejkova J, Tkadlec J, Nyc O. Antibiotic profiling of Clostridium difficile ribotype 176–a multidrug resistant relative to C. difficile ribotype 027. Anaerobe. 2015;36:88–90. doi: 10.1016/j.anaerobe.2015.07.009. PubMed DOI
Kullin BR, Reid S, Abratt V. Clostridium difficile in patients attending tuberculosis hospitals in Cape Town, South Africa, 2014-2015. Afr J Lab Med. 2018;7(2):1–9. doi: 10.4102/ajlm.v7i2.846. PubMed DOI PMC
Kuwata Y, Tanimoto S, Sawabe E, Shima M, Takahashi Y, Ushizawa H, et al. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from a university teaching hospital in Japan. Eur J Clin Microbiol Infect Dis. 2015;34(4):763–772. doi: 10.1007/s10096-014-2290-9. PubMed DOI
Lachowicz D, Pituch H, Obuch-Woszczatyński P. Antimicrobial susceptibility patterns of Clostridium difficile strains belonging to different polymerase chain reaction ribotypes isolated in Poland in 2012. Anaerobe. 2015;31:37–41. doi: 10.1016/j.anaerobe.2014.09.004. PubMed DOI
Li H, Li W-G, Zhang W-Z, Yu S-B, Liu Z-J, Zhang X, et al. Antibiotic resistance of clinical isolates of Clostridioides difficile in China and its association with geographical regions and patient age. Anaerobe. 2019;60:102094. doi: 10.1016/j.anaerobe.2019.102094. PubMed DOI
Liao C-H, Ko W-C, Lu J-J, Hsueh P-R. Characterizations of clinical isolates of Clostridium difficile by toxin genotypes and by susceptibility to 12 antimicrobial agents, including fidaxomicin (OPT-80) and rifaximin: a multicenter study in Taiwan. Antimicrob Agents Chemother. 2012;56(7):3943–3949. doi: 10.1128/AAC.00191-12. PubMed DOI PMC
Lidan C, Linhai L, Yang L, Zhaohui S, Xiaoyan H, Yuling S. Molecular characterization and antimicrobial susceptibility of tcdA-negative Clostridium difficile isolates from Guangzhou, China. Diagn Microbiol Infect Dis. 2016;84(4):361–365. doi: 10.1016/j.diagmicrobio.2015.12.015. PubMed DOI
López-Ureña D, Quesada-Gómez C, Miranda E, Fonseca M, Rodríguez-Cavallini E. Spread of epidemic Clostridium difficile NAP1/027 in Latin America: case reports in Panama. J Med Microbiol. 2014;63(2):322–324. doi: 10.1099/jmm.0.066399-0. PubMed DOI
López-Ureña D, Quesada-Gómez C, Montoya-Ramírez M, del Mar G-CM, Somogyi T, Rodríguez C, et al. Predominance and high antibiotic resistance of the emerging Clostridium difficile genotypes NAPCR1 and NAP9 in a Costa Rican hospital over a 2-year period without outbreaks. Emerg Microbes Infect. 2016;5(1):1–5. doi: 10.1038/emi.2016.38. PubMed DOI PMC
Luo Y, Zhang W, Cheng J-W, Xiao M, Sun G-R, Guo C-J, et al. Molecular epidemiology of Clostridium difficile in two tertiary care hospitals in Shandong Province, China. Infect Drug Resist. 2018;11:489. doi: 10.2147/IDR.S152724. PubMed DOI PMC
Mutlu E, Wroe AJ, Sanchez-Hurtado K, Brazier JS, Poxton IR. Molecular characterization and antimicrobial susceptibility patterns of Clostridium difficile strains isolated from hospitals in south-East Scotland. J Med Microbiol. 2007;56(7):921–929. doi: 10.1099/jmm.0.47176-0. PubMed DOI
Nasereddin LM, Bakri FG, Shehabi AA. Clostridium difficile infections among Jordanian adult hospitalized patients. Am J Infect Control. 2009;37(10):864–866. doi: 10.1016/j.ajic.2009.05.001. PubMed DOI
Ngamskulrungroj P, Sanmee S, Pusathit P, Piewngam P, Elliott B, Riley TV, et al. Molecular epidemiology of Clostridium difficile infection in a large teaching hospital in Thailand. PLoS One. 2015;10(5):e0127026. doi: 10.1371/journal.pone.0127026. PubMed DOI PMC
