Metabolomic Study of Aging in fa/fa Rats: Multiplatform Urine and Serum Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-00546S
Czech Science Foundation
61388971
Czech Academy of Sciences
61388963
Czech Academy of Sciences
67985823
Czech Academy of Sciences
PubMed
37110210
PubMed Central
PMC10142631
DOI
10.3390/metabo13040552
PII: metabo13040552
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS, NMR, fa/fa rats, genetic obesity, metabolomics,
- Publikační typ
- časopisecké články MeSH
Zucker fatty (fa/fa) rats represent a well-established and widely used model of genetic obesity. Because previous metabolomic studies have only been published for young fa/fa rats up to 20 weeks of age, which can be considered early maturity in male fa/fa rats, the aim of our work was to extend the metabolomic characterization to significantly older animals. Therefore, the urinary profiles of obese fa/fa rats and their lean controls were monitored using untargeted NMR metabolomics between 12 and 40 weeks of age. At the end of the experiment, the rats were also characterized by NMR and LC-MS serum analysis, which was supplemented by a targeted LC-MS analysis of serum bile acids and neurotransmitters. The urine analysis showed that most of the characteristic differences detected in young obese fa/fa rats persisted throughout the experiment, primarily through a decrease in microbial co-metabolite levels, the upregulation of the citrate cycle, and changes in nicotinamide metabolism compared with the age-related controls. The serum of 40-week-old obese rats showed a reduction in several bile acid conjugates and an increase in serotonin. Our study demonstrated that the fa/fa model of genetic obesity is stable up to 40 weeks of age and is therefore suitable for long-term experiments.
Faculty of Applied Sciences University of West Bohemia 306 14 Pilsen Czech Republic
Institute of Microbiology Czech Academy of Sciences 142 20 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Hruby A., Hu F.B. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics. 2015;33:673–689. doi: 10.1007/s40273-014-0243-x. PubMed DOI PMC
Kanasaki K., Koya D. Biology of Obesity: Lessons from Animal Models of Obesity. J. Biomed. Biotechnol. 2011;2011:197636. doi: 10.1155/2011/197636. PubMed DOI PMC
Kava R., Greenwood M.R.C., Johnson P.R. Zucker (fa/fa) Rat. ILAR J. 1990;32:4–8. doi: 10.1093/ilar.32.3.4. DOI
Fiehn O. Metabolomics—The Link between Genotypes and Phenotypes. Plant. Mol. Biol. 2002;48:155–171. doi: 10.1023/A:1013713905833. PubMed DOI
Nicholson J.K., Lindon J.C., Holmes E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29:1181–1189. doi: 10.1080/004982599238047. PubMed DOI
Salek R.M., Maguire M.L., Bentley E., Rubtsov D.V., Hough T., Cheeseman M., Nunez D., Sweatman B.C., Haselden J.N., Cox R.D., et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol. Genom. 2007;29:99–108. doi: 10.1152/physiolgenomics.00194.2006. PubMed DOI
Zhao L.-C., Zhang X.-D., Liao S.-X., Gao H.-C., Wang H.-Y., Lin D.-H. A Metabonomic Comparison of Urinary Changes in Zucker and GK Rats. J. Biomed. Biotechnol. 2010;2010:1–6. doi: 10.1155/2010/431894. PubMed DOI PMC
