• This record comes from PubMed

Deficiency of GPR10 and NPFFR2 receptors leads to sex-specific prediabetic syndrome and late-onset obesity in mice

. 2024 Oct 30 ; 44 (10) : .

Language English Country England, Great Britain Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
LX22NPO5104 EXCELES
61388963 Akademie ved České republiky
67985823 Akademie ved České republiky
21-03691S Grantová Agentura České Republiky (GAČR)

GPR10 and neuropeptide FF receptor 2 (NPFFR2) play important role in the regulation of food intake and energy homeostasis. Understanding the interaction between these receptors and their specific ligands, such as prolactin-releasing peptide, is essential for developing stable peptide analogs with potential for treating obesity. By breeding and characterizing double knockout (dKO) mice fed standard or high-fat diet (HFD), we provide insights into the metabolic regulation associated with the GPR10 and NPFFR2 deficiency. Both WT and dKO mice were subjected to behavioral tests and an oral glucose tolerance test. Moreover, dual-energy X-ray absorptiometry (DEXA) followed by indirect calorimetry were performed to characterize dKO mice. dKO mice of both sexes, when exposed to an HFD, showed reduced glucose tolerance, hyperinsulinemia, and insulin resistance compared with controls. Moreover, they displayed increased liver weight with worsened hepatic steatosis. Mice displayed significantly increased body weight, which was more pronounced in dKO males and caused by higher caloric intake on a standard diet, while dKO females displayed obesity characterized by increased white adipose tissue and enhanced hepatic lipid accumulation on an HFD. Moreover, dKO females exhibited anxiety-like behavior in the open field test. dKO mice on a standard diet had a lower respiratory quotient, with no significant changes in energy expenditure. These results provide insights into alterations associated with disrupted GPR10 and NPFFR2 signaling, contributing to the development of potential anti-obesity treatment.

See more in PubMed

Bechtold D.A. and Luckman S.M. (2007) The role of RFamide peptides in feeding. J. Endocrinol. 192, 3–15 10.1677/JOE-06-0069 PubMed DOI

Prazienkova V., Popelova A., Kunes J. and Maletinska L. (2019) Prolactin-releasing peptide: physiological and pharmacological properties. Int. J. Mol. Sci. 20, 10.3390/ijms20215297 PubMed DOI PMC

Lawrence C.B., Celsi F., Brennand J. and Luckman S.M. (2000) Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3, 645–646 10.1038/76597 PubMed DOI

Lawrence C.B., Ellacott K.L. and Luckman S.M. (2002) PRL-releasing peptide reduces food intake and may mediate satiety signaling. Endocrinology 143, 360–367 10.1210/endo.143.2.8609 PubMed DOI

Takayanagi Y., Matsumoto H., Nakata M., Mera T., Fukusumi S., Hinuma S.et al. . (2008) Endogenous prolactin-releasing peptide regulates food intake in rodents. J. Clin. Invest. 118, 4014–4024 10.1172/JCI34682 PubMed DOI PMC

Mochiduki A., Takeda T., Kaga S. and Inoue K. (2010) Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J. Neuroendocrinol. 22, 576–584 10.1111/j.1365-2826.2010.01993.x PubMed DOI

Marchese A., Heiber M., Nguyen T., Heng H.H., Saldivia V.R., Cheng R.et al. . (1995) Cloning and chromosomal mapping of three novel genes, GPR9, GPR10, and GPR14, encoding receptors related to interleukin 8, neuropeptide Y, and somatostatin receptors. Genomics 29, 335–344 10.1006/geno.1995.9996 PubMed DOI

Ibata Y., Iijima N., Kataoka Y., Kakihara K., Tanaka M., Hosoya M.et al. . (2000) Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci. Res. 38, 223–230 10.1016/S0168-0102(00)00182-6 PubMed DOI

Fujii R., Fukusumi S., Hosoya M., Kawamata Y., Habata Y., Hinuma S.et al. . (1999) Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul. Pept. 83, 1–10 10.1016/S0167-0115(99)00028-2 PubMed DOI

Roland B.L., Sutton S.W., Wilson S.J., Luo L., Pyati J., Huvar R.et al. . (1999) Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 140, 5736–5745 10.1210/endo.140.12.7211 PubMed DOI

Nieminen M.L., Brandt A., Pietila P. and Panula P. (2000) Expression of mammalian RF-amide peptides neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP) and the PrRP receptor in the peripheral tissues of the rat. Peptides 21, 1695–1701 10.1016/S0196-9781(00)00319-3 PubMed DOI

Engstrom M., Brandt A., Wurster S., Savola J.M. and Panula P. (2003) Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J. Pharmacol. Exp. Ther. 305, 825–832 10.1124/jpet.102.047118 PubMed DOI

Higo S., Kanaya M. and Ozawa H. (2021) Expression analysis of neuropeptide FF receptors on neuroendocrine-related neurons in the rat brain using highly sensitive in situ hybridization. Histochem. Cell Biol. 155, 465–475 10.1007/s00418-020-01956-9 PubMed DOI

