Lipidized Prolactin-Releasing Peptide as a New Potential Tool to Treat Obesity and Type 2 Diabetes Mellitus: Preclinical Studies in Rodent Models
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
34867411
PubMed Central
PMC8637538
DOI
10.3389/fphar.2021.779962
PII: 779962
Knihovny.cz E-zdroje
- Klíčová slova
- leptin resistance, obesity, prolactin-releasing peptide, rodent models, type 2 diabetes,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Obesity and type 2 diabetes mellitus (T2DM) are preconditions for the development of metabolic syndrome, which is reaching pandemic levels worldwide, but there are still only a few anti-obesity drugs available. One of the promising tools for the treatment of obesity and related metabolic complications is anorexigenic peptides, such as prolactin-releasing peptide (PrRP). PrRP is a centrally acting neuropeptide involved in food intake and body weight (BW) regulation. In its natural form, it has limitations for peripheral administration; thus, we designed analogs of PrRP lipidized at the N-terminal region that showed high binding affinities, increased stability and central anorexigenic effects after peripheral administration. In this review, we summarize the preclinical results of our chronic studies on the pharmacological role of the two most potent palmitoylated PrRP31 analogs in various mouse and rat models of obesity, glucose intolerance, and insulin resistance. We used mice and rats with diet-induced obesity fed a high-fat diet, which is considered to simulate the most common form of human obesity, or rodent models with leptin deficiency or disrupted leptin signaling in which long-term food intake regulation by leptin is distorted. The rodent models described in this review are models of metabolic syndrome with different severities, such as obesity or morbid obesity, prediabetes or diabetes and hypertension. We found that the effects of palmitoylated PrRP31 on food intake and BW but not on glucose intolerance require intact leptin signaling. Thus, palmitoylated PrRP31 analogs have potential as therapeutics for obesity and related metabolic complications.
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech
Institute of Physiology Czech Academy of Sciences Prague Czech
Zobrazit více v PubMed
Agahi A., Murphy K. G. (2014). Models and Strategies in the Development of Antiobesity Drugs. Vet. Pathol. 51, 695–706. 10.1177/0300985813492801 PubMed DOI
Andreassen K. V., Feigh M., Hjuler S. T., Gydesen S., Henriksen J. E., Beck-Nielsen H., et al. (2014). A Novel Oral Dual Amylin and Calcitonin Receptor Agonist (KBP-042) Exerts Antiobesity and Antidiabetic Effects in Rats. Am. J. Physiol. Endocrinol. Metab. 307, E24–E33. 10.1152/ajpendo.00121.2014 PubMed DOI
Arch J. R. (2015). Horizons in the Pharmacotherapy of Obesity. Curr. Obes. Rep. 4, 451–459. 10.1007/s13679-015-0177-4 PubMed DOI
Atanes P., Ashik T., Persaud S. J. (2021). Obesity-induced Changes in Human Islet G Protein-Coupled Receptor Expression: Implications for Metabolic Regulation. Pharmacol. Ther. 228, 107928. 10.1016/j.pharmthera.2021.107928 PubMed DOI
Bagnol D., Al-Shamma H. A., Behan D., Whelan K., Grottick A. J. (2012). Diet-induced Models of Obesity (DIO) in Rodents. Curr. Protoc. Neurosci. 9, Unit–13. 10.1002/0471142301.ns0938s59 PubMed DOI
