Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
28820912
PubMed Central
PMC5562305
DOI
10.1371/journal.pone.0183449
PII: PONE-D-16-48419
Knihovny.cz E-resources
- MeSH
- beta-Lactamases metabolism MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Diet * MeSH
- Prolactin-Releasing Hormone chemistry metabolism MeSH
- Binding, Competitive MeSH
- Cricetinae MeSH
- Metabolomics MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Nuclear Magnetic Resonance, Biomolecular MeSH
- Obesity etiology metabolism MeSH
- Peptides chemistry pharmacology MeSH
- Amino Acid Sequence MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- beta-Lactamases MeSH
- Prolactin-Releasing Hormone MeSH
- Peptides MeSH
Analogs of anorexigenic neuropeptides, such as prolactin-releasing peptide (PrRP), have a potential as new anti-obesity drugs. In our previous study, palmitic acid attached to the N-terminus of PrRP enabled its central anorexigenic effects after peripheral administration. In this study, two linkers, γ-glutamic acid at Lys11 and a short, modified polyethylene glycol at the N-terminal Ser and/or Lys11, were applied for the palmitoylation of PrRP31 to improve its bioavailability. These analogs had a high affinity and activation ability to the PrRP receptor GPR10 and the neuropeptide FF2 receptor, as well as short-term anorexigenic effect similar to PrRP palmitoylated at the N-terminus. Two-week treatment with analogs that were palmitoylated through linkers to Lys11 (analogs 1 and 2), but not with analog modified both at the N-terminus and Lys11 (analog 3) decreased body and liver weights, insulin, leptin, triglyceride, cholesterol and free fatty acid plasma levels in a mouse model of diet-induced obesity. Moreover, the expression of uncoupling protein-1 was increased in brown fat suggesting an increase in energy expenditure. In addition, treatment with analogs 1 and 2 but not analog 3 significantly decreased urinary concentrations of 1-methylnicotinamide and its oxidation products N-methyl-2-pyridone-5-carboxamide and N-methyl-4-pyridone-3-carboxamide, as shown by NMR-based metabolomics. This observation confirmed the previously reported increase in nicotinamide derivatives in obesity and type 2 diabetes mellitus and the effectiveness of analogs 1 and 2 in the treatment of these disorders.
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Faculty of Chemical Technology University of Chemistry and Technology Prague Prague Czech Republic
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic Prague Czech Republic
See more in PubMed
Conde-Frieboes K, Thøgersen H, Lau JF, Sensfuss U, Hansen TK, Christensen L, et al. Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective α-melanocyte-stimulating hormone (α-MSH) analogues. J Med Chem. 2012;55(5):1969–77. doi: 10.1021/jm201489a . PubMed DOI
Royalty JE, Konradsen G, Eskerod O, Wulff BS, Hansen BS. Investigation of safety, tolerability, pharmacokinetics, and pharmacodynamics of single and multiple doses of a long-acting α-MSH analog in healthy overweight and obese subjects. J Clin Pharmacol. 2014;54(4):394–404. doi: 10.1002/jcph.211 ; PubMed Central PMCID: PMCPMC4263154. PubMed DOI PMC
Nagelová V, Pirník Z, Železná B, Maletínská L. CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res. 2014;1547:16–24. doi: 10.1016/j.brainres.2013.12.024 . PubMed DOI
Lawrence C, Celsi F, Brennand J, Luckman S. Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat Neurosci. 2000;3(7):645–6. doi: 10.1038/76597 . PubMed DOI