Niyogi SK. Antimicrobial susceptibility of Clostridium difficile strains isolated from hospitalised patients with acute diarrhoea. J Diarrhoeal Dis Res. 1992;10:156–158. PubMed
Novak A, Spigaglia P, Barbanti F, Goic-Barisic I, Tonkic M. First clinical and microbiological characterization of Clostridium difficile infection in a Croatian University hospital. Anaerobe. 2014;30:18–23. doi: 10.1016/j.anaerobe.2014.07.007. PubMed DOI
Obuch-Woszczatyński P, Dubiel G, Harmanus C, Kuijper E, Duda U, Wultańska D, et al. Emergence of Clostridium difficile infection in tuberculosis patients due to a highly rifampicin-resistant PCR ribotype 046 clone in Poland. Eur J Clin Microbiol Infect Dis. 2013;32(8):1027–1030. doi: 10.1007/s10096-013-1845-5. PubMed DOI PMC
Oka K, Osaki T, Hanawa T, Kurata S, Okazaki M, Manzoku T, et al. Molecular and microbiological characterization of Clostridium difficile isolates from single, relapse, and reinfection cases. J Clin Microbiol. 2012;50(3):915–921. doi: 10.1128/JCM.05588-11. PubMed DOI PMC
Peng Z, Addisu A, Alrabaa S, Sun X. Antibiotic resistance and toxin production of Clostridium difficile isolates from the hospitalized patients in a large hospital in Florida. Front Microbiol. 2017;8:2584. doi: 10.3389/fmicb.2017.02584. PubMed DOI PMC
Peretz A, Tkhawkho L, Pastukh N, Brodsky D, Halevi CN, Nitzan O. Correlation between fecal calprotectin levels, disease severity and the hypervirulent ribotype 027 strain in patients with Clostridium difficile infection. BMC Infect Dis. 2016;16(1):309. doi: 10.1186/s12879-016-1618-8. PubMed DOI PMC
Piepenbrock E, Stelzer Y, Berger F, Jazmati N. Changes in Clostridium (Clostridioides) difficile PCR-Ribotype distribution and antimicrobial resistance in a German tertiary care hospital over the last 10 years. Curr Microbiol. 2019;76(4):520–526. doi: 10.1007/s00284-019-01654-3. PubMed DOI
Pinto LJ, Alcides AP, Ferreira EO, Avelar KE, Sabrá A, Domingues RM, et al. Incidence and importance of Clostridium difficile in paediatric diarrhoea in Brazil. J Med Microbiol. 2003;52(12):1095–1099. doi: 10.1099/jmm.0.05308-0. PubMed DOI
Pirš T, Avberšek J, Zdovc I, Krt B, Andlovic A, Lejko-Zupanc T, et al. Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. J Med Microbiol. 2013;62(9):1478–1485. doi: 10.1099/jmm.0.058875-0. PubMed DOI
Putsathit P, Maneerattanaporn M, Piewngam P, Knight DR, Kiratisin P, Riley TV. Antimicrobial susceptibility of Clostridium difficile isolated in Thailand. Antimicrob Resist Infect Control. 2017;6(1):58. doi: 10.1186/s13756-017-0214-z. PubMed DOI PMC
Ramírez-Vargas G, Quesada-Gómez C, Acuña-Amador L, López-Ureña D, Murillo T, del Mar G-CM, et al. A Clostridium difficile lineage endemic to Costa Rican hospitals is multidrug resistant by acquisition of chromosomal mutations and novel mobile genetic elements. Antimicrob Agents Chemother. 2017;61(4):e02054–e02016. doi: 10.1128/AAC.02054-16. PubMed DOI PMC
Reil M, Hensgens M, Kuijper E, Jakobiak T, Gruber H, Kist M, et al. Seasonality of Clostridium difficile infections in southern Germany. Epidemiol Infect. 2012;140(10):1787–1793. doi: 10.1017/S0950268811002627. PubMed DOI PMC
Rodriguez C, Avesani V, Taminiau B, Van Broeck J, Brévers B, Delmée M, et al. Investigation of Clostridium difficile interspecies relatedness using multilocus sequence typing, multilocus variable-number tandem-repeat analysis and antimicrobial susceptibility testing. Vet J. 2015;206(3):349–355. doi: 10.1016/j.tvjl.2015.09.001. PubMed DOI