Goncharuk V. and Jhamandas J.H. (2008) Neuropeptide FF2 receptor distribution in the human brain. An immunohistochemical study. Peptides 29, 1544–1553 10.1016/j.peptides.2008.05.004 PubMed DOI

Elshourbagy N.A., Ames R.S., Fitzgerald L.R., Foley J.J., Chambers J.K., Szekeres P.G.et al. . (2000) Receptor for the pain modulatory neuropeptides FF and AF is an orphan G protein-coupled receptor. J. Biol. Chem. 275, 25965–25971 10.1074/jbc.M004515200 PubMed DOI

Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M.et al. . (2000) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 275, 39324–39331 10.1074/jbc.M004385200 PubMed DOI

Bjursell M., Lenneras M., Goransson M., Elmgren A. and Bohlooly Y.M. (2007) GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 363, 633–638 10.1016/j.bbrc.2007.09.016 PubMed DOI

Gu W., Geddes B.J., Zhang C., Foley K.P. and Stricker-Krongrad A. (2004) The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosci. 22, 93–103 10.1385/JMN:22:1-2:93 PubMed DOI

Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L.et al. . (2021) GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 774, 145427 10.1016/j.gene.2021.145427 PubMed DOI

Zhang L., Ip C.K., Lee I.J., Qi Y., Reed F., Karl T.et al. . (2018) Diet-induced adaptive thermogenesis requires neuropeptide FF receptor-2 signalling. Nat. Commun. 9, 4722 10.1038/s41467-018-06462-0 PubMed DOI PMC

Karnosova A., Strnadova V., Zelezna B., Kunes J., Kasparek P. and Maletinska L. (2023) NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose. Clin. Sci. (Lond.) 137, 847–862 10.1042/CS20220880 PubMed DOI PMC

Matsumoto H., Maruyama M., Noguchi J., Horikoshi Y., Fujiwara K., Kitada C.et al. . (2000) Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci. Lett. 285, 234–238 10.1016/S0304-3940(00)01077-6 PubMed DOI

Samson W.K., Keown C., Samson C.K., Samson H.W., Lane B., Baker J.R.et al. . (2003) Prolactin-releasing peptide and its homolog RFRP-1 act in hypothalamus but not in anterior pituitary gland to stimulate stress hormone secretion. Endocrine 20, 59–66 10.1385/ENDO:20:1-2:59 PubMed DOI

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M.et al. . (2015) Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. (Lond.) 39, 986–993 10.1038/ijo.2015.28 PubMed DOI

Prazienkova V., Holubova M., Pelantova H., Buganova M., Pirnik Z., Mikulaskova B.et al. . (2017) Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE 12, e0183449 10.1371/journal.pone.0183449 PubMed DOI PMC

Alexopoulou F., Bech E.M., Pedersen S.L., Thorbek D.D., Leurs U., Rudkjær L.C.B.et al. . (2022) Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci. Rep. 12, 1696 10.1038/s41598-022-05310-y PubMed DOI PMC

Mrazikova L., Hojna S., Vaculova P., Strnad S., Vrkoslav V., Pelantova H.et al. . (2023) Lipidized PrRP analog exhibits strong anti-obesity and antidiabetic properties in old WKY rats with obesity and glucose intolerance. Nutrients 15, 10.3390/nu15020280 PubMed DOI PMC

Basu S., Laffineuse L., Presley L., Minium J., Catalano P.M. and Hauguel-de Mouzon S. (2009) In utero gender dimorphism of adiponectin reflects insulin sensitivity and adiposity of the fetus. Obesity (Silver Spring) 17, 1144–1149 10.1038/oby.2008.667 PubMed DOI PMC

Adamcova K., Horakova O., Bardova K., Janovska P., Brezinova M., Kuda O.et al. . (2018) Reduced number of adipose lineage and endothelial cells in epididymal fat in response to omega-3 PUFA in mice fed high-fat diet. Mar Drugs 16, 10.3390/md16120515 PubMed DOI PMC

McLean A.C., Valenzuela N., Fai S. and Bennett S.A. (2012) Performing vaginal lavage, crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging identification. J. Vis. Exp. e4389. PubMed PMC

Muller T.D., Klingenspor M. and Tschop M.H. (2021) Publisher correction: revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1433 10.1038/s42255-021-00485-6 PubMed DOI

Tschop M.H., Speakman J.R., Arch J.R., Auwerx J., Bruning J.C., Chan L.et al. . (2011) A guide to analysis of mouse energy metabolism. Nat. Methods 9, 57–63 10.1038/nmeth.1806 PubMed DOI PMC

Muller T.D., Klingenspor M. and Tschop M.H. (2021) Revisiting energy expenditure: how to correct mouse metabolic rate for body mass. Nat. Metab. 3, 1134–1136 10.1038/s42255-021-00451-2 PubMed DOI

