Paramagnetic encoding of molecules
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35676253
PubMed Central
PMC9177614
DOI
10.1038/s41467-022-30811-9
PII: 10.1038/s41467-022-30811-9
Knihovny.cz E-zdroje
- MeSH
- lanthanoidy * MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- magnetismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lanthanoidy * MeSH
Contactless digital tags are increasingly penetrating into many areas of human activities. Digitalization of our environment requires an ever growing number of objects to be identified and tracked with machine-readable labels. Molecules offer immense potential to serve for this purpose, but our ability to write, read, and communicate molecular code with current technology remains limited. Here we show that magnetic patterns can be synthetically encoded into stable molecular scaffolds with paramagnetic lanthanide ions to write digital code into molecules and their mixtures. Owing to the directional character of magnetic susceptibility tensors, each sequence of lanthanides built into one molecule produces a unique magnetic outcome. Multiplexing of the encoded molecules provides a high number of codes that grows double-exponentially with the number of available paramagnetic ions. The codes are readable by nuclear magnetic resonance in the radiofrequency (RF) spectrum, analogously to the macroscopic technology of RF identification. A prototype molecular system capable of 16-bit (65,535 codes) encoding is presented. Future optimized systems can conceivably provide 64-bit (~10^19 codes) or higher encoding to cover the labelling needs in drug discovery, anti-counterfeiting and other areas.
Zobrazit více v PubMed
Birtwell S, Morgan H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol. 2009;1:345–362. doi: 10.1039/b905502a. PubMed DOI PMC
Binan L, Drobetsky EA, Costantino S. Exploiting molecular barcodes in high-throughput cellular assays. SLAS Technol. Transl. Life Sci. Innov. 2019;24:298–307. PubMed
Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 2015;54:2552–2555. doi: 10.1002/anie.201411378. PubMed DOI
Koch J, et al. A DNA-of-things storage architecture to create materials with embedded memory. Nat. Biotechnol. 2020;38:39–43. doi: 10.1038/s41587-019-0356-z. PubMed DOI
Qian J, et al. Barcoded microbial system for high-resolution object provenance. Science. 2020;368:1135–1140. doi: 10.1126/science.aba5584. PubMed DOI
Doroschak K, et al. Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures. Nat. Commun. 2020;11:5454. doi: 10.1038/s41467-020-19151-8. PubMed DOI PMC
Yang K, McCloskey CM, Chaput JC. Reading and writing digital information in TNA. ACS Synth. Biol. 2020;9:2936–2942. doi: 10.1021/acssynbio.0c00361. PubMed DOI
Lee JM, et al. High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester. Nat. Commun. 2020;11:56. doi: 10.1038/s41467-019-13952-2. PubMed DOI PMC
Laurent E, et al. High-capacity digital polymers: storing images in single molecules. Macromolecules. 2020;53:4022–4029. doi: 10.1021/acs.macromol.0c00666. DOI
König NF, et al. Photo-editable macromolecular information. Nat. Commun. 2019;10:3774. doi: 10.1038/s41467-019-11566-2. PubMed DOI PMC
Al Ouahabi A, Charles L, Lutz J-F. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J. Am. Chem. Soc. 2015;137:5629–5635. doi: 10.1021/jacs.5b02639. PubMed DOI
Zhang J, et al. Rapidly sequence-controlled electrosynthesis of organometallic polymers. Nat. Commun. 2020;11:2530. doi: 10.1038/s41467-020-16255-z. PubMed DOI PMC
Rassay S, Ramezani M, Shomaji S, Bhunia S, Tabrizian R. Clandestine nanoelectromechanical tags for identification and authentication. Microsyst. Nanoeng. 2020;6:1–8. doi: 10.1038/s41378-020-00213-2. PubMed DOI PMC
