Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
LX22NPO5104
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
PubMed
39537622
PubMed Central
PMC11561307
DOI
10.1038/s41467-024-53867-1
PII: 10.1038/s41467-024-53867-1
Knihovny.cz E-resources
- MeSH
- Chelating Agents * chemistry MeSH
- Mass Spectrometry methods MeSH
- Kinetics MeSH
- Contrast Media chemistry MeSH
- Lanthanoid Series Elements * chemistry MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Mice MeSH
- Triazoles chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Chelating Agents * MeSH
- Contrast Media MeSH
- Lanthanoid Series Elements * MeSH
- Triazoles MeSH
Coordination compounds of lanthanides are indispensable in biomedical applications as MRI contrast agents and radiotherapeutics. However, since the introduction of the chelator DOTA four decades ago, there has been only limited progress on improving their thermodynamic stability and kinetic inertness, which are essential for safe in vivo use. Here, we present ClickZip, an innovative synthetic strategy employing a coordination-templated formation of a 1,5-triazole bridge that improves kinetic inertness up to a million-fold relative to DOTA, expanding utility of lanthanide chelates beyond traditional uses. Acting as unique mass tags, the ClickZip chelates can be released from (biological) samples by acidic hydrolysis, chromatographically distinguished from interfering lanthanide species, and sensitively detected by mass spectrometry. Lanthanides enclosed in ClickZip chelates are chemically almost indistinguishable, providing a more versatile alternative to chemically identical isotopic labels for multiplexed analysis. The bioanalytical potential is demonstrated on tagged cell-penetrating peptides in vitro, and anti-obesity prolactin-releasing peptides in vivo.
Institute of Inorganic Chemistry Czech Academy of Sciences Husinec Řež Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
University of Chemistry and Technology Prague Prague Czech Republic
See more in PubMed
Perfetto, S. P., Chattopadhyay, P. K. & Roederer, M. Seventeen-colour flow cytometry: unravelling the immune system. Nat. Rev. Immunol.4, 648–655 (2004). PubMed
Shi, H. et al. Highly multiplexed spatial mapping of microbial communities. Nature588, 676–681 (2020). PubMed PMC
Bauer, D., Cornejo, M. A., Hoang, T. T., Lewis, J. S. & Zeglis, B. M. Click Chemistry and Radiochemistry: An Update. Bioconjugate Chem.34, 1925–1950 (2023). PubMed PMC
Pratt, E. C. et al. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron–electron annihilation and prompt gamma emissions. Nat. Biomed. Eng.7, 1028–1039 (2023). PubMed PMC
Price, E. W. & Orvig, C. Matching chelators to radiometals for radiopharmaceuticals. Chem. Soc. Rev.43, 260–290 (2014). PubMed
Qian, J. et al. Barcoded microbial system for high-resolution object provenance. Science368, 1135–1140 (2020). PubMed
Doroschak, K. et al. Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures. Nat. Commun.11, 5454 (2020). PubMed PMC
Jung, J. et al. Deuterium-free, three-plexed peptide diethylation for highly accurate quantitative proteomics. J. Proteome Res.18, 1078–1087 (2019). PubMed
Schwarz, G., Mueller, L., Beck, S. & Linscheid, M. W. DOTA based metal labels for protein quantification: a review. J. Anal. At. Spectrom.29, 221–233 (2014).
Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol.30, 858–867 (2012). PubMed PMC
Cotruvo, J. A. Jr., Featherston, E. R., Mattocks, J. A., Ho, J. V. & Laremore, T. N. Lanmodulin: a highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J. Am. Chem. Soc.140, 15056–15061 (2018). PubMed
Squadrone, S. et al. Rare earth elements in marine and terrestrial matrices of Northwestern Italy: Implications for food safety and human health. Sci. Total Environ.660, 1383–1391 (2019). PubMed
Gwenzi, W. et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ.636, 299–313 (2018). PubMed
Poniedziałek, B. et al. Rare-earth elements in human colostrum milk. Environ. Sci. Pollut. Res.24, 26148–26154 (2017). PubMed
Wahsner, J., Gale, E. M., Rodríguez-Rodríguez, A. & Caravan, P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev.119, 957–1057 (2019). PubMed PMC
Hamon, N. et al. Pyclen-Based Ln(III) complexes as highly luminescent bioprobes for in vitro and in vivo one- and two-photon bioimaging applications. J. Am. Chem. Soc.142, 10184–10197 (2020). PubMed
Kreidt, E., Leis, W. & Seitz, M. Direct solid-phase synthesis of molecular heterooligonuclear lanthanoid-complexes. Nat. Commun.11, 1346 (2020). PubMed PMC
Finney, K.-L. N. A. et al. Simultaneous triple imaging with two PARASHIFT probes: encoding anatomical, pH and temperature information using magnetic resonance shift imaging. Chem. Eur. J.23, 7976–7989 (2017). PubMed
Goren, E., Avram, L. & Bar-Shir, A. Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands. Nat. Commun.12, 3072 (2021). PubMed PMC
Kretschmer, J. et al. Paramagnetic encoding of molecules. Nat. Commun.13, 3179 (2022). PubMed PMC
Wang, X. et al. A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent. Inorg. Chem.31, 1095–1099 (1992).
Baranyai, Z. et al. Dissociation kinetics of open-chain and macrocyclic gadolinium(III)-aminopolycarboxylate complexes related to magnetic resonance imaging: catalytic effect of endogenous ligands. Chem. Eur. J.18, 16426–16435 (2012). PubMed
Smith, R. M. & Hansen, D. E. The pH-rate profile for the hydrolysis of a peptide bond. J. Am. Chem. Soc.120, 8910–8913 (1998).
Sørensen, T. J. & Faulkner, S. Multimetallic lanthanide complexes: using kinetic control to define complex multimetallic arrays. Acc. Chem. Res.51, 2493–2501 (2018). PubMed
Kanda, T., Ishii, K., Kawaguchi, H., Kitajima, K. & Takenaka, D. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology270, 834–841 (2014). PubMed
Clough, T. J., Jiang, L., Wong, K.-L. & Long, N. J. Ligand design strategies to increase stability of gadolinium-based magnetic resonance imaging contrast agents. Nat. Commun.10, 1420 (2019). PubMed PMC
Dai, L. et al. Chiral DOTA chelators as an improved platform for biomedical imaging and therapy applications. Nat. Commun.9, 857 (2018). PubMed PMC
Rodríguez-Rodríguez, A. et al. Lanthanide(III) complexes with a reinforced cyclam ligand show unprecedented kinetic inertness. J. Am. Chem. Soc.136, 17954–17957 (2014). PubMed
Castro, G. et al. Exceptionally Inert Lanthanide(III) PARACEST MRI contrast agents based on an 18-membered macrocyclic platform. Chem. Eur. J.21, 18662–18670 (2015). PubMed
Pazderová, L. et al. Cross-bridged cyclam with phosphonate and phosphinate pendant arms: chelators for copper radioisotopes with fast complexation. Inorg. Chem.59, 8432–8443 (2020). PubMed
Aime, S., Botta, M. & Ermondi, G. NMR study of solution structures and dynamics of lanthanide(III) complexes of DOTA. Inorg. Chem.31, 4291–4299 (1992).
Popov, A. A., Yang, S. & Dunsch, L. Endohedral fullerenes. Chem. Rev.113, 5989–6113 (2013). PubMed
Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed.41, 2596–2599 (2002). PubMed
Payne, K. M. & Woods, M. Isomerism in Benzyl-DOTA derived bifunctional chelators: implications for molecular imaging. Bioconjugate Chem.26, 338–344 (2015). PubMed
Mráziková, L. et al. Lipidized prolactin-releasing peptide as a new potential tool to treat obesity and type 2 diabetes mellitus: preclinical studies in rodent models. Front. Pharmacol.12, 779962 (2021). PubMed PMC
Mikulášková, B. et al. Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides75, 109–117 (2016). PubMed
Pražienková, V. et al. Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLOS ONE12, e0183449 (2017). PubMed PMC