Taylor M, Samson W. The prolactin releasing peptides: RF-amide peptides. Cell Mol Life Sci. 2001;58(9):1206–15. doi: 10.1007/PL00000934 . PubMed DOI PMC
Jarry H, Heuer H, Schomburg L, Bauer K. Prolactin-releasing peptides do not stimulate prolactin release in vivo. Neuroendocrinology. 2000;71(4):262–7. . PubMed
Engstrom M, Brandt A, Wurster S, Savola JM, Panula P. Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J Pharmacol Exp Ther. 2003;305(3):825–32. doi: 10.1124/jpet.102.047118 . PubMed DOI
Bjursell M, Lennerås M, Göransson M, Elmgren A, Bohlooly-Y M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem Biophys Res Commun. 2007;363(3):633–8. doi: 10.1016/j.bbrc.2007.09.016 . PubMed DOI
Takayanagi Y, Matsumoto H, Nakata M, Mera T, Fukusumi S, Hinuma S, et al. Endogenous prolactin-releasing peptide regulates food intake in rodents. J Clin Invest. 2008;118(12):4014–24. doi: 10.1172/JCI34682 ; PubMed Central PMCID: PMCPMC2575834. PubMed DOI PMC
Maletinska L, Nagelova V, Ticha A, Zemenova J, Pirnik Z, Holubova M, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes (Lond). 2015;39(6):986–93. doi: 10.1038/ijo.2015.28 . PubMed DOI
Prazienkova V, Ticha A, Blechova M, Spolcova A, Zelezna B, Maletinska L. Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C- terminal aromatic ring. Journal of physiology and pharmacology: an official journal of the Polish Physiological Society. 2016;67(1):121–8. . PubMed
Nicholson JK, Lindon JC, Holmes E. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–9. doi: 10.1080/004982599238047 . PubMed DOI
Holmes E, Wilson ID, Nicholson JK. Metabolic phenotyping in health and disease. Cell. 2008;134(5):714–7. doi: 10.1016/j.cell.2008.08.026 . PubMed DOI
Reily MD, Tymiak AA. Metabolomics in the pharmaceutical industry. Drug Discov Today Technol. 2015;13:25–31. doi: 10.1016/j.ddtec.2015.03.001 . PubMed DOI
Pelantová H, Bugáňová M, Holubová M, Šedivá B, Zemenová J, Sýkora D, et al. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination. Mol Cell Endocrinol. 2016;431:88–100. doi: 10.1016/j.mce.2016.05.003 . PubMed DOI
Maletínská L, Pýchová M, Holubová M, Blechová M, Demianová Z, Elbert T, et al. Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J Pharmacol Exp Ther. 2012;340(3):781–6. doi: 10.1124/jpet.111.185371 . PubMed DOI
Motulsky H, Neubig R. Analyzing radioligand binding data. Curr Protoc Neurosci. 2002;Chapter 7:Unit 7.5. doi: 10.1002/0471142301.ns0705s19 . PubMed DOI
Maletinska L, Ticha A, Nagelova V, Spolcova A, Blechova M, Elbert T, et al. Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 2013;1498:33–40. doi: 10.1016/j.brainres.2012.12.037 . PubMed DOI
Pirnik Z, Bundzikova J, Holubova M, Pychova M, Fehrentz JA, Martinez J, et al. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochem Int. 2011;59(6):889–95. doi: 10.1016/j.neuint.2011.08.001 . PubMed DOI
Maletínská L, Maixnerová J, Matysková R, Haugvicová R, Pirník Z, Kiss A, et al. Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neurosci. 2008;9:101 doi: 10.1186/1471-2202-9-101 ; PubMed Central PMCID: PMCPMC2587474. PubMed DOI PMC
Lansang MC, Williams GH, Carroll JS. Correlation between the glucose clamp technique and the homeostasis model assessment in hypertension. Am J Hypertens. 2001;14(1):51–3. . PubMed
Monteleone P, Brambilla F, Bortolotti F, Ferraro C, Maj M. Plasma prolactin response to D-fenfluramine is blunted in bulimic patients with frequent binge episodes. Psychol Med. 1998;28(4):975–83. . PubMed
Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973;22(23):3099–108. . PubMed