Russello G, Russo A, Sisto F, Scaltrito MM, Farina C. Laboratory diagnosis of Clostridium difficile associated diarrhoea and molecular characterization of clinical isolates. New Microbiol. 2012;35(3):307–316. PubMed
Saatian B, Banerjee C, Carroll KC, Ross TL, Kamangar F. Characterization of clostridium difficile infection and analysis of recovered isolates in a community hospital population in Baltimore, Maryland. Infect Dis Clin Pract. 2010;18(6):383–388. doi: 10.1097/IPC.0b013e3181f0c020. DOI
Samonis G, Vardakas K, Tansarli G, Dimopoulou D, Papadimitriou G, Kofteridis D, et al. Clostridium difficile in Crete, Greece: epidemiology, microbiology and clinical disease. Epidemiol Infect. 2016;144(1):161–170. doi: 10.1017/S0950268815000837. PubMed DOI PMC
Sandell S, Rashid M-U, Jorup-Rönström C, Ellström K, Nord CE, Weintraub A. Clostridium difficile recurrences in Stockholm. Anaerobe. 2016;38:97–102. doi: 10.1016/j.anaerobe.2016.01.005. PubMed DOI
Santos A, Isidro J, Silva C, Boaventura L, Diogo J, Faustino A, et al. Molecular and epidemiologic study of Clostridium difficile reveals unusual heterogeneity in clinical strains circulating in different regions in Portugal. Clin Microbiol Infect. 2016;22(8):695–700. doi: 10.1016/j.cmi.2016.04.002. PubMed DOI
Pelaez T, Alcala L, Alonso R, Rodriguez-Creixems M, Garcia-Lechuz J, Bouza E. Reassessment of Clostridium difficile susceptibility to metronidazole and vancomycin. Antimicrob Agents Chemother. 2002;46(6):1647–1650. doi: 10.1128/AAC.46.6.1647-1650.2002. PubMed DOI PMC
Roberts S, Heffernan H, Al Anbuky N, Pope C, Paviour S, Camp T, et al. Molecular epidemiology and susceptibility profiles of Clostridium difficile in New Zealand, 2009. NZ Med J. 2011;124(1332):45–51. PubMed
Secco DA, Balassiano IT, Boente RF, Miranda KR, Brazier J, Hall V, et al. Clostridium difficile infection among immunocompromised patients in Rio de Janeiro, Brazil and detection of moxifloxacin resistance in a ribotype 014 strain. Anaerobe. 2014;28:85–89. doi: 10.1016/j.anaerobe.2014.05.013. PubMed DOI
Seo M-R, Kim J, Lee Y, Lim D-G, Pai H. Prevalence, genetic relatedness and antibiotic resistance of hospital-acquired Clostridium difficile PCR ribotype 018 strains. Int J Antimicrob Agents. 2018;51(5):762–767. doi: 10.1016/j.ijantimicag.2018.01.025. PubMed DOI
Seugendo M, Mshana S, Hokororo A, Okamo B, Mirambo M, von Müller L, et al. Clostridium difficile infections among adults and children in Mwanza/Tanzania: is it an underappreciated pathogen among immunocompromised patients in sub-Saharan Africa? New Microbes New Infect. 2015;8:99–102. doi: 10.1016/j.nmni.2015.09.016. PubMed DOI PMC
Shayganmehr F-S, Alebouyeh M, Azimirad M, Aslani MM, Zali MR. Association of tcdA+/tcdB+ Clostridium difficile genotype with emergence of multidrug-resistant strains conferring metronidazole resistant phenotype. Iran Biomed J. 2015;19(3):143. PubMed PMC
Shoaei P, Shojaei H, Khorvash F, Hosseini SM, Ataei B, Tavakoli H, et al. Molecular epidemiology of Clostridium difficile infection in Iranian hospitals. Antimicrob Resist Infect Control. 2019;8(1):12. doi: 10.1186/s13756-018-0454-6. PubMed DOI PMC
Snydman D, McDermott L, Jacobus N, Thorpe C, Stone S, Jenkins S, et al. US-based national sentinel surveillance study for the epidemiology of Clostridium difficile-associated diarrheal isolates and their susceptibility to fidaxomicin. Antimicrob Agents Chemother. 2015;59(10):6437–6443. doi: 10.1128/AAC.00845-15. PubMed DOI PMC