Williams R.E., Lenz E.M., Evans J.A., Wilson I.D., Granger J.H., Plumb R.S., Stumpf C.L. A combined 1H NMR and HPLC–MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats. J. Pharm. Biomed. Anal. 2005;38:465–471. doi: 10.1016/j.jpba.2005.01.013. PubMed DOI
Williams R.E., Lenz E.M., Rantalainen M., Wilson I.D. The comparative metabonomics of age-related changes in the urinary composition of male Wistar-derived and Zucker (fa/fa) obese rats. Mol. Biosyst. 2006;2:193–202. doi: 10.1039/b517195d. PubMed DOI
Granger J.H., Williams R., Lenz E.M., Plumb R.S., Stumpf C.L., Wilson I.D. A metabonomic study of strain- and age-related differences in the Zucker rat. Rapid Commun. Mass Spectrom. 2007;21:2039–2045. doi: 10.1002/rcm.3059. PubMed DOI
Serkova N.J., Jackman M., Brown J.L., Liu T., Hirose R., Roberts J.P., Maher J.J., Niemann C.U. Metabolic profiling of livers and blood from obese Zucker rats. J. Hepatol. 2006;44:956–962. doi: 10.1016/j.jhep.2005.07.009. PubMed DOI
Major H.J., Williams R., Wilson A.J., Wilson I.D. A metabonomic analysis of plasma from Zucker rat strains using gas chromatography/mass spectrometry and pattern recognition. Rapid Commun. Mass Spectrom. 2006;20:3295–3302. doi: 10.1002/rcm.2732. PubMed DOI
Plumb R.S., Johnson K.A., Rainville P., Shockcor J.P., Williams R., Granger J.H., Wilson I.D. The detection of phenotypic differences in the metabolic plasma profile of three strains of Zucker rats at 20 weeks of age using ultra-performance liquid chromatography/orthogonal acceleration time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2006;20:2800–2806. doi: 10.1002/rcm.2655. PubMed DOI
Williams R., Lenz E.M., Wilson A.J., Granger J., Wilson I.D., Major H., Stumpf C., Plumb R. A multi-analytical platform approach to the metabonomic analysis of plasma from normal and zucker (fa/fa) obese rats. Mol. Biosyst. 2006;2:174–183. doi: 10.1039/b516356k. PubMed DOI
Waldram A., Holmes E., Wang Y., Rantalainen M., Wilson I.D., Tuohy K., McCartney A.L., Gibson G.R., Nicholson J.K. Top-Down Systems Biology Modeling of Host Metabotype−Microbiome Associations in Obese Rodents. J. Proteome Res. 2009;8:2361–2375. doi: 10.1021/pr8009885. PubMed DOI
Phetcharaburanin J., Lees H., Marchesi J.R., Nicholson J.K., Holmes E., Seyfried F., Li J.V. Systemic Characterization of an Obese Phenotype in the Zucker Rat Model Defining Metabolic Axes of Energy Metabolism and Host–Microbial Interactions. J. Proteome Res. 2016;15:1897–1906. doi: 10.1021/acs.jproteome.6b00090. PubMed DOI
Lees H.J., Swann J., Poucher S., Holmes E., Wilson I., Nicholson J. Obesity and Cage Environment Modulate Metabolism in the Zucker Rat: A Multiple Biological Matrix Approach to Characterizing Metabolic Phenomena. J. Proteome Res. 2019;18:2160–2174. doi: 10.1021/acs.jproteome.9b00040. PubMed DOI
Melnyk S., Hakkak R. Metabolic Status of Lean and Obese Zucker Rats Based on Untargeted and Targeted Metabolomics Analysis of Serum. Biomedicines. 2022;10:153. doi: 10.3390/biomedicines10010153. PubMed DOI PMC
Špolcová A., Mikulášková B., Kršková K., Gajdošechová L., Zórad Š., Olszanecki R., Suski M., Bujak-Giżycka B., Železná B., Maletínská L. Deficient hippocampal insulin signaling and augmented Tau phosphorylation is related to obesity- and age-induced peripheral insulin resistance: A study in Zucker rats. BMC Neurosci. 2014;15:111. doi: 10.1186/1471-2202-15-111. PubMed DOI PMC