Balland E., Cowley M. A. (2015). New Insights in Leptin Resistance Mechanisms in Mice. Front. Neuroendocrinol 39, 59–65. 10.1016/j.yfrne.2015.09.004 PubMed DOI
Bech E. M., Martos-Maldonado M. C., Wismann P., Sørensen K. K., van Witteloostuijn S. B., Thygesen M. B., et al. (2017). Peptide Half-Life Extension: Divalent, Small-Molecule Albumin Interactions Direct the Systemic Properties of Glucagon-like Peptide 1 (GLP-1) Analogues. J. Med. Chem. 60, 7434–7446. 10.1021/acs.jmedchem.7b00787 PubMed DOI
Bechtold D. A., Luckman S. M. (2006). Prolactin-releasing Peptide Mediates Cholecystokinin-Induced Satiety in Mice. Endocrinology 147, 4723–4729. 10.1210/en.2006-0753 PubMed DOI
Bergman R. N., Kim S. P., Catalano K. J., Hsu I. R., Chiu J. D., Kabir M., et al. (2006). Why Visceral Fat Is Bad: Mechanisms of the Metabolic Syndrome. Obesity (Silver Spring) 14 (1), 16s–19s. 10.1038/oby.2006.277 PubMed DOI
Biddinger S. B., Miyazaki M., Boucher J., Ntambi J. M., Kahn C. R. (2006). Leptin Suppresses Stearoyl-CoA Desaturase 1 by Mechanisms Independent of Insulin and Sterol Regulatory Element-Binding Protein-1c. Diabetes 55, 2032–2041. 10.2337/db05-0742 PubMed DOI
Bjursell M., Lennerås M., Göransson M., Elmgren A., Bohlooly-Y M. (2007). GPR10 Deficiency in Mice Results in Altered Energy Expenditure and Obesity. Biochem. Biophys. Res. Commun. 363, 633–638. 10.1016/j.bbrc.2007.09.016 PubMed DOI
Bray G. A., Frühbeck G., Ryan D. H., Wilding J. P. (2016). Management of Obesity. Lancet 387, 1947–1956. 10.1016/S0140-6736(16)00271-3 PubMed DOI
Buettner R., Schölmerich J., Bollheimer L. C. (2007). High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. Obesity (Silver Spring) 15, 798–808. 10.1038/oby.2007.608 PubMed DOI
Cameron D. P., Poon T. K., Smith G. C. (1976). Effects of Monosodium Glutamate Administration in the Neonatal Period on the Diabetic Syndrome in KK Mice. Diabetologia 12, 621–626. 10.1007/BF01220641 PubMed DOI
Čermáková M., Pelantová H., Neprašová B., Šedivá B., Maletínská L., Kuneš J., et al. (2019). 'Metabolomic Study of Obesity and its Treatment with Palmitoylated Prolactin-Releasing Peptide Analog in Spontaneously Hypertensive and Normotensive Rats. J. Proteome Res. 18, 1735–1750. PubMed
De Souza C. T., Araujo E. P., Bordin S., Ashimine R., Zollner R. L., Boschero A. C., et al. (2005). Consumption of a Fat-Rich Diet Activates a Proinflammatory Response and Induces Insulin Resistance in the Hypothalamus. Endocrinology 146, 4192–4199. 10.1210/en.2004-1520 PubMed DOI
Djazayery A., Miller D. S., Stock M. J. (1979). Energy Balances in Obese Mice. Nutr. Metab. 23, 357–367. 10.1159/000176281 PubMed DOI
Dourmashkin J. T., Chang G. Q., Gayles E. C., Hill J. O., Fried S. K., Julien C., et al. (2005). Different Forms of Obesity as a Function of Diet Composition. Int. J. Obes. (Lond) 29, 1368–1378. 10.1038/sj.ijo.0803017 PubMed DOI
Ellacott K. L., Lawrence C. B., Pritchard L. E., Luckman S. M. (2003). Repeated Administration of the Anorectic Factor Prolactin-Releasing Peptide Leads to Tolerance to its Effects on Energy Homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1005–R1010. 10.1152/ajpregu.00237.2003 PubMed DOI