Baumbauer CL, et al. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 2020;10:16543. doi: 10.1038/s41598-020-73471-9. PubMed DOI PMC
Zaeimbashi M, et al. Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat. Commun. 2021;12:3141. doi: 10.1038/s41467-021-23256-z. PubMed DOI PMC
Shi C, et al. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 2021;7:eabf6312. doi: 10.1126/sciadv.abf6312. PubMed DOI PMC
Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 1–19 10.1038/s41551-021-00683-3 (2021). PubMed PMC
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017;3:e1601649. doi: 10.1126/sciadv.1601649. PubMed DOI PMC
Arcadia CE, et al. Multicomponent molecular memory. Nat. Commun. 2020;11:691. doi: 10.1038/s41467-020-14455-1. PubMed DOI PMC
Cafferty BJ, et al. Storage of information using small organic molecules. ACS Cent. Sci. 2019;5:911–916. doi: 10.1021/acscentsci.9b00210. PubMed DOI PMC
Rosenstein JK, et al. Principles of information storage in small-molecule mixtures. IEEE Trans. NanoBioscience. 2020;19:378–384. doi: 10.1109/TNB.2020.2977304. PubMed DOI
Ratner T, Reany O, Keinan E. Encoding and processing of alphanumeric information by chemical mixtures. ChemPhysChem. 2009;10:3303–3309. doi: 10.1002/cphc.200900520. PubMed DOI
Nagarkar AA, et al. Storing and reading information in mixtures of fluorescent molecules. ACS Cent. Sci. 2021;7:1728–1735. doi: 10.1021/acscentsci.1c00728. PubMed DOI PMC
Kreidt E, Leis W, Seitz M. Direct solid-phase synthesis of molecular heterooligonuclear lanthanoid-complexes. Nat. Commun. 2020;11:1346. doi: 10.1038/s41467-020-15199-8. PubMed DOI PMC
Valm AM, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546:162–167. doi: 10.1038/nature22369. PubMed DOI PMC
Shi H, et al. Highly multiplexed spatial mapping of microbial communities. Nature. 2020;588:676–681. doi: 10.1038/s41586-020-2983-4. PubMed DOI PMC
Geiss GK, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008;26:317–325. doi: 10.1038/nbt1385. PubMed DOI
Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001;19:631–635. doi: 10.1038/90228. PubMed DOI
Zhang F, et al. Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small. 2011;7:1972–1976. doi: 10.1002/smll.201100629. PubMed DOI PMC
Gorris HH, Wolfbeis OS. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 2013;52:3584–3600. doi: 10.1002/anie.201208196. PubMed DOI
Lee J, et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 2014;13:524–529. doi: 10.1038/nmat3938. PubMed DOI
Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020;5:87–104. doi: 10.1038/s41578-019-0146-8. DOI
Bleaney, B. et al. Origin of lanthanide nuclear magnetic resonance shifts and their uses. J. Chem. Soc. Chem. Commun. 791–793 10.1039/C3972000791B (1972).
Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2019;114–115:211–236. doi: 10.1016/j.pnmrs.2019.06.003. PubMed DOI
Parker D, Suturina EA, Kuprov I, Chilton NF. How the ligand field in lanthanide coordination complexes determines magnetic susceptibility anisotropy, paramagnetic NMR shift, and relaxation behavior. Acc. Chem. Res. 2020;53:1520–1534. doi: 10.1021/acs.accounts.0c00275. PubMed DOI PMC
Häussinger D, Huang J, Grzesiek S. DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J. Am. Chem. Soc. 2009;131:14761–14767. doi: 10.1021/ja903233w. PubMed DOI
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 2019;119:957–1057. doi: 10.1021/acs.chemrev.8b00363. PubMed DOI PMC
McMahon MT, et al. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 2008;60:803–812. doi: 10.1002/mrm.21683. PubMed DOI PMC
Liu G, et al. In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn. Reson. Med. 2012;67:1106–1113. doi: 10.1002/mrm.23100. PubMed DOI PMC