Mráziková L., Hojná S., Pačesová A., Hrubá L., Strnadová V., Neprašová B., Železná B., Kuneš J., Maletínská L. Palmitoylated prolactin-releasing peptide treatment had neuroprotective but not anti-obesity effect in fa/fa rats with leptin signaling disturbances. Nutr. Diabetes. 2022;12:26. doi: 10.1038/s41387-022-00205-3. PubMed DOI PMC
Kuneš J., Pražienková V., Popelová A., Mikulášková B., Zemenová J., Maletínská L. Prolactin-releasing peptide: A new tool for obesity treatment. J. Endocrinol. 2016;230:R51–R58. doi: 10.1530/JOE-16-0046. PubMed DOI
Pelantová H., Bugáňová M., Anýž J., Železná B., Maletínská L., Novák D., Haluzík M., Kuzma M. Strategy for NMR metabolomic analysis of urine in mouse models of obesity—From sample collection to interpretation of acquired data. J. Pharm. Biomed. Anal. 2015;115:225–235. doi: 10.1016/j.jpba.2015.06.036. PubMed DOI
Dieterle F., Ross A., Schlotterbeck G., Senn H. Probabilistic Quotient Normalization as Robust Method to Account for Dilution of Complex Biological Mixtures. Application in 1H NMR Metabonomics. Anal. Chem. 2006;78:4281–4290. doi: 10.1021/ac051632c. PubMed DOI
Tomášová P., Bugáňová M., Pelantová H., Holubová M., Šedivá B., Železná B., Haluzík M., Maletínská L., Kuneš J., Kuzma M. Metabolomics Based on MS in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus: The Effect of Vildagliptin, Metformin, and Their Combination. Appl. Biochem. Biotechnol. 2019;188:165–184. doi: 10.1007/s12010-018-2899-8. PubMed DOI
Tomášová P., Procházková P., Roubalová R., Dvořák J., Tlaskalová-Hogenová H., Čermáková M., Pelantová H., Šedivá B., Vecka M., Papežová H., et al. NMR- and MS-Based Untargeted Metabolomic Study of Stool and Serum Samples from Patients with Anorexia Nervosa. J. Proteome Res. 2022;21:778–787. doi: 10.1021/acs.jproteome.1c00537. PubMed DOI
Leníŀek M., Vecka M., Žížalová K., Vítek L. Comparison of simple extraction procedures in liquid chromatographymass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B. 2016;1034:317–320. doi: 10.1016/j.jchromb.2016.08.046. PubMed DOI
Prochazkova P., Roubalova R., Dvorak J., Tlaskalova-Hogenova H., Cermakova M., Tomasova P., Sediva B., Kuzma M., Bulant J., Bilej M., et al. Microbiota, Microbial Metabolites, and Barrier Function in A Patient with Anorexia Nervosa after Fecal Microbiota Transplantation. Microorganisms. 2019;7:338. doi: 10.3390/microorganisms7090338. PubMed DOI PMC
Chong J., Soufan O., Li C., Caraus I., Li S., Bourque G., Wishart D.S., Xia J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46:W486–W494. doi: 10.1093/nar/gky310. PubMed DOI PMC
Wishart D.S., Feunang Y.D., Marcu A., Guo A.C., Liang K., Vázquez-Fresno R., Sajed T., Johnson D., Li C., Karu N., et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608–D617. doi: 10.1093/nar/gkx1089. PubMed DOI PMC
Ulrich E.L., Akutsu H., Doreleijers J.F., Harano Y., Ioannidis Y.E., Lin J., Livny M., Mading S., Maziuk D., Miller Z., et al. BioMagResBank. Nucleic Acids Res. 2007;36:D402–D408. doi: 10.1093/nar/gkm957. PubMed DOI PMC
Ruttkies C., Schymanski E.L., Wolf S., Hollender J., Neumann S. MetFrag relaunched: Incorporating strategies beyond in silico fragmentation. J. Cheminform. 2016;8:3. doi: 10.1186/s13321-016-0115-9. PubMed DOI PMC