Strnadova V., Karnosova A., Blechova M., Neprasova B., Hola L., Nemcova A.et al. . (2023) Search for lipidized PrRP analogs with strong anorexigenic effect: In vitro and in vivo studies. Neuropeptides 98, 102319 10.1016/j.npep.2022.102319 PubMed DOI

Talbot F., Feetham C.H., Mokrosinski J., Lawler K., Keogh J.M., Henning E.et al. . (2023) A rare human variant that disrupts GPR10 signalling causes weight gain in mice. Nat. Commun. 14, 1450 10.1038/s41467-023-36966-3 PubMed DOI PMC

Montgomery M.K., Hallahan N.L., Brown S.H., Liu M., Mitchell T.W., Cooney G.J.et al. . (2013) Mouse strain-dependent variation in obesity and glucose homeostasis in response to high-fat feeding. Diabetologia 56, 1129–1139 10.1007/s00125-013-2846-8 PubMed DOI

Simon M.M., Greenaway S., White J.K., Fuchs H., Gailus-Durner V., Wells S.et al. . (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol. 14, R82 10.1186/gb-2013-14-7-r82 PubMed DOI PMC

Ahlgren J. and Voikar V. (2019) Experiments done in Black-6 mice: what does it mean? Lab Anim. (NY) 48, 171–180 10.1038/s41684-019-0288-8 PubMed DOI

Hull R.L., Willard J.R., Struck M.D., Barrow B.M., Brar G.S., Andrikopoulos S.et al. . (2017) High fat feeding unmasks variable insulin responses in male C57BL/6 mouse substrains. J. Endocrinol. 233, 53–64 10.1530/JOE-16-0377 PubMed DOI PMC

Rendina-Ruedy E., Hembree K.D., Sasaki A., Davis M.R., Lightfoot S.A., Clarke S.L.et al. . (2015) A comparative study of the metabolic and skeletal response of C57BL/6J and C57BL/6N mice in a diet-induced model of type 2 diabetes. J. Nutr. Metab. 2015, 758080 10.1155/2015/758080 PubMed DOI PMC

Zhang L., Koller J., Gopalasingam G., Qi Y. and Herzog H. (2022) Central NPFF signalling is critical in the regulation of glucose homeostasis. Mol. Metab. 62, 101525 10.1016/j.molmet.2022.101525 PubMed DOI PMC

Mochiduki A., Takeda T., Kaga S. and Inoue K. (2010) Stress response of prolactin-releasing peptide knockout mice as to glucocorticoid secretion. J. Neuroendocrinol. 22, 576–584 10.1111/j.1365-2826.2010.01993.x PubMed DOI

Watanabe T.K., Suzuki M., Yamasaki Y., Okuno S., Hishigaki H., Ono T.et al. . (2005) Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin. Exp. Pharmacol. Physiol. 32, 355–366 10.1111/j.1440-1681.2005.04196.x PubMed DOI

Kim K.H. and Lee M.S. (2014) FGF21 as a stress hormone: the roles of FGF21 in stress adaptation and the treatment of metabolic diseases. Diab. Metab. J. 38, 245–251 10.4093/dmj.2014.38.4.245 PubMed DOI PMC

Geer E.B., Islam J. and Buettner C. (2014) Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol. Metab. Clin. North Am. 43, 75–102 10.1016/j.ecl.2013.10.005 PubMed DOI PMC

Lin Y.T., Huang Y.L., Tsai S.C. and Chen J.C. (2020) Ablation of NPFFR2 in mice reduces response to single prolonged stress model. Cells 9, 10.3390/cells9112479 PubMed DOI PMC

Kaiyala K.J. and Schwartz M.W. (2011) Toward a more complete (and less controversial) understanding of energy expenditure and its role in obesity pathogenesis. Diabetes 60, 17–23 10.2337/db10-0909 PubMed DOI PMC

Arch J.R., Hislop D., Wang S.J. and Speakman J.R. (2006) Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. (Lond.) 30, 1322–1331 10.1038/sj.ijo.0803280 PubMed DOI

Burke L.K., Doslikova B., D'Agostino G., Greenwald-Yarnell M., Georgescu T., Chianese R.et al. . (2016) Sex difference in physical activity, energy expenditure and obesity driven by a subpopulation of hypothalamic POMC neurons. Mol. Metab. 5, 245–252 10.1016/j.molmet.2016.01.005 PubMed DOI PMC

Shi H., Seeley R.J. and Clegg D.J. (2009) Sexual differences in the control of energy homeostasis. Front. Neuroendocrinol. 30, 396–404 10.1016/j.yfrne.2009.03.004 PubMed DOI PMC

Karastergiou K., Smith S.R., Greenberg A.S. and Fried S.K. (2012) Sex differences in human adipose tissues - the biology of pear shape. Biol. Sex Differ. 3, 13 10.1186/2042-6410-3-13 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...