Lim YT, et al. Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J. Am. Chem. Soc. 2009;131:17145–17154. doi: 10.1021/ja904472z. PubMed DOI
Akazawa K, et al. Perfluorocarbon-based 19F MRI nanoprobes for in vivo multicolor imaging. Angew. Chem. Int. Ed. 2018;57:16742–16747. doi: 10.1002/anie.201810363. PubMed DOI PMC
Yang Y, et al. Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chem. Sci. 2021;12:4300–4308. doi: 10.1039/D0SC06969H. PubMed DOI PMC
Ferrauto G, Castelli DD, Terreno E, Aime S. In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magn. Reson. Med. 2013;69:1703–1711. doi: 10.1002/mrm.24411. PubMed DOI
Harvey P, et al. Moving the goal posts: enhancing the sensitivity of PARASHIFT proton magnetic resonance imaging and spectroscopy. Chem. Sci. 2013;4:4251–4258. doi: 10.1039/c3sc51526e. DOI
Goren E, Avram L, Bar-Shir A. Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands. Nat. Commun. 2021;12:3072. doi: 10.1038/s41467-021-23179-9. PubMed DOI PMC
Ishikawa N, Iino T, Kaizu Y. Study of 1H NMR spectra of dinuclear complexes of heavy lanthanides with phthalocyanines based on separation of the effects of two paramagnetic centers. J. Phys. Chem. A. 2003;107:7879–7884. doi: 10.1021/jp034971n. DOI
Polovkova MA, et al. Determination of the structural parameters of heteronuclear (phthalocyaninato)bis(crownphthalocyaninato)lanthanide(III) triple-deckers in solution by simultaneous analysis of NMR and single-crystal X-ray data. Inorg. Chem. 2016;55:9258–9269. doi: 10.1021/acs.inorgchem.6b01292. PubMed DOI
Sørensen TJ, Faulkner S. Multimetallic lanthanide complexes: using kinetic control to define complex multimetallic arrays. ACC Chem. Res. 2018;51:2493–2501. doi: 10.1021/acs.accounts.8b00205. PubMed DOI
Brückner K, Zitterbart R, Seitz O, Beck S, Linscheid MW. Solid phase synthesis of short peptide-based multimetal tags for biomolecule labeling. Bioconjug. Chem. 2014;25:1069–1077. doi: 10.1021/bc500082k. PubMed DOI
De León-Rodriguez LM, Kovacs Z, Dieckmann GR, Sherry AD. Solid-phase synthesis of DOTA–peptides. Chem. - Eur. J. 2004;10:1149–1155. doi: 10.1002/chem.200305389. PubMed DOI
Boros E, Polasek M, Zhang Z, Caravan P. Gd(DOTAla): a single amino acid Gd-complex as a modular tool for high relaxivity MR contrast agent development. J. Am. Chem. Soc. 2012;134:19858–19868. doi: 10.1021/ja309187m. PubMed DOI PMC
Woods M, Kovacs Z, Zhang S, Sherry AD. Towards the rational design of magnetic resonance imaging contrast agents: isolation of the two coordination isomers of lanthanide DOTA-type complexes. Angew. Chem. Int. Ed. 2003;42:5889–5892. doi: 10.1002/anie.200352234. PubMed DOI
Chalmers KH, Botta M, Parker D. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance. Dalton Trans. 2011;40:904–913. doi: 10.1039/C0DT01232G. PubMed DOI
Kislukhin AA, et al. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat. Mater. 2016;15:662–668. doi: 10.1038/nmat4585. PubMed DOI PMC
Bodenmiller B, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 2012;30:858–867. doi: 10.1038/nbt.2317. PubMed DOI PMC
Michal CA. Low-cost low-field NMR and MRI: instrumentation and applications. J. Magn. Reson. 2020;319:106800. doi: 10.1016/j.jmr.2020.106800. PubMed DOI PMC
Cooley CZ, et al. Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping. J. Magn. Reson. 2020;310:106625. doi: 10.1016/j.jmr.2019.106625. PubMed DOI
Cujia KS, Boss JM, Herb K, Zopes J, Degen CL. Tracking the precession of single nuclear spins by weak measurements. Nature. 2019;571:230–233. doi: 10.1038/s41586-019-1334-9. PubMed DOI
Schwartz I, et al. Blueprint for nanoscale NMR. Sci. Rep. 2019;9:6938. doi: 10.1038/s41598-019-43404-2. PubMed DOI PMC
Ultra-inert lanthanide chelates as mass tags for multiplexed bioanalysis