Čermáková M., Pelantová H., Neprašová B., Šedivá B., Maletínská L., Kuneš J., Tomášová P., Železná B., Kuzma M. Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J. Proteome Res. 2019;18:1735–1750. doi: 10.1021/acs.jproteome.8b00964. PubMed DOI
Shearer J., Duggan G., Weljie A., Hittel D.S., Wasserman D.H., Vogel H.J. Metabolomic profiling of dietary-induced insulin resistance in the high fat-fed C57BL/6J mouse. Diabetes Obes. Metab. 2008;10:950–958. doi: 10.1111/j.1463-1326.2007.00837.x. PubMed DOI PMC
Calvani R., Miccheli A., Capuani G., Miccheli A.T., Puccetti C., Delfini M., Iaconelli A., Nanni G., Mingrone G. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int. J. Obes. 2010;34:1095–1098. doi: 10.1038/ijo.2010.44. PubMed DOI
Brial F., Chilloux J., Nielsen T., Vieira-Silva S., Falony G., Andrikopoulos P., Olanipekun M., Hoyles L., Djouadi F., Neves A.L., et al. Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut. 2021;70:2105–2114. doi: 10.1136/gutjnl-2020-323314. PubMed DOI PMC
Hertel J., Fässler D., Heinken A., Weiß F.U., Rühlemann M., Bang C., Franke A., Budde K., Henning A.-K., Petersmann A., et al. NMR Metabolomics Reveal Urine Markers of Microbiome Diversity and Identify Benzoate Metabolism as a Mediator between High Microbial Alpha Diversity and Metabolic Health. Metabolites. 2022;12:308. doi: 10.3390/metabo12040308. PubMed DOI PMC
Elliott P., Posma J.M., Chan Q., Garcia-Perez I., Wijeyesekera A., Bictash M., Ebbels T.M.D., Ueshima H., Zhao L., van Horn L., et al. Urinary metabolic signatures of human adiposity. Sci. Transl. Med. 2015;7:285ra62. doi: 10.1126/scitranslmed.aaa5680. PubMed DOI PMC
Jhanwar-Uniyal M., Chua S.C. Critical effects of aging and nutritional state on hypothalamic neuropeptide Y and galanin gene expression in lean and genetically obese Zucker rats. Mol. Brain Res. 1993;19:195–202. doi: 10.1016/0169-328X(93)90026-L. PubMed DOI
Korpela K., Kallio S., Salonen A., Hero M., Kukkonen A.K., Miettinen P.J., Savilahti E., Kohva E., Kariola L., Suutela M., et al. Gut microbiota develop towards an adult profile in a sex-specific manner during puberty. Sci. Rep. 2021;11:23297. doi: 10.1038/s41598-021-02375-z. PubMed DOI PMC
Yuan X., Chen R., Zhang Y., Lin X., Yang X. Gut microbiota: Effect of pubertal status. BMC Microbiol. 2020;20:1–9. doi: 10.1186/s12866-020-02021-0. PubMed DOI PMC
Kumar M., Babaei P., Ji B., Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutr. Healthy Aging. 2016;4:3–16. doi: 10.3233/NHA-150002. PubMed DOI PMC
Meng C., Feng S., Hao Z., Dong C., Liu H. Changes in gut microbiota composition with age and correlations with gut inflammation in rats. PLoS ONE. 2022;17:e0265430. doi: 10.1371/journal.pone.0265430. PubMed DOI PMC
Lees H., Swann J., Poucher S.M., Nicholson J., Holmes E., Wilson I., Marchesi J.R. Age and Microenvironment Outweigh Genetic Influence on the Zucker Rat Microbiome. PLoS ONE. 2014;9:e100916. doi: 10.1371/journal.pone.0100916. PubMed DOI PMC
Boulangé C.L., Claus S.P., Chou C.J., Collino S., Montoliu I., Kochhar S., Holmes E., Rezzi S., Nicholson J.K., Dumas M.E., et al. Early Metabolic Adaptation in C57BL/6 Mice Resistant to High Fat Diet Induced Weight Gain Involves an Activation of Mitochondrial Oxidative Pathways. J. Proteome Res. 2013;12:1956–1968. doi: 10.1021/pr400051s. PubMed DOI
