Paramagnetic encoding of molecules

. 2022 Jun 08 ; 13 (1) : 3179. [epub] 20220608

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35676253
Odkazy

PubMed 35676253
PubMed Central PMC9177614
DOI 10.1038/s41467-022-30811-9
PII: 10.1038/s41467-022-30811-9
Knihovny.cz E-zdroje

Contactless digital tags are increasingly penetrating into many areas of human activities. Digitalization of our environment requires an ever growing number of objects to be identified and tracked with machine-readable labels. Molecules offer immense potential to serve for this purpose, but our ability to write, read, and communicate molecular code with current technology remains limited. Here we show that magnetic patterns can be synthetically encoded into stable molecular scaffolds with paramagnetic lanthanide ions to write digital code into molecules and their mixtures. Owing to the directional character of magnetic susceptibility tensors, each sequence of lanthanides built into one molecule produces a unique magnetic outcome. Multiplexing of the encoded molecules provides a high number of codes that grows double-exponentially with the number of available paramagnetic ions. The codes are readable by nuclear magnetic resonance in the radiofrequency (RF) spectrum, analogously to the macroscopic technology of RF identification. A prototype molecular system capable of 16-bit (65,535 codes) encoding is presented. Future optimized systems can conceivably provide 64-bit (~10^19 codes) or higher encoding to cover the labelling needs in drug discovery, anti-counterfeiting and other areas.

Zobrazit více v PubMed

Birtwell S, Morgan H. Microparticle encoding technologies for high-throughput multiplexed suspension assays. Integr. Biol. 2009;1:345–362. doi: 10.1039/b905502a. PubMed DOI PMC

Binan L, Drobetsky EA, Costantino S. Exploiting molecular barcodes in high-throughput cellular assays. SLAS Technol. Transl. Life Sci. Innov. 2019;24:298–307. PubMed

Grass RN, Heckel R, Puddu M, Paunescu D, Stark WJ. Robust chemical preservation of digital information on DNA in silica with error-correcting codes. Angew. Chem. Int. Ed. 2015;54:2552–2555. doi: 10.1002/anie.201411378. PubMed DOI

Koch J, et al. A DNA-of-things storage architecture to create materials with embedded memory. Nat. Biotechnol. 2020;38:39–43. doi: 10.1038/s41587-019-0356-z. PubMed DOI

Qian J, et al. Barcoded microbial system for high-resolution object provenance. Science. 2020;368:1135–1140. doi: 10.1126/science.aba5584. PubMed DOI

Doroschak K, et al. Rapid and robust assembly and decoding of molecular tags with DNA-based nanopore signatures. Nat. Commun. 2020;11:5454. doi: 10.1038/s41467-020-19151-8. PubMed DOI PMC

Yang K, McCloskey CM, Chaput JC. Reading and writing digital information in TNA. ACS Synth. Biol. 2020;9:2936–2942. doi: 10.1021/acssynbio.0c00361. PubMed DOI

Lee JM, et al. High-density information storage in an absolutely defined aperiodic sequence of monodisperse copolyester. Nat. Commun. 2020;11:56. doi: 10.1038/s41467-019-13952-2. PubMed DOI PMC

Laurent E, et al. High-capacity digital polymers: storing images in single molecules. Macromolecules. 2020;53:4022–4029. doi: 10.1021/acs.macromol.0c00666. DOI

König NF, et al. Photo-editable macromolecular information. Nat. Commun. 2019;10:3774. doi: 10.1038/s41467-019-11566-2. PubMed DOI PMC

Al Ouahabi A, Charles L, Lutz J-F. Synthesis of non-natural sequence-encoded polymers using phosphoramidite chemistry. J. Am. Chem. Soc. 2015;137:5629–5635. doi: 10.1021/jacs.5b02639. PubMed DOI

Zhang J, et al. Rapidly sequence-controlled electrosynthesis of organometallic polymers. Nat. Commun. 2020;11:2530. doi: 10.1038/s41467-020-16255-z. PubMed DOI PMC

Rassay S, Ramezani M, Shomaji S, Bhunia S, Tabrizian R. Clandestine nanoelectromechanical tags for identification and authentication. Microsyst. Nanoeng. 2020;6:1–8. doi: 10.1038/s41378-020-00213-2. PubMed DOI PMC

Baumbauer CL, et al. Printed, flexible, compact UHF-RFID sensor tags enabled by hybrid electronics. Sci. Rep. 2020;10:16543. doi: 10.1038/s41598-020-73471-9. PubMed DOI PMC

Zaeimbashi M, et al. Ultra-compact dual-band smart NEMS magnetoelectric antennas for simultaneous wireless energy harvesting and magnetic field sensing. Nat. Commun. 2021;12:3141. doi: 10.1038/s41467-021-23256-z. PubMed DOI PMC

