• This record comes from PubMed

Lipidized PrRP Analog Exhibits Strong Anti-Obesity and Antidiabetic Properties in Old WKY Rats with Obesity and Glucose Intolerance

. 2023 Jan 05 ; 15 (2) : . [epub] 20230105

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
20-00546S Czech Science Foundation
LX22NP05104 European Union - Next Generation EU

Prolactin-releasing peptide (PrRP) is an anorexigenic neuropeptide that has potential for the treatment of obesity and its complications. Recently, we designed a palmitoylated PrRP31 analog (palm11-PrRP31) that is more stable than the natural peptide and able to act centrally after peripheral administration. This analog acted as an anti-obesity and glucose-lowering agent, attenuating lipogenesis in rats and mice with high-fat (HF) diet-induced obesity. In Wistar Kyoto (WKY) rats fed a HF diet for 52 weeks, we explored glucose intolerance, but also prediabetes, liver steatosis and insulin resistance-related changes, as well as neuroinflammation in the brain. A potential beneficial effect of 6 weeks of treatment with palm11-PrRP31 and liraglutide as comparator was investigated. Liver lipid profiles, as well as urinary and plasma metabolomic profiles, were measured by lipidomics and metabolomics, respectively. Old obese WKY rats showed robust glucose intolerance that was attenuated by palm11-PrRP31, but not by liraglutide treatment. On the contrary, liraglutide had a beneficial effect on insulin resistance parameters. Despite obesity and prediabetes, WKY rats did not develop steatosis owing to HF diet feeding, even though liver lipogenesis was enhanced. Plasma triglycerides and cholesterol were not increased by HFD feeding, which points to unincreased lipid transport from the liver. The liver lipid profile was significantly altered by a HF diet that remained unaffected by palm11-PrRP31 or liraglutide treatment. The HF-diet-fed WKY rats revealed astrogliosis in the brain cortex and hippocampus, which was attenuated by treatment. In conclusion, this study suggested multiple beneficial anti-obesity-related effects of palm11-PrRP31 and liraglutide in both the periphery and brain.

See more in PubMed

de Git K.C.G., Peterse C., Beerens S., Luijendijk M.C.M., van der Plasse G., la Fleur S.E., Adan R.A.H. Is leptin resistance the cause or the consequence of diet-induced obesity? Int. J. Obes. 2018;42:1445–1457. doi: 10.1038/s41366-018-0111-4. PubMed DOI

Engin A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 2017;960:1–17. doi: 10.1007/978-3-319-48382-5_1. PubMed DOI

Blüher M. Obesity: Global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 2019;15:288–298. doi: 10.1038/s41574-019-0176-8. PubMed DOI

Yamazaki S., Satoh H., Watanabe T. Liraglutide enhances insulin sensitivity by activating AMP-activated protein kinase in male Wistar rats. Endocrinology. 2014;155:3288–3301. doi: 10.1210/en.2013-2157. PubMed DOI

Quinn L. Mechanisms in the Development of Type 2 Diabetes Mellitus. J. Cardiovasc. Nurs. 2002;16 doi: 10.1097/00005082-200201000-00002. PubMed DOI

Bhattacharya S., Dey D., Roy S.S. Molecular mechanism of insulin resistance. J. Biosci. 2007;32:405–413. doi: 10.1007/s12038-007-0038-8. PubMed DOI

Pandey A., Chawla S., Guchhait P. Type-2 diabetes: Current understanding and future perspectives. IUBMB Life. 2015;67:506–513. doi: 10.1002/iub.1396. PubMed DOI

Rojano A., Sena E., Manzano-Nuñez R., Pericàs J.M., Ciudin A. NAFLD as the metabolic hallmark of obesity. Intern. Emerg. Med. 2022 doi: 10.1007/s11739-022-03139-x. PubMed DOI

Arch J.R. Horizons in the Pharmacotherapy of Obesity. Curr. Obes. Rep. 2015;4:451–459. doi: 10.1007/s13679-015-0177-4. PubMed DOI

Patel D. Pharmacotherapy for the management of obesity. Metabolism. 2015;64:1376–1385. doi: 10.1016/j.metabol.2015.08.001. PubMed DOI

Bray G.A., Frühbeck G., Ryan D.H., Wilding J.P.H. Management of obesity. Lancet. 2016;387:1947–1956. doi: 10.1016/S0140-6736(16)00271-3. PubMed DOI

