Anti-obesity compounds, Semaglutide and LiPR, and PrRP do not change the proportion of human and mouse POMC+ neurons

. 2025 ; 20 (8) : e0329268. [epub] 20250813

Status In-Process Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40802598

Anti-obesity medications (AOMs) have become one of the most prescribed drugs in human medicine. While AOMs are known to impact adult neurogenesis in the hypothalamus, their effects on the functional maturation of hypothalamic neurons remain unexplored. Given that AOMs target neurons in the Medial Basal Hypothalamus (MBH), which play a crucial role in regulating energy homeostasis, we hypothesized that AOMs might influence the functional maturation of these neurons, potentially rewiring the MBH. To investigate this, we exposed hypothalamic neurons derived from human induced pluripotent stem cells (hiPSCs) to Semaglutide and lipidized prolactin-releasing peptide (LiPR), two anti-obesity compounds. Contrary to our expectations, treatment with Semaglutide or LiPR during neuronal maturation did not affect the proportion of anorexigenic, Pro-opiomelanocortin-expressing (POMC+) neurons. Additionally, LiPR did not alter the morphology of POMC+ neurons or the expression of selected genes critical for the metabolism or development of anorexigenic neurons. Furthermore, LiPR did not impact the proportion of adult-generated POMC+ neurons in the mouse MBH. Taken together, these results suggest that AOMs do not influence the functional maturation of anorexigenic hypothalamic neurons.

Zobrazit více v PubMed

Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, et al. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne). 2023;14:1161521. doi: 10.3389/fendo.2023.1161521 PubMed DOI PMC

Luo H, Liu Y, Tian X, Zhao Y, Liu L, Zhao Z, et al. Association of obesity with cardiovascular disease in the absence of traditional risk factors. Int J Obes (Lond). 2024;48(2):263–70. doi: 10.1038/s41366-023-01408-z PubMed DOI

Barberio AM, Alareeki A, Viner B, Pader J, Vena JE, Arora P, et al. Central body fatness is a stronger predictor of cancer risk than overall body size. Nat Commun. 2019;10(1):383. doi: 10.1038/s41467-018-08159-w PubMed DOI PMC

Pati S, Irfan W, Jameel A, Ahmed S, Shahid RK. Obesity and cancer: a current overview of epidemiology, pathogenesis, outcomes, and management. Cancers (Basel). 2023;15(2):485. doi: 10.3390/cancers15020485 PubMed DOI PMC

Ferrari AJ, Charlson FJ, Norman RE, Flaxman AD, Patten SB, Vos T, et al. The epidemiological modelling of major depressive disorder: application for the Global Burden of Disease Study 2010. PLoS One. 2013;8(7):e69637. doi: 10.1371/journal.pone.0069637 PubMed DOI PMC

Statistics on Obesity Physical Activity and Diet in England. 2019. NOS; 2019.

Boutari C, Mantzoros CS. A 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism. 2022;133:155217. doi: 10.1016/j.metabol.2022.155217 PubMed DOI PMC

González-Muniesa P, Mártinez-González M-A, Hu FB, Després J-P, Matsuzawa Y, Loos RJF, et al. Obesity. Nat Rev Dis Primers. 2017;3:17034. doi: 10.1038/nrdp.2017.34 PubMed DOI

Wang L, Wang N, Zhang W, Cheng X, Yan Z, Shao G, et al. Therapeutic peptides: current applications and future directions. Signal Transduct Target Ther. 2022;7(1):48. doi: 10.1038/s41392-022-00904-4 PubMed DOI PMC

Xie Z, Yang S, Deng W, Li J, Chen J. Efficacy and safety of liraglutide and semaglutide on weight loss in people with obesity or overweight: a systematic review. Clin Epidemiol. 2022;14:1463–76. doi: 10.2147/CLEP.S391819 PubMed DOI PMC

Tichy EM, Hoffman JM, Tadrous M, Rim MH, Cuellar S, Clark JS, et al. National trends in prescription drug expenditures and projections for 2024. Am J Health Syst Pharm. 2024;81(14):583–98. doi: 10.1093/ajhp/zxae105 PubMed DOI

Mráziková L, Neprašová B, Mengr A, Popelová A, Strnadová V, Holá L, et al. Lipidized prolactin-releasing peptide as a new potential tool to treat obesity and type 2 diabetes mellitus: preclinical studies in Rodent models. Front Pharmacol. 2021;12:779962. doi: 10.3389/fphar.2021.779962 PubMed DOI PMC