Ellacott K. L., Lawrence C. B., Rothwell N. J., Luckman S. M. (2002). PRL-releasing Peptide Interacts with Leptin to Reduce Food Intake and Body Weight. Endocrinology 143, 368–374. 10.1210/endo.143.2.8608 PubMed DOI
Engin A. (2017). The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 960, 1–17. 10.1007/978-3-319-48382-5_1 PubMed DOI
Engström M., Brandt A., Wurster S., Savola J. M., Panula P. (2003). Prolactin Releasing Peptide Has High Affinity and Efficacy at Neuropeptide FF2 Receptors. J. Pharmacol. Exp. Ther. 305, 825–832. 10.1124/jpet.102.047118 PubMed DOI
Enser M. (1972). Clearing-factor Lipase in Obese Hyperglycaemic Mice (Ob-ob). Biochem. J. 129, 447–453. 10.1042/bj1290447 PubMed DOI PMC
Fellmann L., Nascimento A. R., Tibiriça E., Bousquet P. (2013). Murine Models for Pharmacological Studies of the Metabolic Syndrome. Pharmacol. Ther. 137, 331–340. 10.1016/j.pharmthera.2012.11.004 PubMed DOI
Fosgerau K., Raun K., Nilsson C., Dahl K., Wulff B. S. (2014). Novel α-MSH Analog Causes Weight Loss in Obese Rats and Minipigs and Improves Insulin Sensitivity. J. Endocrinol. 220, 97–107. 10.1530/JOE-13-0284 PubMed DOI PMC
Friedman J. E., Ishizuka T., Liu S., Farrell C. J., Bedol D., Koletsky R. J., et al. (1997). Reduced Insulin Receptor Signaling in the Obese Spontaneously Hypertensive Koletsky Rat. Am. J. Physiol. 273, E1014–E1023. 10.1152/ajpendo.1997.273.5.E1014 PubMed DOI
Fuchs T., Loureiro M. P., Macedo L. E., Nocca D., Nedelcu M., Costa-Casagrande T. A. (2018). Animal Models in Metabolic Syndrome. Rev. Col Bras Cir 45, e1975. 10.1590/0100-6991e-20181975 PubMed DOI
Gault V. A., Kerr B. D., Harriott P., Flatt P. R. (2011). Administration of an Acylated GLP-1 and GIP Preparation Provides Added Beneficial Glucose-Lowering and Insulinotropic Actions over Single Incretins in Mice with Type 2 Diabetes and Obesity. Clin. Sci. (Lond) 121, 107–117. 10.1042/CS20110006 PubMed DOI
Havelund S., Plum A., Ribel U., Jonassen I., Vølund A., Markussen J., et al. (2004). The Mechanism of Protraction of Insulin Detemir, a Long-Acting, Acylated Analog of Human Insulin. Pharm. Res. 21, 1498–1504. 10.1023/b:pham.0000036926.54824.37 PubMed DOI
Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S., et al. (1998). A Prolactin-Releasing Peptide in the Brain. Nature 393, 272–276. 10.1038/30515 PubMed DOI
Holubová M., Hrubá L., Neprašová B., Majerčíková Z., Lacinová Z., Kuneš J., et al. (2018). Prolactin-releasing Peptide Improved Leptin Hypothalamic Signaling in Obese Mice. J. Mol. Endocrinol. 60, 85–94. 10.1530/JME-17-0171 PubMed DOI
Holubová M., Zemenová J., Mikulášková B., Panajotova V., Stöhr J., Haluzík M., et al. (2016). Palmitoylated PrRP Analog Decreases Body Weight in DIO Rats but Not in ZDF Rats. J. Endocrinol. 229, 85–96. 10.1530/JOE-15-0519 PubMed DOI
Jarry H., Heuer H., Schomburg L., Bauer K. (2000). Prolactin-releasing Peptides Do Not Stimulate Prolactin Release In Vivo . Neuroendocrinology 71, 262–267. 10.1159/000054544 PubMed DOI
Karnošová A., Strnadová V., Holá L., Železná B., Kuneš J., Maletínská L. (2021). Palmitoylation of Prolactin-Releasing Peptide Increased Affinity for and Activation of the GPR10, NPFF-R2 and NPFF-R1 Receptors: In Vitro Study. Int. J. Mol. Sci. 22, 8904. 10.3390/ijms22168904 PubMed DOI PMC
Koletsky S. (1973). Obese Spontaneously Hypertensive Rats-Aa Model for Study of Atherosclerosis. Exp. Mol. Pathol. 19, 53–60. 10.1016/0014-4800(73)90040-3 PubMed DOI