Dailey M.J., Moran T.H. Glucagon-like peptide 1 and appetite. Trends Endocrinol. Metab. 2013;24:85–91. doi: 10.1016/j.tem.2012.11.008. PubMed DOI PMC

Ladenheim E.E. Liraglutide and obesity: A review of the data so far. Drug Des. Devel. Ther. 2015;9:1867–1875. doi: 10.2147/DDDT.S58459. PubMed DOI PMC

Knudsen L.B., Lau J. The Discovery and Development of Liraglutide and Semaglutide. Front. Endocrinol. 2019;10:155. doi: 10.3389/fendo.2019.00155. PubMed DOI PMC

Krieger J.P. Intestinal glucagon-like peptide-1 effects on food intake: Physiological relevance and emerging mechanisms. Peptides. 2020;131:170342. doi: 10.1016/j.peptides.2020.170342. PubMed DOI

Horowitz M., Flint A., Jones K.L., Hindsberger C., Rasmussen M.F., Kapitza C., Doran S., Jax T., Zdravkovic M., Chapman I.M. Effect of the once-daily human GLP-1 analogue liraglutide on appetite, energy intake, energy expenditure and gastric emptying in type 2 diabetes. Diabetes Res. Clin. Pract. 2012;97:258–266. doi: 10.1016/j.diabres.2012.02.016. PubMed DOI

Decara J., Arrabal S., Beiroa D., Rivera P., Vargas A., Serrano A., Pavón F.J., Ballesteros J., Dieguez C., Nogueiras R., et al. Antiobesity efficacy of GLP-1 receptor agonist liraglutide is associated with peripheral tissue-specific modulation of lipid metabolic regulators. Biofactors. 2016;42:600–611. doi: 10.1002/biof.1295. PubMed DOI

Mráziková L., Neprašová B., Mengr A., Popelová A., Strnadová V., Holá L., Železná B., Kuneš J., Maletínská L. Lipidized Prolactin-Releasing Peptide as a New Potential Tool to Treat Obesity and Type 2 Diabetes Mellitus: Preclinical Studies in Rodent Models. Front. Pharmacol. 2021;12:779962. doi: 10.3389/fphar.2021.779962. PubMed DOI PMC

Maletínská L., Nagelová V., Tichá A., Zemenová J., Pirník Z., Holubová M., Špolcová A., Mikulášková B., Blechová M., Sýkora D., et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 2015;39:986–993. doi: 10.1038/ijo.2015.28. PubMed DOI

Pražienková V., Holubová M., Pelantová H., Bugáňová M., Pirník Z., Mikulášková B., Popelová A., Blechová M., Haluzík M., Železná B., et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE. 2017;12:e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC

Čermáková M., Pelantová H., Neprašová B., Šedivá B., Maletínská L., Kuneš J., Tomášová P., Železná B., Kuzma M. Metabolomic Study of Obesity and Its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J. Proteome Res. 2019;18:1735–1750. doi: 10.1021/acs.jproteome.8b00964. PubMed DOI

Holubová M., Zemenová J., Mikulášková B., Panajotova V., Stöhr J., Haluzík M., Kuneš J., Železná B., Maletínská L. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 2016;229:85–96. doi: 10.1530/JOE-15-0519. PubMed DOI

Holubová M., Hrubá L., Neprašová B., Majerčíková Z., Lacinová Z., Kuneš J., Maletínská L., Železná B. Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J. Mol. Endocrinol. 2018;60:85–94. doi: 10.1530/JME-17-0171. PubMed DOI

Mikulaskova B., Holubova M., Prazienkova V., Zemenova J., Hruba L., Haluzik M., Zelezna B., Kunes J., Maletinska L. Lipidized prolactin-releasing peptide improved glucose tolerance in metabolic syndrome: Koletsky and spontaneously hypertensive rat study. Nutr. Diabetes. 2018;8:5. doi: 10.1038/s41387-017-0015-8. PubMed DOI PMC

Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J., Haluzik M., Zelezna B., Galas M.C., Maletinska L. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 2015;45:823–835. doi: 10.3233/JAD-143150. PubMed DOI

Kořínková L., Holubová M., Neprašová B., Hrubá L., Pražienková V., Bencze M., Haluzík M., Kuneš J., Maletínská L., Železná B. Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J. Mol. Endocrinol. 2020;64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI

Pražienková V., Funda J., Pirník Z., Karnošová A., Hrubá L., Kořínková L., Neprašová B., Janovská P., Benzce M., Kadlecová M., et al. GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene. 2021;774:145427. doi: 10.1016/j.gene.2021.145427. PubMed DOI

Prochazkova M., Budinska E., Kuzma M., Pelantova H., Hradecky J., Heczkova M., Daskova N., Bratova M., Modos I., Videnska P., et al. Vegan Diet Is Associated With Favorable Effects on the Metabolic Performance of Intestinal Microbiota: A Cross-Sectional Multi-Omics Study. Front. Nutr. 2021;8:783302. doi: 10.3389/fnut.2021.783302. PubMed DOI PMC

Dieterle F., Ross A., Schlotterbeck G., Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal. Chem. 2006;78:4281–4290. doi: 10.1021/ac051632c. PubMed DOI

Chong J., Wishart D.S., Xia J. Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis. Curr. Protoc. Bioinform. 2019;68:e86. doi: 10.1002/cpbi.86. PubMed DOI

Strnad Š., Vrkoslav V., Klimšová Z., Zemenová J., Cvačka J., Maletínská L., Sýkora D. Application of matrix-assisted laser desorption/ionization mass spectrometry imaging in combination with LC-MS in pharmacokinetic study of metformin. Bioanalysis. 2018;10:71–81. doi: 10.4155/bio-2017-0190. PubMed DOI

Stoeckli M., Staab D., Wetzel M., Brechbuehl M. iMatrixSpray: A free and open source sample preparation device for mass spectrometric imaging. Chimia. 2014;68:146–149. doi: 10.2533/chimia.2014.146. PubMed DOI

Strnad Š., PraŽienková V., Holubová M., Sýkora D., Cvačka J., Maletínská L., Železná B., Kuneš J., Vrkoslav V. Mass spectrometry imaging of free-floating brain sections detects pathological lipid distribution in a mouse model of Alzheimer’s-like pathology. Analyst. 2020;145:4595–4605. doi: 10.1039/D0AN00592D. PubMed DOI

Löfgren L., Forsberg G.-B., Ståhlman M. The BUME method: A new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci. Rep. 2016;6:27688. doi: 10.1038/srep27688. PubMed DOI PMC

Lansang M.C., Williams G.H., Carroll J.S. Correlation between the glucose clamp technique and the homeostasis model assessment in hypertension. Am. J. Hypertens. 2001;14:51–53. doi: 10.1016/S0895-7061(00)01229-2. PubMed DOI

Zemenova J., Sykora D., Freislebenova A., Maletinska L. LC-MS/MS analysis of lipidized analogs of prolactin-releasing peptide utilizing a monolithic column and simple sample preparation. Bioanalysis. 2017;9:1319–1328. doi: 10.4155/bio-2017-0125. PubMed DOI

Hayes M.R., Kanoski S.E., Alhadeff A.L., Grill H.J. Comparative effects of the long-acting GLP-1 receptor ligands, liraglutide and exendin-4, on food intake and body weight suppression in rats. Obesity. 2011;19:1342–1349. doi: 10.1038/oby.2011.50. PubMed DOI

Hansen G., Jelsing J., Vrang N. Effects of liraglutide and sibutramine on food intake, palatability, body weight and glucose tolerance in the gubra DIO-rats. Acta Pharmacol. Sin. 2012;33:194–200. doi: 10.1038/aps.2011.168. PubMed DOI PMC

Szczepańska E., Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm. Metab. Res. 2022;54:203–211. doi: 10.1055/a-1778-4159. PubMed DOI

Cartland S.P., Tamer N., Patil M.S., Di Bartolo B.A., Kavurma M.M. A “Western Diet” promotes symptoms of hepatic steatosis in spontaneously hypertensive rats. Int. J. Exp. Pathol. 2020;101:152–161. doi: 10.1111/iep.12369. PubMed DOI PMC

Jani S., Da Eira D., Stefanovic M., Ceddia R.B. The ketogenic diet prevents steatosis and insulin resistance by reducing lipogenesis, diacylglycerol accumulation and protein kinase C activity in male rat liver. J. Physiol. 2022;600:4137–4151. doi: 10.1113/JP283552. PubMed DOI