Pražienková V, Popelová A, Kuneš J, Maletínská L. Prolactin-releasing peptide: physiological and pharmacological properties. Int J Mol Sci. 2019;20(21):5297. doi: 10.3390/ijms20215297 PubMed DOI PMC

Maletínská L, Nagelová V, Tichá A, Zemenová J, Pirník Z, Holubová M, et al. Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes (Lond). 2015;39(6):986–93. doi: 10.1038/ijo.2015.28 PubMed DOI

Lechan RM, Toni R. Functional Anatomy of the Hypothalamus and Pituitary. In: Feingold KR, Anawalt B, Boyce A, Chrousos G, de Herder WW, Dhatariya K, et al. editors. South Dartmouth (MA): Endotext; 2000. PubMed

Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity. Dis Model Mech. 2017;10(6):679–89. doi: 10.1242/dmm.026609 PubMed DOI PMC

Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol. 2022;915:174611. doi: 10.1016/j.ejphar.2021.174611 PubMed DOI

Aponte Y, Atasoy D, Sternson SM. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci. 2011;14(3):351–5. doi: 10.1038/nn.2739 PubMed DOI PMC

Betley JN, Cao ZFH, Ritola KD, Sternson SM. Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell. 2013;155(6):1337–50. doi: 10.1016/j.cell.2013.11.002 PubMed DOI PMC

Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science. 2005;310(5748):683–5. doi: 10.1126/science.1115524 PubMed DOI

Heisler LK, Lam DD. An appetite for life: brain regulation of hunger and satiety. Curr Opin Pharmacol. 2017;37:100–6. doi: 10.1016/j.coph.2017.09.002 PubMed DOI

Garfield AS, Shah BP, Burgess CR, Li MM, Li C, Steger JS, et al. Dynamic GABAergic afferent modulation of AgRP neurons. Nat Neurosci. 2016;19(12):1628–35. doi: 10.1038/nn.4392 PubMed DOI PMC

Yoo S, Blackshaw S. Regulation and function of neurogenesis in the adult mammalian hypothalamus. Prog Neurobiol. 2018;170:53–66. doi: 10.1016/j.pneurobio.2018.04.001 PubMed DOI PMC

Kokoeva MV, Yin H, Flier JS. Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science. 2005;310(5748):679–83. doi: 10.1126/science.1115360 PubMed DOI

Gouazé A, Brenachot X, Rigault C, Krezymon A, Rauch C, Nédélec E, et al. Cerebral cell renewal in adult mice controls the onset of obesity. PLoS One. 2013;8(8):e72029. doi: 10.1371/journal.pone.0072029 PubMed DOI PMC

Jörgensen SK, Karnošová A, Mazzaferro S, Rowley O, Chen H-JC, Robbins SJ, et al. An analogue of the prolactin releasing peptide reduces obesity and promotes adult neurogenesis. EMBO Rep. 2024;25(1):351–77. doi: 10.1038/s44319-023-00016-2 PubMed DOI PMC

Pražienková V, Holubová M, Pelantová H, Bugáňová M, Pirník Z, Mikulášková B, et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS One. 2017;12(8):e0183449. doi: 10.1371/journal.pone.0183449 PubMed DOI PMC

Merkle FT, Maroof A, Wataya T, Sasai Y, Studer L, Eggan K, et al. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells. Development. 2015;142(4):633–43. doi: 10.1242/dev.117978 PubMed DOI PMC

Kirwan P, Jura M, Merkle FT. Generation and characterization of functional human hypothalamic neurons. Curr Protoc Neurosci. 2017;81:3.33.1–3.33.24. doi: 10.1002/cpns.40 PubMed DOI

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. doi: 10.1006/meth.2001.1262 PubMed DOI

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Arshadi C, Günther U, Eddison M, Harrington KIS, Ferreira TA. SNT: a unifying toolbox for quantification of neuronal anatomy. Nat Methods. 2021;18(4):374–7. doi: 10.1038/s41592-021-01105-7 PubMed DOI

Yu H, Rubinstein M, Low MJ. Developmental single-cell transcriptomics of hypothalamic POMC neurons reveal the genetic trajectories of multiple neuropeptidergic phenotypes. Elife. 2022;11:e72883. doi: 10.7554/eLife.72883 PubMed DOI PMC