Korinkova L., Holubova M., Neprasova B., Hruba L., Prazienkova V., Bencze M., et al. (2020). Synergistic Effect of Leptin and Lipidized PrRP on Metabolic Pathways in Ob/ob Mice. J. Mol. Endocrinol. 64, 77–90. 10.1530/jme-19-0188 PubMed DOI
Kumar M. S. (2019). Peptides and Peptidomimetics as Potential Antiobesity Agents: Overview of Current Status. Front. Nutr. 6, 11. 10.3389/fnut.2019.00011 PubMed DOI PMC
Kunes J., Prazienkova V., Popelova A., Mikulaskova B., Zemenova J., Maletinska L. (2016). Prolactin-releasing Peptide: a New Tool for Obesity Treatment. J. Endocrinol. 230, R51–R58. 10.1530/joe-16-0046 PubMed DOI
Lau J., Bloch P., Schäffer L., Pettersson I., Spetzler J., Kofoed J., et al. (2015). Discovery of the Once-Weekly Glucagon-like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem. 58, 7370–7380. 10.1021/acs.jmedchem.5b00726 PubMed DOI
Lawrence C. B., Celsi F., Brennand J., Luckman S. M. (2000). Alternative Role for Prolactin-Releasing Peptide in the Regulation of Food Intake. Nat. Neurosci. 3, 645–646. 10.1038/76597 PubMed DOI
Maixnerová J., Špolcová A., Pýchová M., Blechová M., Elbert T., Rezáčová M., et al. (2011). Characterization of Prolactin-Releasing Peptide: Binding, Signaling and Hormone Secretion in Rodent Pituitary Cell Lines Endogenously Expressing its Receptor. Peptides 32, 811–817. 10.1016/j.peptides.2010.12.011 PubMed DOI
Malavolta L., Cabral F. R. (2011). Peptides: Important Tools for the Treatment of central Nervous System Disorders. Neuropeptides 45, 309–316. 10.1016/j.npep.2011.03.001 PubMed DOI
Maletínská L., Nagelová V., Tichá A., Zemenová J., Pirník Z., Holubová M., et al. (2015). Novel Lipidized Analogs of Prolactin-Releasing Peptide Have Prolonged Half-Lives and Exert Anti-obesity Effects after Peripheral Administration. Int. J. Obes. (Lond) 39, 986–993. 10.1038/ijo.2015.28 PubMed DOI
Maletínská L., Spolcová A., Maixnerová J., Blechová M., Zelezná B. (2011). Biological Properties of Prolactin-Releasing Peptide Analogs with a Modified Aromatic Ring of a C-Terminal Phenylalanine Amide. Peptides 32, 1887–1892. 10.1016/j.peptides.2011.08.011 PubMed DOI
Maletínská L., Toma R. S., Pirnik Z., Kiss A., Slaninová J., Haluzík M., et al. (2006). Effect of Cholecystokinin on Feeding Is Attenuated in Monosodium Glutamate Obese Mice. Regul. Pept. 136, 58–63. 10.1016/j.regpep.2006.04.020 PubMed DOI
Matysková R., Maletínská L., Maixnerová J., Pirník Z., Kiss A., Zelezná B. (2008). Comparison of the Obesity Phenotypes Related to Monosodium Glutamate Effect on Arcuate Nucleus And/or the High Fat Diet Feeding in C57BL/6 and NMRI Mice. Physiol. Res. 57, 727–734. 10.33549/physiolres.931274 PubMed DOI
Mikulaskova B., Holubova M., Prazienkova V., Zemenova J., Hruba L., Haluzik M., et al. (2018). Lipidized Prolactin-Releasing Peptide Improved Glucose Tolerance in Metabolic Syndrome: Koletsky and Spontaneously Hypertensive Rat Study. Nutr. Diabetes 8, 5. 10.1038/s41387-017-0015-8 PubMed DOI PMC
Mikulaskova B., Maletinska L., Zicha J., Kunes J. (2016). The Role of Food Intake Regulating Peptides in Cardiovascular Regulation. Mol. Cel Endocrinol 436, 78–92. 10.1016/j.mce.2016.07.021 PubMed DOI
