Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
LX22NPO5104
EXCELES
61388963
Akademie ved České republiky
67985823
Akademie ved České republiky
21-03691S
Grantová Agentura České Republiky (GAČR)
PubMed
39440369
PubMed Central
PMC11499387
DOI
10.1042/bsr20241103
PII: 235003
Knihovny.cz E-resources
- Keywords
- GPR10/NPFFR2-deficient mice, double KO mice, impaired glucose utilization, insulin resistance, obesity,
- MeSH
- Adipose Tissue, White metabolism MeSH
- Diet, High-Fat * adverse effects MeSH
- Energy Metabolism genetics MeSH
- Insulin Resistance MeSH
- Mice, Inbred C57BL MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Obesity * metabolism genetics MeSH
- Prediabetic State * metabolism genetics MeSH
- Receptors, Neuropeptide * genetics metabolism deficiency MeSH
- Receptors, G-Protein-Coupled * genetics metabolism deficiency MeSH
- Sex Factors MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- neuropeptide FF receptor MeSH Browser
- Receptors, Neuropeptide * MeSH
- Receptors, G-Protein-Coupled * MeSH
GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.
Biomedical Research Center Slovak Academy of Sciences 845 05 Bratislava Slovak Republic
Department of Physiology Faculty of Science Charles University Prague 128 44 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences 142 00 Prague Czech Republic
See more in PubMed
Bechtold D.A. and Luckman S.M. (2007) The role of RFamide peptides in feeding. J. Endocrinol. 192, 3–15 10.1677/JOE-06-0069 PubMed DOI
Prazienkova V., Popelova A., Kunes J. and Maletinska L. (2019) Prolactin-releasing peptide: physiological and pharmacological properties. Int. J. Mol. Sci. 20, 10.3390/ijms20215297 PubMed DOI PMC
Lawrence C.B., Celsi F., Brennand J. and Luckman S.M. (2000) Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3, 645–646 10.1038/76597 PubMed DOI
Lawrence C.B., Ellacott K.L. and Luckman S.M. (2002) PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology 143, 360–367 10.1210/endo.143.2.8609 PubMed DOI
Takayanagi Y., Matsumoto H., Nakata M., Mera T., Fukusumi S., Hinuma S.et al. . (2008) Endogenous prolactin-releasing peptide regulates food intake in rodents. J. Clin. Invest. 118, 4014–4024 10.1172/JCI34682 PubMed DOI PMC
Mochiduki A., Takeda T., Kaga S. and Inoue K. (2010) Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J. Neuroendocrinol. 22, 576–584 10.1111/j.1365-2826.2010.01993.x PubMed DOI
Marchese A., Heiber M., Nguyen T., Heng H.H., Saldivia V.R., Cheng R.et al. . (1995) Cloning and chromosomal mapping of three novel genes, GPR9, GPR10, and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics 29, 335–344 10.1006/geno.1995.9996 PubMed DOI
Ibata Y., Iijima N., Kataoka Y., Kakihara K., Tanaka M., Hosoya M.et al. . (2000) Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci. Res. 38, 223–230 10.1016/S0168-0102(00)00182-6 PubMed DOI
Fujii R., Fukusumi S., Hosoya M., Kawamata Y., Habata Y., Hinuma S.et al. . (1999) Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul. Pept. 83, 1–10 10.1016/S0167-0115(99)00028-2 PubMed DOI
Roland B.L., Sutton S.W., Wilson S.J., Luo L., Pyati J., Huvar R.et al. . (1999) Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 140, 5736–5745 10.1210/endo.140.12.7211 PubMed DOI
Nieminen M.L., Brandt A., Pietila P. and Panula P. (2000) Expression of mammalian RF-amide peptides neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and the PrRP receptor in the peripheral tissues of the rat. Peptides 21, 1695–1701 10.1016/S0196-9781(00)00319-3 PubMed DOI
Engstrom M., Brandt A., Wurster S., Savola J.M. and Panula P. (2003) Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J. Pharmacol. Exp. Ther. 305, 825–832 10.1124/jpet.102.047118 PubMed DOI