Lam BYH, Cimino I, Polex-Wolf J, Nicole Kohnke S, Rimmington D, Iyemere V, et al. Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing. Mol Metab. 2017;6(5):383–92. doi: 10.1016/j.molmet.2017.02.007 PubMed DOI PMC

Boucsein A, Kamstra K, Tups A. Central signalling cross-talk between insulin and leptin in glucose and energy homeostasis. J Neuroendocrinol. 2021;33(4):e12944. doi: 10.1111/jne.12944 PubMed DOI

Cawthon CR, de La Serre CB. The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides. 2021;138:170492. doi: 10.1016/j.peptides.2020.170492 PubMed DOI

Liz MA, Coelho T, Bellotti V, Fernandez-Arias MI, Mallaina P, Obici L. A Narrative Review of the role of transthyretin in health and disease. Neurol Ther. 2020;9(2):395–402. doi: 10.1007/s40120-020-00217-0 PubMed DOI PMC

Leon S, Simon V, Lee TH, Steuernagel L, Clark S, Biglari N, et al. Single cell tracing of Pomc neurons reveals recruitment of “Ghost” subtypes with atypical identity in a mouse model of obesity. Nat Commun. 2024;15(1):3443. doi: 10.1038/s41467-024-47877-2 PubMed DOI PMC

Tao Y, Zhang S-C. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell. 2016;19(5):573–86. doi: 10.1016/j.stem.2016.10.015 PubMed DOI PMC

de Souza Santos R, Gross AR, Sareen D. Hypothalamus and neuroendocrine diseases: the use of human-induced pluripotent stem cells for disease modeling. Handb Clin Neurol. 2021;181:337–50. doi: 10.1016/B978-0-12-820683-6.00025-7 PubMed DOI

Li J, Tang Y, Cai D. IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol. 2012;14(10):999–1012. doi: 10.1038/ncb2562 PubMed DOI PMC

McNay DEG, Briançon N, Kokoeva MV, Maratos-Flier E, Flier JS. Remodeling of the arcuate nucleus energy-balance circuit is inhibited in obese mice. J Clin Invest. 2012;122(1):142–52. doi: 10.1172/JCI43134 PubMed DOI PMC

Lau J, Bloch P, Schäffer L, Pettersson I, Spetzler J, Kofoed J, et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J Med Chem. 2015;58(18):7370–80. doi: 10.1021/acs.jmedchem.5b00726 PubMed DOI

Mikulášková B, Zemenová J, Pirník Z, Pražienková V, Bednárová L, Železná B, et al. Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides. 2016;75:109–17. doi: 10.1016/j.peptides.2015.11.005 PubMed DOI

Yu M, Yang Y, Sykes M, Wang S. Small-molecule inhibitors of tankyrases as prospective therapeutics for cancer. J Med Chem. 2022;65(7):5244–73. doi: 10.1021/acs.jmedchem.1c02139 PubMed DOI

Hou P-S, hAilín DÓ, Vogel T, Hanashima C. Transcription and beyond: delineating FOXG1 function in cortical development and disorders. Front Cell Neurosci. 2020;14:35. doi: 10.3389/fncel.2020.00035 PubMed DOI PMC

Mio C, Baldan F, Damante G. NK2 homeobox gene cluster: functions and roles in human diseases. Genes Dis. 2022;10(5):2038–48. doi: 10.1016/j.gendis.2022.10.001 PubMed DOI PMC

Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral arrangement of lateral hypothalamus populations in the mouse hypothalamus: a prosomeric genoarchitectonic analysis. Mol Neurobiol. 2023;60(2):687–731. doi: 10.1007/s12035-022-03043-7 PubMed DOI PMC

Orquera DP, Tavella MB, de Souza FSJ, Nasif S, Low MJ, Rubinstein M. The homeodomain transcription factor NKX2.1 is essential for the early specification of melanocortin neuron identity and activates pomc expression in the developing hypothalamus. J Neurosci. 2019;39(21):4023–35. doi: 10.1523/JNEUROSCI.2924-18.2019 PubMed DOI PMC

Rajamani U, Gross AR, Hjelm BE, Sequeira A, Vawter MP, Tang J, et al. Super-obese patient-derived iPSC hypothalamic neurons exhibit obesogenic signatures and hormone responses. Cell Stem Cell. 2018;22(5):698–712.e9. doi: 10.1016/j.stem.2018.03.009 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...