Mikulášková B., Zemenová J., Pirník Z., Pražienková V., Bednárová L., Železná B., et al. (2016). Effect of Palmitoylated Prolactin-Releasing Peptide on Food Intake and Neural Activation after Different Routes of Peripheral Administration in Rats. Peptides 75, 109–117. 10.1016/j.peptides.2015.11.005 PubMed DOI
Nestler E. J. (2001). Molecular Neurobiology of Addiction. Am. J. Addict. 10, 201–217. 10.1080/105504901750532094 PubMed DOI
Ohtake M., Bray G. A., Azukizawa M. (1977). Studies on Hypothermia and Thyroid Function in the Obese (Ob/ob) Mouse. Am. J. Physiol. 233, R110–R115. 10.1152/ajpregu.1977.233.3.R110 PubMed DOI
Patel D. (2015). Pharmacotherapy for the Management of Obesity. Metabolism 64, 1376–1385. 10.1016/j.metabol.2015.08.001 PubMed DOI
Pelantová H., Bugáňová M., Holubová M., Šedivá B., Zemenová J., Sýkora D., et al. (2016). Urinary Metabolomic Profiling in Mice with Diet-Induced Obesity and Type 2 Diabetes Mellitus after Treatment with Metformin, Vildagliptin and Their Combination. Mol. Cel Endocrinol 431, 88–100. 10.1016/j.mce.2016.05.003 PubMed DOI
Pirník Z., Kolesárová M., Železná B., Maletínská L. (2018). Repeated Peripheral Administration of Lipidized Prolactin-Releasing Peptide Analog Induces C-Fos and FosB Expression in Neurons of Dorsomedial Hypothalamic Nucleus in Male C57 Mice. Neurochem. Int. 116, 77–84. 10.1016/j.neuint.2018.03.013 PubMed DOI
Pirník Z., Kořínková L., Osacká J., Železná B., Kuneš J., Maletínská L. (2021). Cholecystokinin System Is Involved in the Anorexigenic Effect of Peripherally Applied Palmitoylated Prolactin-Releasing Peptide in Fasted Mice. Physiol. Res. 70, 579–590. 10.33549/physiolres.934694 PubMed DOI PMC
Pirnik Z., Železná B., Kiss A., Maletínská L. (2015). Peripheral Administration of Palmitoylated Prolactin-Releasing Peptide Induces Fos Expression in Hypothalamic Neurons Involved in Energy Homeostasis in NMRI Male Mice. Brain Res. 1625, 151–158. 10.1016/j.brainres.2015.08.042 PubMed DOI
Pražienková V., Holubová M., Pelantová H., Bugáňová M., Pirník Z., Mikulášková B., et al. (2017). Impact of Novel Palmitoylated Prolactin-Releasing Peptide Analogs on Metabolic Changes in Mice with Diet-Induced Obesity. PLoS ONE 12, e0183449–e49. 10.1371/journal.pone.0183449 PubMed DOI PMC
Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L., et al. (2021). 'GPR10 Gene Deletion in Mice Increases Basal Neuronal Activity, Disturbs Insulin Sensitivity and Alters Lipid Homeostasis. Gene 774, 145427. PubMed
Rodgers R. J., Tschöp M. H., Wilding J. P. (2012). Anti-obesity Drugs: Past, Present and Future. Dis. Model. Mech. 5, 621–626. 10.1242/dmm.009621 PubMed DOI PMC
Roland B. L., Sutton S. W., Wilson S. J., Luo L., Pyati J., Huvar R., et al. (1999). Anatomical Distribution of Prolactin-Releasing Peptide and its Receptor Suggests Additional Functions in the central Nervous System and Periphery. Endocrinology 140, 5736–5745. 10.1210/endo.140.12.7211 PubMed DOI
Rose F., Bloom S., Tan T. (2019). Novel Approaches to Anti-obesity Drug Discovery with Gut Hormones over the Past 10 Years. Expert Opin. Drug Discov. 14, 1151–1159. 10.1080/17460441.2019.1646243 PubMed DOI
Royalty J. E., Konradsen G., Eskerod O., Wulff B. S., Hansen B. S. (2014). Investigation of Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of Single and Multiple Doses of a Long-Acting α-MSH Analog in Healthy Overweight and Obese Subjects. J. Clin. Pharmacol. 54, 394–404. 10.1002/jcph.211 PubMed DOI PMC