Snydman DR, McDermott LA, Thorpe CM, Chang J, Wick J, Walk ST, et al. Antimicrobial susceptibility and ribotypes of Clostridium difficile isolates from a phase 2 clinical trial of ridinilazole (SMT19969) and vancomycin. J Antimicrob Chemother. 2018;73(8):2078–2084. doi: 10.1093/jac/dky135. PubMed DOI PMC
Spigaglia P, Barbanti F, Mastrantonio P, Brazier JS, Barbut F, Delmée M, et al. Fluoroquinolone resistance in Clostridium difficile isolates from a prospective study of C. difficile infections in Europe. J Med Microbiol. 2008;57(6):784–789. doi: 10.1099/jmm.0.47738-0. PubMed DOI
Spigaglia P, Barbanti F, Mastrantonio P. difficile ESGoC, Ackermann G, Balmelli C, et al. Multidrug resistance in European Clostridium difficile clinical isolates. J Antimicrob Chemother. 2011;66(10):2227–2234. doi: 10.1093/jac/dkr292. PubMed DOI
Spigaglia P, Barbanti F, Castagnola E, Diana MC, Pescetto L, Bandettini R. Clostridium difficile causing pediatric infections: new findings from a hospital-based study in Italy. Anaerobe. 2017;48:262–268. doi: 10.1016/j.anaerobe.2017.10.008. PubMed DOI
Taori SK, Hall V, Poxton IR. Changes in antibiotic susceptibility and ribotypes in Clostridium difficile isolates from southern Scotland, 1979–2004. J Med Microbiol. 2010;59(3):338–344. doi: 10.1099/jmm.0.014829-0. PubMed DOI
Tenover FC, Tickler IA, Persing DH. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother. 2012;56(6):2929–2932. doi: 10.1128/AAC.00220-12. PubMed DOI PMC
T-t T, J-h Z, Yang J, C-x Q, Z-r L, Chen J, et al. Molecular characterization of Clostridium difficile isolates from human subjects and the environment. PLoS One. 2016;11(3):e0151964. doi: 10.1371/journal.pone.0151964. PubMed DOI PMC
Tickler IA, Goering RV, Whitmore JD, Lynn AN, Persing DH, Tenover FC. Strain types and antimicrobial resistance patterns of Clostridium difficile isolates from the United States, 2011 to 2013. Antimicrob Agents Chemother. 2014;58(7):4214–4218. doi: 10.1128/AAC.02775-13. PubMed DOI PMC
Tickler IA, Obradovich AE, Goering RV, Fang FC, Tenover FC, Consortium H. Changes in molecular epidemiology and antimicrobial resistance profiles of Clostridioides (Clostridium) difficile strains in the United States between 2011 and 2017. Anaerobe. 2019;60:102050. doi: 10.1016/j.anaerobe.2019.06.003. PubMed DOI
Tkhawkho L, Nitzan O, Pastukh N, Brodsky D, Jackson K, Peretz A. Antimicrobial susceptibility of Clostridium difficile isolates in Israel. J Global Antimicrobial Resist. 2017;10:161–164. doi: 10.1016/j.jgar.2017.04.005. PubMed DOI
Tokimatsu I, Shigemura K, Osawa K, Kinugawa S, Kitagawa K, Nakanishi N, et al. Molecular epidemiologic study of Clostridium difficile infections in university hospitals: results of a nationwide study in Japan. J Infect Chemother. 2018;24(8):641–647. doi: 10.1016/j.jiac.2018.03.015. PubMed DOI
Venugopal AA, Riederer K, Patel SM, Szpunar S, Jahamy H, Valenti S, et al. Lack of association of outcomes with treatment duration and microbiologic susceptibility data in Clostridium difficile infections in a non-NAP1/BI/027 setting. Scand J Infect Dis. 2012;44(4):243–249. doi: 10.3109/00365548.2011.631029. PubMed DOI
Wang B, Lv Z, Zhang P, Su J. Molecular epidemiology and antimicrobial susceptibility of human Clostridium difficile isolates from a single institution in Northern China. Medicine. 2018;97(25):e11219. doi: 10.1097/MD.0000000000011219. PubMed DOI PMC
Wieczorkiewicz JT, Lopansri BK, Cheknis A, Osmolski JR, Hecht DW, Gerding DN, et al. Fluoroquinolone and macrolide exposure predict Clostridium difficile infection with the highly fluoroquinolone-and macrolide-resistant epidemic C. difficile strain BI/NAP1/027. Antimicrob Agents Chemother. 2016;60(1):418–423. doi: 10.1128/AAC.01820-15. PubMed DOI PMC