Higo S., Kanaya M. and Ozawa H. (2021) Expression analysis of neuropeptide FF receptors on neuroendocrine-related neurons in the rat brain using highly sensitive in situ hybridization. Histochem. Cell Biol. 155, 465–475 10.1007/s00418-020-01956-9 PubMed DOI
Goncharuk V. and Jhamandas J.H. (2008) Neuropeptide FF2 receptor distribution in the human brain. An immunohistochemical study. Peptides 29, 1544–1553 10.1016/j.peptides.2008.05.004 PubMed DOI
Elshourbagy N.A., Ames R.S., Fitzgerald L.R., Foley J.J., Chambers J.K., Szekeres P.G.et al. . (2000) Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J. Biol. Chem. 275, 25965–25971 10.1074/jbc.M004515200 PubMed DOI
Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M.et al. . (2000) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 275, 39324–39331 10.1074/jbc.M004385200 PubMed DOI
Bjursell M., Lenneras M., Goransson M., Elmgren A. and Bohlooly Y.M. (2007) GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 363, 633–638 10.1016/j.bbrc.2007.09.016 PubMed DOI
Gu W., Geddes B.J., Zhang C., Foley K.P. and Stricker-Krongrad A. (2004) The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosci. 22, 93–103 10.1385/JMN:22:1-2:93 PubMed DOI
Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L.et al. . (2021) GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 774, 145427 10.1016/j.gene.2021.145427 PubMed DOI
Zhang L., Ip C.K., Lee I.J., Qi Y., Reed F., Karl T.et al. . (2018) Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat. Commun. 9, 4722 10.1038/s41467-018-06462-0 PubMed DOI PMC
Karnosova A., Strnadova V., Zelezna B., Kunes J., Kasparek P. and Maletinska L. (2023) NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose. Clin. Sci. (Lond.) 137, 847–862 10.1042/CS20220880 PubMed DOI PMC
Matsumoto H., Maruyama M., Noguchi J., Horikoshi Y., Fujiwara K., Kitada C.et al. . (2000) Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci. Lett. 285, 234–238 10.1016/S0304-3940(00)01077-6 PubMed DOI
Samson W.K., Keown C., Samson C.K., Samson H.W., Lane B., Baker J.R.et al. . (2003) Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion. Endocrine 20, 59–66 10.1385/ENDO:20:1-2:59 PubMed DOI
Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M.et al. . (2015) Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. (Lond.) 39, 986–993 10.1038/ijo.2015.28 PubMed DOI
Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B.et al. . (2017) Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE 12, e0183449 10.1371/journal.pone.0183449 PubMed DOI PMC
Alexopoulou F., Bech E.M., Pedersen S.L., Thorbek D.D., Leurs U., Rudkjær L.C.B.et al. . (2022) Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci. Rep. 12, 1696 10.1038/s41598-022-05310-y PubMed DOI PMC
Mrazikova L., Hojna S., Vaculova P., Strnad S., Vrkoslav V., Pelantova H.et al. . (2023) Lipidized PrRP analog exhibits strong anti-obesity and antidiabetic properties in old WKY rats with obesity and glucose intolerance. Nutrients 15, 10.3390/nu15020280 PubMed DOI PMC
Basu S., Laffineuse L., Presley L., Minium J., Catalano P.M. and Hauguel-de Mouzon S. (2009) In utero gender dimorphism of adiponectin reflects insulin sensitivity and adiposity of the fetus. Obesity (Silver Spring) 17, 1144–1149 10.1038/oby.2008.667 PubMed DOI PMC
Adamcova K., Horakova O., Bardova K., Janovska P., Brezinova M., Kuda O.et al. . (2018) Reduced number of adipose lineage and endothelial cells in epididymal fat in response to omega-3 PUFA in mice fed high-fat diet. Mar Drugs 16, 10.3390/md16120515 PubMed DOI PMC
McLean A.C., Valenzuela N., Fai S. and Bennett S.A. (2012) Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J. Vis. Exp. e4389. PubMed PMC
Muller T.D., Klingenspor M. and Tschop M.H. (2021) Publisher correction: revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1433 10.1038/s42255-021-00485-6 PubMed DOI