Pelantová H., Bugáňová M., Holubová M., Šedivá B., Zemenová J., Sýkora D., Kaválková P., Haluzík M., Železná B., Maletínská L., et al. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol. Cell. Endocrinol. 2016;431:88–100. doi: 10.1016/j.mce.2016.05.003. PubMed DOI
Pelantová H., Bártová S., Anýž J., Holubová M., Železná B., Maletínská L., Novák D., Lacinová Z., Šulc M., Haluzík M., et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal. Bioanal. Chem. 2016;408:567–578. doi: 10.1007/s00216-015-9133-0. PubMed DOI
Mráziková L., Hojná S., Vaculová P., Strnad Š., Vrkoslav V., Pelantová H., Kuzma M., Železná B., Kuneš J., Maletínská L. Lipidized PrRP Analog Exhibits Strong Anti-Obesity and Antidiabetic Properties in Old WKY Rats with Obesity and Glucose Intolerance. Nutrients. 2023;15:280. doi: 10.3390/nu15020280. PubMed DOI PMC
Duggan G.E., Hittel D.S., Hughey C.C., Weljie A., Vogel H.J., Shearer J. Differentiating short- and long-term effects of diet in the obese mouse using 1H-nuclear magnetic resonance metabolomics. Diabetes Obes. Metab. 2011;13:859–862. doi: 10.1111/j.1463-1326.2011.01410.x. PubMed DOI
Kim S.-H., Yang S.-O., Kim H.-S., Kim Y., Park T., Choi H.-K. 1H-nuclear magnetic resonance spectroscopy-based metabolic assessment in a rat model of obesity induced by a high-fat diet. Anal. Bioanal. Chem. 2009;395:1117–1124. doi: 10.1007/s00216-009-3054-8. PubMed DOI
Park S., Oh S., Kim E.-K. Glucagon-like peptide-1 analog liraglutide leads to multiple metabolic alterations in diet-induced obese mice. J. Biol. Chem. 2022;298:102682. doi: 10.1016/j.jbc.2022.102682. PubMed DOI PMC
Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A., et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002. PubMed DOI PMC
She P., Olson K.C., Kadota Y., Inukai A., Shimomura Y., Hoppel C.L., Adams S.H., Kawamata Y., Matsumoto H., Sakai R., et al. Leucine and Protein Metabolism in Obese Zucker Rats. PLoS ONE. 2013;8:e59443. doi: 10.1371/journal.pone.0059443. PubMed DOI PMC
Dunn M.A., Hartsook E.W. Comparative Amino Acid and Protein Metabolism in Obese and Non-Obese Zucker Rats. J. Nutr. 1980;110:1865–1879. doi: 10.1093/jn/110.9.1865. PubMed DOI
Baxmann A.C.A.A., Ahmed M.S., Marques N.A.A.C., Menon V.B., Pereira A.B., Kirsztajn G.M., Heilberg I.P. Influence of Muscle Mass and Physical Activity on Serum and Urinary Creatinine and Serum Cystatin C. Clin. J. Am. Soc. Nephrol. 2008;3:348–354. doi: 10.2215/CJN.02870707. PubMed DOI PMC
Rikimaru T., Oozeki T., Ichikawa M., Ebisawa H., Fujita Y. Comparisons of urinary creatinine, skeletal muscle mass, and indices of muscle protein catabolism in rats fed ad libitum, with restricted food intake, and deprived of food. J. Nutr. Sci. Vitaminol. 1989;35:199–209. doi: 10.3177/jnsv.35.199. PubMed DOI
Bao L., Zhang Y., Yan S., Yan D., Jiang D. Lysophosphatidylcholine (17:0) Improves HFD-Induced Hyperglycemia & Insulin Resistance: A Mechanistic Mice Model Study. Diabetes Metab. Syndr. Obes. Targets Ther. 2022;ume 15:3511–3517. doi: 10.2147/dmso.s371370. PubMed DOI PMC
Zhong H., Fang C., Fan Y., Lu Y., Wen B., Ren H., Hou G., Yang F., Xie H., Jie Z., et al. Lipidomic profiling reveals distinct differences in plasma lipid composition in healthy, prediabetic, and type 2 diabetic individuals. Gigascience. 2017;6:1–12. doi: 10.1093/gigascience/gix036. PubMed DOI PMC