Wolfe C, Pagano P, Pillar CM, Shinabarger DL, Boulos RA. Comparison of the in vitro antibacterial activity of Ramizol, fidaxomicin, vancomycin, and metronidazole against 100 clinical isolates of Clostridium difficile by broth microdilution. Diagn Microbiol Infect Dis. 2018;92(3):250–252. doi: 10.1016/j.diagmicrobio.2018.06.002. PubMed DOI
Wultańska D, Banaszkiewicz A, Radzikowski A, Obuch-Woszczatyński P, Młynarczyk G, Brazier J, et al. Clostridium difficile infection in polish pediatric outpatients with inflammatory bowel disease. Eur J Clin Microbiol Infect Dis. 2010;29(10):1265–1270. doi: 10.1007/s10096-010-0997-9. PubMed DOI PMC
Yang J, Zhang X, Liu X, Cai L, Feng P, Wang X, et al. Antimicrobial susceptibility of Clostridium difficile isolates from ICU colonized patients revealed alert to ST-37 (RT 017) isolates. Diagn Microbiol Infect Dis. 2017;89(2):161–163. doi: 10.1016/j.diagmicrobio.2017.06.021. PubMed DOI
Zhou Y, Burnham C-AD, Hink T, Chen L, Shaikh N, Wollam A, et al. Phenotypic and genotypic analysis of Clostridium difficile isolates: a single-center study. J Clin Microbiol. 2014;52(12):4260–4266. doi: 10.1128/JCM.02115-14. PubMed DOI PMC
Zhou Y, Mao L, Yu J, Lin Q, Luo Y, Zhu X, et al. Epidemiology of Clostridium difficile infection in hospitalized adults and the first isolation of C. difficile PCR ribotype 027 in central China. BMC Infect Dis. 2019;19(1):232. doi: 10.1186/s12879-019-3841-6. PubMed DOI PMC
Wang R, Suo L, Chen HX, Song LJ, Shen YY, Luo YP. Molecular epidemiology and antimicrobial susceptibility of Clostridium difficile isolated from the Chinese People’s liberation Army general Hospital in China. Int J Infect Dis. 2018;67:86–91. doi: 10.1016/j.ijid.2017.07.010. PubMed DOI
Saha S, Kapoor S, Tariq R, Schuetz AN, Tosh PK, Pardi DS, et al. Increasing antibiotic resistance in Clostridioides difficile: a systematic review and meta-analysis. Anaerobe. 2019;58:35–46. doi: 10.1016/j.anaerobe.2019.102072. PubMed DOI
Dingle KE, Didelot X, Quan TP, Eyre DW, Stoesser N, Golubchik T, et al. Effects of control interventions on Clostridium difficile infection in England: an observational study. Lancet Infect Dis. 2017;17(4):411–421. doi: 10.1016/S1473-3099(16)30514-X. PubMed DOI PMC
Major G, Bradshaw L, Boota N, Sprange K, Diggle M, Montgomery A, et al. Follow-on RifAximin for the prevention of recurrence following standard treatment of infection with Clostridium Difficile (RAPID): a randomised placebo controlled trial. Gut. 2019;68(7):1224–1231. PubMed PMC
Ng QX, Loke W, Foo NX, Mo Y, Yeo W-S, Soh AYS. A systematic review of the use of rifaximin for Clostridium difficile infections. Anaerobe. 2019;55:35–39. doi: 10.1016/j.anaerobe.2018.10.011. PubMed DOI
Miller MA, Blanchette R, Spigaglia P, Barbanti F, Mastrantonio P. Divergent rifamycin susceptibilities of Clostridium difficile strains in Canada and Italy and predictive accuracy of rifampin Etest for rifamycin resistance. J Clin Microbiol. 2011;49(12):4319–4321. doi: 10.1128/JCM.05100-11. PubMed DOI PMC
He T, Wang R, Liu D, Walsh TR, Zhang R, Lv Y, et al. Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nat Microbiol. 2019;4(9):1450–1456. doi: 10.1038/s41564-019-0445-2. PubMed DOI
Linkevicius M, Sandegren L, Andersson DI. Potential of tetracycline resistance proteins to evolve tigecycline resistance. Antimicrob Agents Chemother. 2016;60(2):789–796. doi: 10.1128/AAC.02465-15. PubMed DOI PMC