Shi C, et al. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing. Sci. Adv. 2021;7:eabf6312. doi: 10.1126/sciadv.abf6312. PubMed DOI PMC

Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 1–19 10.1038/s41551-021-00683-3 (2021). PubMed PMC

Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017;3:e1601649. doi: 10.1126/sciadv.1601649. PubMed DOI PMC

Arcadia CE, et al. Multicomponent molecular memory. Nat. Commun. 2020;11:691. doi: 10.1038/s41467-020-14455-1. PubMed DOI PMC

Cafferty BJ, et al. Storage of information using small organic molecules. ACS Cent. Sci. 2019;5:911–916. doi: 10.1021/acscentsci.9b00210. PubMed DOI PMC

Rosenstein JK, et al. Principles of information storage in small-molecule mixtures. IEEE Trans. NanoBioscience. 2020;19:378–384. doi: 10.1109/TNB.2020.2977304. PubMed DOI

Ratner T, Reany O, Keinan E. Encoding and processing of alphanumeric information by chemical mixtures. ChemPhysChem. 2009;10:3303–3309. doi: 10.1002/cphc.200900520. PubMed DOI

Nagarkar AA, et al. Storing and reading information in mixtures of fluorescent molecules. ACS Cent. Sci. 2021;7:1728–1735. doi: 10.1021/acscentsci.1c00728. PubMed DOI PMC

Kreidt E, Leis W, Seitz M. Direct solid-phase synthesis of molecular heterooligonuclear lanthanoid-complexes. Nat. Commun. 2020;11:1346. doi: 10.1038/s41467-020-15199-8. PubMed DOI PMC

Valm AM, et al. Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 2017;546:162–167. doi: 10.1038/nature22369. PubMed DOI PMC

Shi H, et al. Highly multiplexed spatial mapping of microbial communities. Nature. 2020;588:676–681. doi: 10.1038/s41586-020-2983-4. PubMed DOI PMC

Geiss GK, et al. Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat. Biotechnol. 2008;26:317–325. doi: 10.1038/nbt1385. PubMed DOI

Han M, Gao X, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol. 2001;19:631–635. doi: 10.1038/90228. PubMed DOI

Zhang F, et al. Rare-earth upconverting nanobarcodes for multiplexed biological detection. Small. 2011;7:1972–1976. doi: 10.1002/smll.201100629. PubMed DOI PMC

Gorris HH, Wolfbeis OS. Photon-upconverting nanoparticles for optical encoding and multiplexing of cells, biomolecules, and microspheres. Angew. Chem. Int. Ed. 2013;52:3584–3600. doi: 10.1002/anie.201208196. PubMed DOI

Lee J, et al. Universal process-inert encoding architecture for polymer microparticles. Nat. Mater. 2014;13:524–529. doi: 10.1038/nmat3938. PubMed DOI

Coronado E. Molecular magnetism: from chemical design to spin control in molecules, materials and devices. Nat. Rev. Mater. 2020;5:87–104. doi: 10.1038/s41578-019-0146-8. DOI

Bleaney, B. et al. Origin of lanthanide nuclear magnetic resonance shifts and their uses. J. Chem. Soc. Chem. Commun. 791–793 10.1039/C3972000791B (1972).

Parigi G, Ravera E, Luchinat C. Magnetic susceptibility and paramagnetism-based NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2019;114–115:211–236. doi: 10.1016/j.pnmrs.2019.06.003. PubMed DOI

Parker D, Suturina EA, Kuprov I, Chilton NF. How the ligand field in lanthanide coordination complexes determines magnetic susceptibility anisotropy, paramagnetic NMR shift, and relaxation behavior. Acc. Chem. Res. 2020;53:1520–1534. doi: 10.1021/acs.accounts.0c00275. PubMed DOI PMC

Häussinger D, Huang J, Grzesiek S. DOTA-M8: an extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J. Am. Chem. Soc. 2009;131:14761–14767. doi: 10.1021/ja903233w. PubMed DOI

Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem. Rev. 2019;119:957–1057. doi: 10.1021/acs.chemrev.8b00363. PubMed DOI PMC

McMahon MT, et al. New “multicolor” polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 2008;60:803–812. doi: 10.1002/mrm.21683. PubMed DOI PMC

Liu G, et al. In vivo multicolor molecular MR imaging using diamagnetic chemical exchange saturation transfer liposomes. Magn. Reson. Med. 2012;67:1106–1113. doi: 10.1002/mrm.23100. PubMed DOI PMC

Lim YT, et al. Multiplexed imaging of therapeutic cells with multispectrally encoded magnetofluorescent nanocomposite emulsions. J. Am. Chem. Soc. 2009;131:17145–17154. doi: 10.1021/ja904472z. PubMed DOI

Akazawa K, et al. Perfluorocarbon-based 19F MRI nanoprobes for in vivo multicolor imaging. Angew. Chem. Int. Ed. 2018;57:16742–16747. doi: 10.1002/anie.201810363. PubMed DOI PMC

Yang Y, et al. Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chem. Sci. 2021;12:4300–4308. doi: 10.1039/D0SC06969H. PubMed DOI PMC

Ferrauto G, Castelli DD, Terreno E, Aime S. In vivo MRI visualization of different cell populations labeled with PARACEST agents. Magn. Reson. Med. 2013;69:1703–1711. doi: 10.1002/mrm.24411. PubMed DOI

Harvey P, et al. Moving the goal posts: enhancing the sensitivity of PARASHIFT proton magnetic resonance imaging and spectroscopy. Chem. Sci. 2013;4:4251–4258. doi: 10.1039/c3sc51526e. DOI

Goren E, Avram L, Bar-Shir A. Versatile non-luminescent color palette based on guest exchange dynamics in paramagnetic cavitands. Nat. Commun. 2021;12:3072. doi: 10.1038/s41467-021-23179-9. PubMed DOI PMC

Ishikawa N, Iino T, Kaizu Y. Study of 1H NMR spectra of dinuclear complexes of heavy lanthanides with phthalocyanines based on separation of the effects of two paramagnetic centers. J. Phys. Chem. A. 2003;107:7879–7884. doi: 10.1021/jp034971n. DOI

Polovkova MA, et al. Determination of the structural parameters of heteronuclear (phthalocyaninato)bis(crownphthalocyaninato)lanthanide(III) triple-deckers in solution by simultaneous analysis of NMR and single-crystal X-ray data. Inorg. Chem. 2016;55:9258–9269. doi: 10.1021/acs.inorgchem.6b01292. PubMed DOI

Sørensen TJ, Faulkner S. Multimetallic lanthanide complexes: using kinetic control to define complex multimetallic arrays. ACC Chem. Res. 2018;51:2493–2501. doi: 10.1021/acs.accounts.8b00205. PubMed DOI

Brückner K, Zitterbart R, Seitz O, Beck S, Linscheid MW. Solid phase synthesis of short peptide-based multimetal tags for biomolecule labeling. Bioconjug. Chem. 2014;25:1069–1077. doi: 10.1021/bc500082k. PubMed DOI

De León-Rodriguez LM, Kovacs Z, Dieckmann GR, Sherry AD. Solid-phase synthesis of DOTA–peptides. Chem. - Eur. J. 2004;10:1149–1155. doi: 10.1002/chem.200305389. PubMed DOI

Boros E, Polasek M, Zhang Z, Caravan P. Gd(DOTAla): a single amino acid Gd-complex as a modular tool for high relaxivity MR contrast agent development. J. Am. Chem. Soc. 2012;134:19858–19868. doi: 10.1021/ja309187m. PubMed DOI PMC

Woods M, Kovacs Z, Zhang S, Sherry AD. Towards the rational design of magnetic resonance imaging contrast agents: isolation of the two coordination isomers of lanthanide DOTA-type complexes. Angew. Chem. Int. Ed. 2003;42:5889–5892. doi: 10.1002/anie.200352234. PubMed DOI

Chalmers KH, Botta M, Parker D. Strategies to enhance signal intensity with paramagnetic fluorine-labelled lanthanide complexes as probes for 19F magnetic resonance. Dalton Trans. 2011;40:904–913. doi: 10.1039/C0DT01232G. PubMed DOI

Kislukhin AA, et al. Paramagnetic fluorinated nanoemulsions for sensitive cellular fluorine-19 magnetic resonance imaging. Nat. Mater. 2016;15:662–668. doi: 10.1038/nmat4585. PubMed DOI PMC

Bodenmiller B, et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 2012;30:858–867. doi: 10.1038/nbt.2317. PubMed DOI PMC

Michal CA. Low-cost low-field NMR and MRI: instrumentation and applications. J. Magn. Reson. 2020;319:106800. doi: 10.1016/j.jmr.2020.106800. PubMed DOI PMC

Cooley CZ, et al. Design and implementation of a low-cost, tabletop MRI scanner for education and research prototyping. J. Magn. Reson. 2020;310:106625. doi: 10.1016/j.jmr.2019.106625. PubMed DOI

Cujia KS, Boss JM, Herb K, Zopes J, Degen CL. Tracking the precession of single nuclear spins by weak measurements. Nature. 2019;571:230–233. doi: 10.1038/s41586-019-1334-9. PubMed DOI

Schwartz I, et al. Blueprint for nanoscale NMR. Sci. Rep. 2019;9:6938. doi: 10.1038/s41598-019-43404-2. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...