Wang-Sattler R., Yu Z., Herder C., Messias A., Floegel A., He Y., Heim K., Campillos M., Holzapfel C., Thorand B., et al. Novel biomarkers for pre-diabetes identified by metabolomics. Mol. Syst. Biol. 2012;8:615. doi: 10.1038/msb.2012.43. PubMed DOI PMC
Suvitaival T., Bondia-Pons I., Yetukuri L., Pöhö P., Nolan J.J., Hyötyläinen T., Kuusisto J., Orešič M. Lipidome as a predictive tool in progression to type 2 diabetes in Finnish men. Metabolism. 2018;78:1–12. doi: 10.1016/j.metabol.2017.08.014. PubMed DOI
Lone A.M., Taskén K. Proinflammatory and Immunoregulatory Roles of Eicosanoids in T Cells. Front. Immunol. 2013;4:130. doi: 10.3389/fimmu.2013.00130. PubMed DOI PMC
Kim J.Y., Park J.Y., Kim O.Y., Ham B.M., Kim H.-J., Kwon D.Y., Jang Y., Lee J.H. Metabolic Profiling of Plasma in Overweight/Obese and Lean Men using Ultra Performance Liquid Chromatography and Q-TOF Mass Spectrometry (UPLC−Q-TOF MS) J. Proteome Res. 2010;9:4368–4375. doi: 10.1021/pr100101p. PubMed DOI
Eisinger K., Liebisch G., Schmitz G., Aslanidis C., Krautbauer S., Buechler C. Lipidomic Analysis of Serum from High Fat Diet Induced Obese Mice. Int. J. Mol. Sci. 2014;15:2991–3002. doi: 10.3390/ijms15022991. PubMed DOI PMC
Gowda S.G.B., Gao Z.-J., Chen Z., Abe T., Hori S., Fukiya S., Ishizuka S., Yokota A., Chiba H., Hui S.-P. Untargeted Lipidomic Analysis of Plasma from High-fat Diet-induced Obese Rats Using UHPLC–Linear Trap Quadrupole–Orbitrap MS. Anal. Sci. 2020;36:821–828. doi: 10.2116/analsci.19P442. PubMed DOI
Talenezhad N., Mohammadi M., Ramezani-Jolfaie N., Mozaffari-Khosravi H., Salehi-Abargouei A. Effects of l-carnitine supplementation on weight loss and body composition: A systematic review and meta-analysis of 37 randomized controlled clinical trials with dose-response analysis. Clin. Nutr. ESPEN. 2020;37:9–23. doi: 10.1016/j.clnesp.2020.03.008. PubMed DOI
Mai M., Tönjes A., Kovacs P., Stumvoll M., Fiedler G.M., Leichtle A.B. Serum Levels of Acylcarnitines Are Altered in Prediabetic Conditions. PLoS ONE. 2013;8:e82459. doi: 10.1371/journal.pone.0082459. PubMed DOI PMC
Chávez-Talavera O., Tailleux A., Lefebvre P., Staels B. Bile Acid Control of Metabolism and Inflammation in Obesity, Type 2 Diabetes, Dyslipidemia, and Nonalcoholic Fatty Liver Disease. Gastroenterology. 2017;152:1679–1694.e3. doi: 10.1053/j.gastro.2017.01.055. PubMed DOI
Perino A., Demagny H., Velazquez-Villegas L.A., Schoonjans K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 2021;101:683–731. doi: 10.1152/physrev.00049.2019. PubMed DOI
Fu Z.D., Csanaky I.L., Klaassen C.D. Gender-Divergent Profile of Bile Acid Homeostasis during Aging of Mice. PLoS ONE. 2012;7:e32551. doi: 10.1371/journal.pone.0032551. PubMed DOI PMC
Frommherz L., Bub A., Hummel E., Rist M.J., Roth A., Watzl B., Kulling S.E. Age-Related Changes of Plasma Bile Acid Concentrations in Healthy Adults—Results from the Cross-Sectional KarMeN Study. PLoS ONE. 2016;11:e0153959. doi: 10.1371/journal.pone.0153959. PubMed DOI PMC
Kiriyama Y., Nochi H. Physiological Role of Bile Acids Modified by the Gut Microbiome. Microorganisms. 2021;10:68. doi: 10.3390/microorganisms10010068. PubMed DOI PMC