Pelantova H., Bartova S., Anyz J., Holubova M., Zelezna B., Maletinska L., Novak D., Lacinova Z., Sulc M., Haluzik M., et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Anal. Bioanal. Chem. 2016;408:567–578. doi: 10.1007/s00216-015-9133-0. PubMed DOI

Jung J.Y., Kim I.Y., Kim Y.N., Kim J.S., Shin J.H., Jang Z.H., Lee H.S., Hwang G.S., Seong J.K. 1H NMR-based metabolite profiling of diet-induced obesity in a mouse mode. BMB Rep. 2012;45:419–424. doi: 10.5483/BMBRep.2012.45.7.248. PubMed DOI

Li D., Zhang L., Dong F., Liu Y., Li N., Li H., Lei H., Hao F., Wang Y., Zhu Y., et al. Metabonomic Changes Associated with Atherosclerosis Progression for LDLR(-/-) Mice. J. Proteome Res. 2015;14:2237–2254. doi: 10.1021/acs.jproteome.5b00032. PubMed DOI

Vairetti M., Carini R., De Cesaris M.G., Splendore R., Richelmi P., Bertè F., Albano E. Beta-alanine protection against hypoxic liver injury in the rat. Biochim. Biophys. Acta. 2002;1587:83–91. doi: 10.1016/S0925-4439(02)00067-4. PubMed DOI

Waterfield C.J., Turton J.A., Scales M.D., Timbrell J.A. Taurine, a possible urinary marker of liver damage: A study of taurine excretion in carbon tetrachloride-treated rats. Arch. Toxicol. 1991;65:548–555. doi: 10.1007/BF01973715. PubMed DOI

Sun Y.J., Wang H.P., Liang Y.J., Yang L., Li W., Wu Y.J. An NMR-based metabonomic investigation of the subacute effects of melamine in rats. J. Proteome Res. 2012;11:2544–2550. doi: 10.1021/pr2012329. PubMed DOI

Gaster M., Rustan A.C., Beck-Nielsen H. Differential utilization of saturated palmitate and unsaturated oleate: Evidence from cultured myotubes. Diabetes. 2005;54:648–656. doi: 10.2337/diabetes.54.3.648. PubMed DOI

Alkhouri N., Dixon L.J., Feldstein A.E. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 2009;3:445–451. doi: 10.1586/egh.09.32. PubMed DOI PMC

Solon-Biet S.M., Cogger V.C., Pulpitel T., Heblinski M., Wahl D., McMahon A.C., Warren A., Durrant-Whyte J., Walters K.A., Krycer J.R., et al. Defining the Nutritional and Metabolic Context of FGF21 Using the Geometric Framework. Cell Metab. 2016;24:555–565. doi: 10.1016/j.cmet.2016.09.001. PubMed DOI

Flippo K.H., Potthoff M.J. Metabolic Messengers: FGF21. Nat. Metab. 2021;3:309–317. doi: 10.1038/s42255-021-00354-2. PubMed DOI PMC

Ooi G.J., Meikle P.J., Huynh K., Earnest A., Roberts S.K., Kemp W., Parker B.L., Brown W., Burton P., Watt M.J. Hepatic lipidomic remodeling in severe obesity manifests with steatosis and does not evolve with non-alcoholic steatohepatitis. J. Hepatol. 2021;75:524–535. doi: 10.1016/j.jhep.2021.04.013. PubMed DOI

Ioannou G.N., Nagana Gowda G.A., Djukovic D., Raftery D. Distinguishing NASH Histological Severity Using a Multiplatform Metabolomics Approach. Metabolites. 2020;10:168. doi: 10.3390/metabo10040168. PubMed DOI PMC

Holubova M., Hruba L., Popelova A., Bencze M., Prazienkova V., Gengler S., Kratochvilova H., Haluzik M., Zelezna B., Kunes J., et al. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology. Neuropharmacology. 2019;144:377–387. doi: 10.1016/j.neuropharm.2018.11.002. PubMed DOI

Prazienkova V., Ticha A., Blechova M., Spolcova A., Zelezna B., Maletinska L. Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C-terminal aromatic ring. J. Physiol. Pharmacol. 2016;67:121–128. PubMed

Mikulaskova B., Zemenova J., Pirnik Z., Prazienkova V., Bednarova L., Zelezna B., Maletinska L., Kunes J. Effect of palmitoylated prolactin-relea sing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides. 2016;75:109–117. doi: 10.1016/j.peptides.2015.11.005. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...