Pelantova H, Buganova M, Anyz J, Zelezna B, Maletinska L, Novak D, et al. Strategy for NMR metabolomic analysis of urine in mouse models of obesity—from sample collection to interpretation of acquired data. Journal of pharmaceutical and biomedical analysis. 2015;115:225–35. doi: 10.1016/j.jpba.2015.06.036 . PubMed DOI
Boulangé CL, Claus SP, Chou CJ, Collino S, Montoliu I, Kochhar S, et al. Early metabolic adaptation in C57BL/6 mice resistant to high fat diet induced weight gain involves an activation of mitochondrial oxidative pathways. J Proteome Res. 2013;12(4):1956–68. doi: 10.1021/pr400051s . PubMed DOI
Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—The Human Metabolome Database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7. doi: 10.1093/nar/gks1065 ; PubMed Central PMCID: PMCPMC3531200. PubMed DOI PMC
Maletinska L, Spolcova A, Maixnerova J, Blechova M, Zelezna B. Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides. 2011;32(9):1887–92. doi: 10.1016/j.peptides.2011.08.011 . PubMed DOI
Kunes J, Prazienkova V, Popelova A, Mikulaskova B, Zemenova J, Maletinska L. Prolactin-releasing peptide: a new tool for obesity treatment. J Endocrinol. 2016;230(2):R51–8. doi: 10.1530/JOE-16-0046 . PubMed DOI
Holubova M, Zemenova J, Mikulaskova B, Panajotova V, Stohr J, Haluzik M, et al. Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J Endocrinol. 2016;229(2):85–96. doi: 10.1530/JOE-15-0519 . PubMed DOI
Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya M, Fukusumi S, et al. A prolactin-releasing peptide in the brain. Nature. 1998;393(6682):272–6. doi: 10.1038/30515 . PubMed DOI
Maixnerová J, Špolcová A, Pýchová M, Blechová M, Elbert T, Rezáčová M, et al. Characterization of prolactin-releasing peptide: binding, signaling and hormone secretion in rodent pituitary cell lines endogenously expressing its receptor. Peptides. 2011;32(4):811–7. doi: 10.1016/j.peptides.2010.12.011 . PubMed DOI
Madsen K, Knudsen LB, Agersoe H, Nielsen PF, Thogersen H, Wilken M, et al. Structure-activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: importance of fatty acid length, polarity, and bulkiness. J Med Chem. 2007;50(24):6126–32. doi: 10.1021/jm070861j . PubMed DOI
Fujii R, Fukusumi S, Hosoya M, Kawamata Y, Habata Y, Hinuma S, et al. Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul Pept. 1999;83(1):1–10. . PubMed
Adachi S, Mochiduki A, Nemoto H, Sun B, Fujiwara K, Matsumoto H, et al. Estrogen suppresses the stress response of prolactin-releasing peptide-producing cells. Neurosci Lett. 2005;380(3):311–5. doi: 10.1016/j.neulet.2005.01.064 . PubMed DOI
Ibata Y, Iijima N, Kataoka Y, Kakihara K, Tanaka M, Hosoya M, et al. Morphological survey of prolactin-releasing peptide and its receptor with special reference to their functional roles in the brain. Neurosci Res. 2000;38(3):223–30. . PubMed
Pirnik Z, Zelezna B, Kiss A, Maletinska L. Peripheral administration of palmitoylated prolactin-releasing peptide induces Fos expression in hypothalamic neurons involved in energy homeostasis in NMRI male mice. Brain Res. 2015;1625:151–8. doi: 10.1016/j.brainres.2015.08.042 . PubMed DOI
Ronveaux CC, Tomé D, Raybould HE. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J Nutr. 2015;145(4):672–80. doi: 10.3945/jn.114.206029 ; PubMed Central PMCID: PMCPMC4381768. PubMed DOI PMC
Goldberg IJ, Merkel M. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front Biosci. 2001;6:D388–405. . PubMed