Tschop M.H., Speakman J.R., Arch J.R., Auwerx J., Bruning J.C., Chan L.et al. . (2011) A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 10.1038/nmeth.1806 PubMed DOI PMC
Muller T.D., Klingenspor M. and Tschop M.H. (2021) Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 10.1038/s42255-021-00451-2 PubMed DOI
Strnadova V., Karnosova A., Blechova M., Neprasova B., Hola L., Nemcova A.et al. . (2023) Search for lipidized PrRP analogs with strong anorexigenic effect: In vitro and in vivo studies. Neuropeptides 98, 102319 10.1016/j.npep.2022.102319 PubMed DOI
Talbot F., Feetham C.H., Mokrosinski J., Lawler K., Keogh J.M., Henning E.et al. . (2023) A rare human variant that disrupts GPR10 signalling causes weight gain in mice. Nat. Commun. 14, 1450 10.1038/s41467-023-36966-3 PubMed DOI PMC
Montgomery M.K., Hallahan N.L., Brown S.H., Liu M., Mitchell T.W., Cooney G.J.et al. . (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56, 1129–1139 10.1007/s00125-013-2846-8 PubMed DOI
Simon M.M., Greenaway S., White J.K., Fuchs H., Gailus-Durner V., Wells S.et al. . (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14, R82 10.1186/gb-2013-14-7-r82 PubMed DOI PMC
Ahlgren J. and Voikar V. (2019) Experiments done in Black-6 mice: what does it mean? Lab Anim. (NY) 48, 171–180 10.1038/s41684-019-0288-8 PubMed DOI
Hull R.L., Willard J.R., Struck M.D., Barrow B.M., Brar G.S., Andrikopoulos S.et al. . (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J. Endocrinol. 233, 53–64 10.1530/JOE-16-0377 PubMed DOI PMC
Rendina-Ruedy E., Hembree K.D., Sasaki A., Davis M.R., Lightfoot S.A., Clarke S.L.et al. . (2015) A comparative study of the metabolic and skeletal response of C57BL/6J and C57BL/6N mice in a diet-induced model of type 2 diabetes. J. Nutr. Metab. 2015, 758080 10.1155/2015/758080 PubMed DOI PMC
Zhang L., Koller J., Gopalasingam G., Qi Y. and Herzog H. (2022) Central NPFF signalling is critical in the regulation of glucose homeostasis. Mol. Metab. 62, 101525 10.1016/j.molmet.2022.101525 PubMed DOI PMC
Mochiduki A., Takeda T., Kaga S. and Inoue K. (2010) Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J. Neuroendocrinol. 22, 576–584 10.1111/j.1365-2826.2010.01993.x PubMed DOI
Watanabe T.K., Suzuki M., Yamasaki Y., Okuno S., Hishigaki H., Ono T.et al. . (2005) Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin. Exp. Pharmacol. Physiol. 32, 355–366 10.1111/j.1440-1681.2005.04196.x PubMed DOI
Kim K.H. and Lee M.S. (2014) FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diab. Metab. J. 38, 245–251 10.4093/dmj.2014.38.4.245 PubMed DOI PMC
Geer E.B., Islam J. and Buettner C. (2014) Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. North Am. 43, 75–102 10.1016/j.ecl.2013.10.005 PubMed DOI PMC
Lin Y.T., Huang Y.L., Tsai S.C. and Chen J.C. (2020) Ablation of NPFFR2 in mice reduces response to single prolonged stress model. Cells 9, 10.3390/cells9112479 PubMed DOI PMC
Kaiyala K.J. and Schwartz M.W. (2011) Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60, 17–23 10.2337/db10-0909 PubMed DOI PMC
Arch J.R., Hislop D., Wang S.J. and Speakman J.R. (2006) Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. (Lond.) 30, 1322–1331 10.1038/sj.ijo.0803280 PubMed DOI
Burke L.K., Doslikova B., D'Agostino G., Greenwald-Yarnell M., Georgescu T., Chianese R.et al. . (2016) Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons. Mol. Metab. 5, 245–252 10.1016/j.molmet.2016.01.005 PubMed DOI PMC
Shi H., Seeley R.J. and Clegg D.J. (2009) Sexual differences in the control of energy homeostasis. Front. Neuroendocrinol. 30, 396–404 10.1016/j.yfrne.2009.03.004 PubMed DOI PMC
Karastergiou K., Smith S.R., Greenberg A.S. and Fried S.K. (2012) Sex differences in human adipose tissues - the biology of pear shape. Biol. Sex Differ. 3, 13 10.1186/2042-6410-3-13 PubMed DOI PMC