Sayin S.I., Wahlström A., Felin J., Jäntti S., Marschall H.-U., Bamberg K., Angelin B., Hyötyläinen T., Orešič M., Bäckhed F. Gut Microbiota Regulates Bile Acid Metabolism by Reducing the Levels of Tauro-beta-muricholic Acid, a Naturally Occurring FXR Antagonist. Cell Metab. 2013;17:225–235. doi: 10.1016/j.cmet.2013.01.003. PubMed DOI
Hakkak R., Korourian S., Foley S.L., Erickson B.D. Assessment of gut microbiota populations in lean and obese Zucker rats. PLoS ONE. 2017;12:e0181451. doi: 10.1371/journal.pone.0181451. PubMed DOI PMC
Kesić M., Baković P., Horvatiček M., Proust B.L.J., Štefulj J., Čičin-Šain L. Constitutionally High Serotonin Tone Favors Obesity: Study on Rat Sublines with Altered Serotonin Homeostasis. Front. Neurosci. 2020;14:219. doi: 10.3389/fnins.2020.00219. PubMed DOI PMC
Kesić M., Baković P., Stojković R., Štefulj J., Čičin-Šain L. Metabolic Disturbances in Rat Sublines with Constitutionally Altered Serotonin Homeostasis. Int. J. Mol. Sci. 2021;22:5400. doi: 10.3390/ijms22105400. PubMed DOI PMC
Kim H.-J., Kim J.H., Noh S., Hur H.J., Sung M.J., Hwang J.-T., Park J.H., Yang H.J., Kim M.-S., Kwon D.Y., et al. Metabolomic Analysis of Livers and Serum from High-Fat Diet Induced Obese Mice. J. Proteome Res. 2011;10:722–731. doi: 10.1021/pr100892r. PubMed DOI
Yabut J.M., Crane J.D., Green A.E., Keating D.J., Khan W.I., Steinberg G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019;40:1092–1107. doi: 10.1210/er.2018-00283. PubMed DOI PMC
Liu N., Sun S., Wang P., Sun Y., Hu Q., Wang X. The Mechanism of Secretion and Metabolism of Gut-Derived 5-Hydroxytryptamine. Int. J. Mol. Sci. 2021;22:7931. doi: 10.3390/ijms22157931. PubMed DOI PMC
Bertrand R.L., Senadheera S., Markus I., Liu L., Howitt L., Chen H., Murphy T.V., Sandow S., Bertrand P. A Western Diet Increases Serotonin Availability in Rat Small Intestine. Endocrinology. 2011;152:36–47. doi: 10.1210/en.2010-0377. PubMed DOI
Crane J.D., Palanivel R., Mottillo E.P., Bujak A.L., Wang H., Ford R.J., Collins A., Blümer R.M., Fullerton M.D., Yabut J.M., et al. Inhibiting peripheral serotonin synthesis reduces obesity and metabolic dysfunction by promoting brown adipose tissue thermogenesis. Nat. Med. 2015;21:166–172. doi: 10.1038/nm.3766. PubMed DOI PMC
Watanabe H., Nakano T., Saito R., Akasaka D., Saito K., Ogasawara H., Minashima T., Miyazawa K., Kanaya T., Takakura I., et al. Serotonin Improves High Fat Diet Induced Obesity in Mice. PLoS ONE. 2016;11:e0147143. doi: 10.1371/journal.pone.0147143. PubMed DOI PMC
Liu M., Li L., Chu J., Zhu B., Zhang Q., Yin X., Jiang W., Dai G., Ju W., Wang Z., et al. Serum N1-Methylnicotinamide Is Associated with Obesity and Diabetes in Chinese. J. Clin. Endocrinol. Metab. 2015;100:3112–3117. doi: 10.1210/jc.2015-1732. PubMed DOI PMC
Kannt A., Pfenninger A., Teichert L., Tönjes A., Dietrich A., Schön M.R., Klöting N., Blüher M. Association of nicotinamide-N-methyltransferase mRNA expression in human adipose tissue and the plasma concentration of its product, 1-methylnicotinamide, with insulin resistance. Diabetologia. 2015;58:799–808. doi: 10.1007/s00125-014-3490-7. PubMed DOI PMC
Liu J.-R., Deng Z.-H., Zhu X.-J., Zeng Y.-R., Guan X.-X., Li J.-H. Roles of Nicotinamide N-Methyltransferase in Obesity and Type 2 Diabetes. BioMed Res. Int. 2021;2021:9924314. doi: 10.1155/2021/9924314. PubMed DOI PMC