Pelantova H, Bartova S, Anyz J, Holubova M, Zelezna B, Maletinska L, et al. Metabolomic profiling of urinary changes in mice with monosodium glutamate-induced obesity. Analytical and Bioanalytical Chemistry. 2016;408(2):567–78. doi: 10.1007/s00216-015-9133-0 PubMed DOI
Salek RM, Maguire ML, Bentley E, Rubtsov DV, Hough T, Cheeseman M, et al. A metabolomic comparison of urinary changes in type 2 diabetes in mouse, rat, and human. Physiol Genomics. 2007;29(2):99–108. doi: 10.1152/physiolgenomics.00194.2006 . PubMed DOI
Delaney J, Hodson MP, Thakkar H, Connor SC, Sweatman BC, Kenny SP, et al. Tryptophan-NAD+ pathway metabolites as putative biomarkers and predictors of peroxisome proliferation. Arch Toxicol. 2005;79(4):208–23. doi: 10.1007/s00204-004-0625-5 . PubMed DOI
Ringeissen S, Connor SC, Brown HR, Sweatman BC, Hodson MP, Kenny SP, et al. Potential urinary and plasma biomarkers of peroxisome proliferation in the rat: identification of N-methylnicotinamide and N-methyl-4-pyridone-3-carboxamide by 1H nuclear magnetic resonance and high performance liquid chromatography. Biomarkers. 2003;8(3–4):240–71. doi: 10.1080/1354750031000149124 . PubMed DOI
Kersten S. Peroxisome proliferator activated receptors and obesity. Eur J Pharmacol. 2002;440(2–3):223–34. . PubMed
Stienstra R, Mandard S, Patsouris D, Maass C, Kersten S, Müller M. Peroxisome proliferator-activated receptor alpha protects against obesity-induced hepatic inflammation. Endocrinology. 2007;148(6):2753–63. doi: 10.1210/en.2007-0014 . PubMed DOI
Waterfield CJ, Turton JA, Scales MD, Timbrell JA. Taurine, a possible urinary marker of liver damage: a study of taurine excretion in carbon tetrachloride-treated rats. Arch Toxicol. 1991;65(7):548–55. . PubMed
Sun YJ, Wang HP, Liang YJ, Yang L, Li W, Wu YJ. An NMR-based metabonomic investigation of the subacute effects of melamine in rats. J Proteome Res. 2012;11(4):2544–50. doi: 10.1021/pr2012329 . PubMed DOI
Hunt MC, Siponen MI, Alexson SE. The emerging role of acyl-CoA thioesterases and acyltransferases in regulating peroxisomal lipid metabolism. Biochim Biophys Acta. 2012;1822(9):1397–410. doi: 10.1016/j.bbadis.2012.03.009 . PubMed DOI
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9(4):311–26. doi: 10.1016/j.cmet.2009.02.002 ; PubMed Central PMCID: PMCPMC3640280. PubMed DOI PMC
Adams SH. Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Adv Nutr. 2011;2(6):445–56. doi: 10.3945/an.111.000737 ; PubMed Central PMCID: PMCPMC3226382. PubMed DOI PMC
Asatoor AM, Simenhoff ML. The origin of urinary dimethylamine. Biochim Biophys Acta. 1965;111(2):384–92. . PubMed
Delaney J, Neville WA, Swain A, Miles A, Leonard MS, Waterfield CJ. Phenylacetylglycine, a putative biomarker of phospholipidosis: its origins and relevance to phospholipid accumulation using amiodarone treated rats as a model. Biomarkers. 2004;9(3):271–90. doi: 10.1080/13547500400018570 . PubMed DOI
Dryland PA, Love DR, Walker MF, Dommels Y, Butts C, Rowan D, et al. Allantoin as A Biomarker of Inflammation in an Inflammatory Bowel Disease Mouse Model: NMR Analysis of Urine. The Open Bioactive Compounds Journal. 2008;1:1–6. Epub 03/06/2008. doi: 10.2174/1874847300801010001 DOI
Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis
An analogue of the Prolactin Releasing Peptide reduces obesity and promotes adult neurogenesis
Lipidization as a tool toward peptide therapeutics
NPFFR2-deficient mice fed a high-fat diet develop strong intolerance to glucose
Prolactin-Releasing Peptide: Physiological and Pharmacological Properties