Said S., Mukherjee D., Whayne T. F. (2016). Interrelationships with Metabolic Syndrome, Obesity and Cardiovascular Risk. Curr. Vasc. Pharmacol. 14, 415–425. 10.2174/1570161114666160722121615 PubMed DOI
Salameh T. S., Banks W. A. (2014). Delivery of Therapeutic Peptides and Proteins to the CNS. Adv. Pharmacol. 71, 277–299. 10.1016/bs.apha.2014.06.004 PubMed DOI PMC
Shafrir E., Ziv E., Mosthaf L. (1999). Nutritionally Induced Insulin Resistance and Receptor Defect Leading to Beta-Cell Failure in Animal Models. Ann. N. Y Acad. Sci. 892, 223–246. 10.1111/j.1749-6632.1999.tb07798.x PubMed DOI
Skarbaliene J., Secher T., Jelsing J., Ansarullah, Neerup T. S., Billestrup N., et al. (2015). The Anti-diabetic Effects of GLP-1-Gastrin Dual Agonist ZP3022 in ZDF Rats. Peptides 69, 47–55. 10.1016/j.peptides.2015.03.024 PubMed DOI
Špolcová A., Mikulášková B., Holubová M., Nagelová V., Pirnik Z., Zemenová J., et al. (2015). Anorexigenic Lipopeptides Ameliorate central Insulin Signaling and Attenuate Tau Phosphorylation in Hippocampi of Mice with Monosodium Glutamate-Induced Obesity. J. Alzheimers Dis. 45, 823–835. 10.3233/jad-143150 PubMed DOI
Takasaki Y. (1978). Studies on Brain Lesion by Administration of Monosodium L-Glutamate to Mice. I. Brain Lesions in Infant Mice Caused by Administration of Monosodium L-Glutamate. Toxicology 9, 293–305. 10.1016/0300-483x(78)90013-6 PubMed DOI
Takayanagi Y., Matsumoto H., Nakata M., Mera T., Fukusumi S., Hinuma S., et al. (2008). Endogenous Prolactin-Releasing Peptide Regulates Food Intake in Rodents. J. Clin. Invest. 118, 4014–4024. 10.1172/JCI34682 PubMed DOI PMC
Taylor M. M., Samson W. K. (2001). The Prolactin Releasing Peptides: RF-Amide Peptides. Cell Mol Life Sci 58, 1206–1215. 10.1007/PL00000934 PubMed DOI PMC
Tune J. D., Goodwill A. G., Sassoon D. J., Mather K. J. (2017). Cardiovascular Consequences of Metabolic Syndrome. Transl Res. 183, 57–70. 10.1016/j.trsl.2017.01.001 PubMed DOI PMC
Varga O., Harangi M., Olsson I. A., Hansen A. K. (2010). Contribution of Animal Models to the Understanding of the Metabolic Syndrome: a Systematic Overview. Obes. Rev. 11, 792–807. 10.1111/j.1467-789X.2009.00667.x PubMed DOI
Wang B., Chandrasekera P. C., Pippin J. J. (2014). Leptin- and Leptin Receptor-Deficient Rodent Models: Relevance for Human Type 2 Diabetes. Curr. Diabetes Rev. 10, 131–145. 10.2174/1573399810666140508121012 PubMed DOI PMC
Williams D. M., Nawaz A., Evans M. (2020). Drug Therapy in Obesity: A Review of Current and Emerging Treatments. Diabetes Ther. 11, 1199–1216. 10.1007/s13300-020-00816-y PubMed DOI PMC
Xu C., Arinze I. J., Johnson J., Tuy T. T., Bone F., Ernsberger P., et al. (2008). Metabolic Dysregulation in the SHROB Rat Reflects Abnormal Expression of Transcription Factors and Enzymes that Regulate Carbohydrate Metabolism. J. Nutr. Biochem. 19, 305–312. 10.1016/j.jnutbio.2007.05.001 PubMed DOI
Zemenová J., Sýkora D., Maletínská L., Kuneš J. (2017). Lipopeptides as Therapeutics: Applications and In Vivo Quantitative Analysis. Bioanalysis 9, 215–230. 10.4155/bio-2016-0206 PubMed DOI
Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis