Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides

. 2024 Apr 24 ; 44 (4) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38577975

Grantová podpora
LX22NPO5104 European Union - Next generation EU
61388963 Czech Academy of Sciences
67985823 Czech Academy of Sciences
TN02000109 Technologická Agentura České Republiky (Czech Technological Agency)

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.

Zobrazit více v PubMed

Guyenet S.J. and Schwartz M.W. (2012) Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab. 97, 745–755 10.1210/jc.2011-2525 PubMed DOI PMC

Sobrino Crespo C., Perianes Cachero A., Puebla Jimenez L., Barrios V. and Arilla Ferreiro E. (2014) Peptides and food intake. Front. Endocrinol. 5, 58 10.3389/fendo.2014.00058 PubMed DOI PMC

Joly-Amado A., Cansell C., Denis R.G., Delbes A.S., Castel J., Martinez S.et al. . (2014) The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28, 725–737 10.1016/j.beem.2014.03.003 PubMed DOI

Clayton R.W., Lovell-Badge R. and Galichet C. (2022) The properties and functions of glial cell types of the hypothalamic median eminence. Front Endocrinol. (Lausanne) 13, 953995 10.3389/fendo.2022.953995 PubMed DOI PMC

Jais A. and Bruning J.C. (2022) Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 10.1210/endrev/bnab025 PubMed DOI PMC

Friedman J.M. and Halaas J.L. (1998) Leptin and the regulation of body weight in mammals. Nature 395, 763–770 10.1038/27376 PubMed DOI

Frederich R.C., Hamann A., Anderson S., Lollmann B., Lowell B.B. and Flier J.S. (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 10.1038/nm1295-1311 PubMed DOI

Perez-Leighton C., Kerr B., Scherer P.E., Baudrand R. and Cortes V. (2023) The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol. Rev. Camb. Philos. Soc. 10.1111/brv.13039 PubMed DOI

Harris R.B. (2014) Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta 1842, 414–423 10.1016/j.bbadis.2013.05.009 PubMed DOI PMC

Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H. and Kangawa K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 10.1038/45230 PubMed DOI

Lutz T.A. (2009) Control of food intake and energy expenditure by amylin-therapeutic implications. Int. J. Obes. 33, S24–S27 10.1038/ijo.2009.13 PubMed DOI

Cawthon C.R. and de La Serre C.B. (2021) The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 138, 170492 10.1016/j.peptides.2020.170492 PubMed DOI

Muller T.D., Finan B., Bloom S.R., D'Alessio D., Drucker D.J., Flatt P.R.et al. . (2019) Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 10.1016/j.molmet.2019.09.010 PubMed DOI PMC

Karra E., Chandarana K. and Batterham R.L. (2009) The role of peptide YY in appetite regulation and obesity. J. Physiol. 587, 19–25 10.1113/jphysiol.2008.164269 PubMed DOI PMC

Cummings D.E. and Overduin J. (2007) Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 10.1172/JCI30227 PubMed DOI PMC

Valassi E., Scacchi M. and Cavagnini F. (2008) Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 18, 158–168 10.1016/j.numecd.2007.06.004 PubMed DOI

Lenard N.R. and Berthoud H.R. (2008) Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring) 16, S11–S22 10.1038/oby.2008.511 PubMed DOI PMC

Vrontakis M.E. (2002) Galanin: a biologically active peptide. Curr. Drug Targets CNS Neurol. Disord. 1, 531–541 10.2174/1568007023338914 PubMed DOI

Qu D., Ludwig D.S., Gammeltoft S., Piper M., Pelleymounter M.A., Cullen M.J.et al. . (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 10.1038/380243a0 PubMed DOI

Rodgers R.J., Ishii Y., Halford J.C. and Blundell J.E. (2002) Orexins and appetite regulation. Neuropeptides 36, 303–325 10.1016/S0143-4179(02)00085-9 PubMed DOI

Mastorakos G. and Zapanti E. (2004) The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: the role of corticotropin releasing hormone. Nutr. Neurosci. 7, 271–280 10.1080/10284150400020516 PubMed DOI

Bozadjieva-Kramer N., Ross R.A., Johnson D.Q., Fenselau H., Haggerty D.L., Atwood B.et al. . (2021) The role of mediobasal hypothalamic PACAP in the control of body weight and metabolism. Endocrinology 162, 10.1210/endocr/bqab012 PubMed DOI PMC

Morley J.E., Horowitz M., Morley P.M. and Flood J.F. (1992) Pituitary adenylate cyclase activating polypeptide (PACAP) reduces food intake in mice. Peptides 13, 1133–1135 10.1016/0196-9781(92)90019-Y PubMed DOI

Lawrence C.B., Celsi F., Brennand J. and Luckman S.M. (2000) Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3, 645–646 10.1038/76597 PubMed DOI

Choi Y.H., Hartzell D., Azain M.J. and Baile C.A. (2002) TRH decreases food intake and increases water intake and body temperature in rats. Physiol. Behav. 77, 1–4 10.1016/S0031-9384(02)00784-9 PubMed DOI

Arora S. and Anubhuti (2006) Role of neuropeptides in appetite regulation and obesity–a review. Neuropeptides 40, 375–401 10.1016/j.npep.2006.07.001 PubMed DOI

Yu J.H. and Kim M.S. (2012) Molecular mechanisms of appetite regulation. Diabetes Metab. J. 36, 391–398 10.4093/dmj.2012.36.6.391 PubMed DOI PMC

Kennedy G.C. (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci. 140, 578–596 10.1098/rspb.1953.0009 PubMed DOI

Vaneckova I., Maletinska L., Behuliak M., Nagelova V., Zicha J. and Kunes J. (2014) Obesity-related hypertension: possible pathophysiological mechanisms. J. Endocrinol. 223, R63–R78 10.1530/JOE-14-0368 PubMed DOI

Kloock S., Ziegler C.G. and Dischinger U. (2023) Obesity and its comorbidities, current treatment options and future perspectives: challenging bariatric surgery? Pharmacol. Ther. 251, 108549 10.1016/j.pharmthera.2023.108549 PubMed DOI

Alford S., Patel D., Perakakis N. and Mantzoros C.S. (2018) Obesity as a risk factor for Alzheimer's disease: weighing the evidence. Obes. Rev. 19, 269–280 10.1111/obr.12629 PubMed DOI

Rahman M.M., Islam M.R., Supti F.A., Dhar P.S., Shohag S., Ferdous J.et al. . (2023) Exploring the therapeutic effect of neurotrophins and neuropeptides in neurodegenerative diseases: at a glance. Mol. Neurobiol. 60, 4206–4231 10.1007/s12035-023-03328-5 PubMed DOI

Pini L., Pievani M., Bocchetta M., Altomare D., Bosco P., Cavedo E.et al. . (2016) Brain atrophy in Alzheimer's disease and aging. Ageing Res. Rev. 30, 25–48 10.1016/j.arr.2016.01.002 PubMed DOI

Ball M.J. (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol. (Berl) 37, 111–118 10.1007/BF00692056 PubMed DOI

WHO (2016) Dementia. [cited 2024 30.01.]. Available from: http://www.who.int/mediacentre/factsheets/fs362/en/

Serrano-Pozo A., Frosch M.P., Masliah E. and Hyman B.T. (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 1, a006189 10.1101/cshperspect.a006189 PubMed DOI PMC

Flores-Cordero J.A., Perez-Perez A., Jimenez-Cortegana C., Alba G., Flores-Barragan A. and Sanchez-Margalet V. (2022) Obesity as a risk factor for dementia and Alzheimer's disease: the role of leptin. Int. J. Mol. Sci. 23, 10.3390/ijms23095202 PubMed DOI PMC

Liu Y., Liu F., Grundke-Iqbal I., Iqbal K. and Gong C.X. (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J. Pathol. 225, 54–62 10.1002/path.2912 PubMed DOI PMC

Kacirova M., Zmeskalova A., Korinkova L., Zelezna B., Kunes J. and Maletinska L. (2020) Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin. Sci. (Lond.) 134, 547–570 10.1042/CS20191313 PubMed DOI

Nunomura A. and Perry G. (2020) RNA and oxidative stress in Alzheimer's disease: focus on microRNAs. Oxid. Med. Cell Longev. 2020, 2638130 10.1155/2020/2638130 PubMed DOI PMC

Launer L.J. (2002) Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res. Rev. 1, 61–77 10.1016/S0047-6374(01)00364-5 PubMed DOI

Lopez-Gambero A.J., Rosell-Valle C., Medina-Vera D., Navarro J.A., Vargas A., Rivera P.et al. . (2021) A negative energy balance is associated with metabolic dysfunctions in the hypothalamus of a humanized preclinical model of Alzheimer's disease, the 5XFAD mouse. Int. J. Mol. Sci. 22, 10.3390/ijms22105365 PubMed DOI PMC

Akter K., Lanza E.A., Martin S.A., Myronyuk N., Rua M. and Raffa R.B. (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br. J. Clin. Pharmacol. 71, 365–376 10.1111/j.1365-2125.2010.03830.x PubMed DOI PMC

Vanhanen M., Koivisto K., Moilanen L., Helkala E.L., Hanninen T., Soininen H.et al. . (2006) Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 67, 843–847 10.1212/01.wnl.0000234037.91185.99 PubMed DOI

Basaranoglu M. and Neuschwander-Tetri B.A. (2006) Nonalcoholic fatty liver disease: clinical features and pathogenesis. Gastroenterol Hepatol (N Y) 2, 282–291 PubMed PMC

Li X., Song D. and Leng S.X. (2015) Link between type 2 diabetes and Alzheimer's disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging. 10, 549–560 10.2147/CIA.S74042 PubMed DOI PMC

Maletinska L., Popelova A., Zelezna B., Bencze M. and Kunes J. (2019) The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J. Endocrinol. 240, R47–R72 10.1530/JOE-18-0532 PubMed DOI

Chen X.Y., Du Y.F. and Chen L. (2018) Neuropeptides exert neuroprotective effects in Alzheimer's disease. Front. Mol. Neurosci. 11, 493 10.3389/fnmol.2018.00493 PubMed DOI PMC

Holscher C. (2018) Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology 136, 251–259 10.1016/j.neuropharm.2018.01.040 PubMed DOI

Cummings J.L., Osse A.M.L. and Kinney J.W. (2023) Alzheimer's disease: novel targets and investigational drugs for disease modification. Drugs 83, 1387–1408 10.1007/s40265-023-01938-w PubMed DOI PMC

Paladugu L., Gharaibeh A., Kolli N., Learman C., Hall T.C., Li L.et al. . (2021) Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer's Disease. Int. J. Mol. Sci. 22, 10.3390/ijms22020860 PubMed DOI PMC

Bader M., Li Y., Tweedie D., Shlobin N.A., Bernstein A., Rubovitch V.et al. . (2019) Neuroprotective effects and treatment potential of incretin mimetics in a murine model of mild traumatic brain injury. Front Cell Dev. Biol. 7, 356 10.3389/fcell.2019.00356 PubMed DOI PMC

Batista A.F., Forny-Germano L., Clarke J.R., Lyra E.S.N.M., Brito-Moreira J., Boehnke S.E.et al. . (2018) The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer's disease. J. Pathol. 245, 85–100 10.1002/path.5056 PubMed DOI PMC

Holubova M., Hruba L., Popelova A., Bencze M., Prazienkova V., Gengler S.et al. . (2019) Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology. Neuropharmacology 144, 377–387 10.1016/j.neuropharm.2018.11.002 PubMed DOI

Duarte-Neves J., Pereira de Almeida L. and Cavadas C. (2016) Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol. Dis. 95, 210–224 10.1016/j.nbd.2016.07.022 PubMed DOI

Pain S., Brot S. and Gaillard A. (2022) Neuroprotective effects of neuropeptide Y against neurodegenerative disease. Curr. Neuropharmacol. 20, 1717–1725 10.2174/1570159X19666210906120302 PubMed DOI PMC

Reichmann F. and Holzer P. (2016) Neuropeptide Y: A stressful review. Neuropeptides 55, 99–109 10.1016/j.npep.2015.09.008 PubMed DOI PMC

dos Santos V.V., Santos D.B., Lach G., Rodrigues A.L.S., Farina M., De Lima T.C.M.et al. . (2013) Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ1–40) administration in mice. Behav. Brain Res. 244, 107–115 10.1016/j.bbr.2013.01.039 PubMed DOI

Lee N.K., Park S.E., Kwon S.J., Shim S., Byeon Y., Kim J.-H.et al. . (2017) Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer's disease model. Sci. Rep. 7, 39340 10.1038/srep39340 PubMed DOI PMC

Calafate S., Ozturan G., Thrupp N., Vanderlinden J., Santa-Marinha L., Morais-Ribeiro R.et al. . (2023) Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease. Nat. Neurosci. 26, 1021–1031 10.1038/s41593-023-01325-4 PubMed DOI PMC

Oh S.T., Liu Q.F., Jeong H.J., Lee S., Samidurai M., Jo J.et al. . (2019) Nasal cavity administration of melanin-concentrating hormone improves memory impairment in memory-impaired and Alzheimer's disease mouse models. Mol. Neurobiol. 56, 8076–8086 10.1007/s12035-019-01662-1 PubMed DOI

Monzon M.E., de Souza M.M., Izquierdo L.A., Izquierdo I., Barros D.M. and de Barioglio S.R. (1999) Melanin-concentrating hormone (MCH) modifies memory retention in rats ☆. Peptides 20, 1517–1519 10.1016/S0196-9781(99)00164-3 PubMed DOI

Varas M., Pérez M., Monzón M.E. and de Barioglio S.R. (2002) Melanin-concentrating hormone, hippocampal nitric oxide levels and memory retention. Peptides 23, 2213–2221 10.1016/S0196-9781(02)00252-8 PubMed DOI

Varas M.M., Pérez M.F., Ramírez O.A. and de Barioglio S.R. (2003) Increased susceptibility to LTP generation and changes in NMDA-NR1 and -NR2B subunits mRNA expression in rat hippocampus after MCH administration. Peptides 24, 1403–1411 10.1016/j.peptides.2003.09.006 PubMed DOI

Couvineau A., Voisin T., Nicole P., Gratio V., Abad C. and Tan Y.V. (2019) Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front Endocrinol. (Lausanne) 10, 709 10.3389/fendo.2019.00709 PubMed DOI PMC

Becquet L., Abad C., Leclercq M., Miel C., Jean L., Riou G.et al. . (2019) Systemic administration of orexin A ameliorates established experimental autoimmune encephalomyelitis by diminishing neuroinflammation. J. Neuroinflamm. 16, 64 10.1186/s12974-019-1447-y PubMed DOI PMC

Liu M.F., Xue Y., Liu C., Liu Y.H., Diao H.L., Wang Y.et al. . (2018) Orexin-A exerts neuroprotective effects via OX1R in Parkinson's disease. Front Neurosci. 12, 835 10.3389/fnins.2018.00835 PubMed DOI PMC

Borroto-Escuela D.O., Fores R., Pita M., Barbancho M.A., Zamorano-Gonzalez P., Casares N.G.et al. . (2022) Intranasal delivery of galanin 2 and neuropeptide Y1 agonists enhanced spatial memory performance and neuronal precursor cells proliferation in the dorsal hippocampus in rats. Front Pharmacol. 13, 820210 10.3389/fphar.2022.820210 PubMed DOI PMC

Beltran-Casanueva R., Hernández-García A., de Amo García P., Blanco-Reina E., Serrano-Castro P., García-Casares N.et al. . (2024) Neuropeptide Y receptor 1 and galanin receptor 2 (NPY1R-GALR2) interactions in the dentate gyrus and their relevance for neurogenesis and cognition. Front Cell Neurosci. 18, 1323986 10.3389/fncel.2024.1323986 PubMed DOI PMC

Abbosh C., Lawkowski A., Zaben M. and Gray W. (2011) GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. J. Neurochem. 117, 425–436 10.1111/j.1471-4159.2011.07204.x PubMed DOI

Bertolini A., Tacchi R. and Vergoni A.V. (2009) Brain effects of melanocortins. Pharmacol. Res. 59, 13–47 10.1016/j.phrs.2008.10.005 PubMed DOI

Harno E. and White A. (2016) Chapter 8 - Adrenocorticotropic Hormone. In Endocrinology: Adult and Pediatric (Seventh Edition)(Jameson J.L., De Groot L.J., de Kretser D.M., Giudice L.C., Grossman A.B., Melmed S.et al.., eds), pp. 129.e5–146.e5, W.B. Saunders, Philadelphia

Day R. (2009) Proopiomelanocortin. Encyclopedia Neurosci. 1139–1141 10.1016/B978-008045046-9.01197-9 DOI

Dores R.M. (2009) Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective. Ann. N. Y. Acad. Sci. 1163, 93–100 10.1111/j.1749-6632.2009.04434.x PubMed DOI

Wikberg J.E., Muceniece R., Mandrika I., Prusis P., Lindblom J., Post C.et al. . (2000) New aspects on the melanocortins and their receptors. Pharmacol. Res. 42, 393–420 10.1006/phrs.2000.0725 PubMed DOI

Cone R.D. (2006) Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 10.1210/er.2006-0034 PubMed DOI

Yanik T. and Durhan S.T. (2023) Specific functions of melanocortin 3 receptor (MC3R). J. Clin. Res. Pediatr Endocrinol. 15, 1–6 10.4274/jcrpe.galenos.2022.2022-5-21 PubMed DOI PMC

Ollmann M.M., Wilson B.D., Yang Y.K., Kerns J.A., Chen Y., Gantz I.et al. . (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 10.1126/science.278.5335.135 PubMed DOI

Dutia R., Kim A.J., Modes M., Rothlein R., Shen J.M., Tian Y.E.et al. . (2013) Effects of AgRP inhibition on energy balance and metabolism in rodent models. PLoS ONE 8, e65317 10.1371/journal.pone.0065317 PubMed DOI PMC

Smith A.I. and Funder J.W. (1988) Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 9, 159–179 10.1210/edrv-9-1-159 PubMed DOI

Kuhnen P., Krude H. and Biebermann H. (2019) Melanocortin-4 receptor signalling: importance for weight regulation and obesity treatment. Trends Mol. Med. 25, 136–148 10.1016/j.molmed.2018.12.002 PubMed DOI

Irani B.G., Xiang Z., Yarandi H.N., Holder J.R., Moore M.C., Bauzo R.M.et al. . (2011) Implication of the melanocortin-3 receptor in the regulation of food intake. Eur. J. Pharmacol. 660, 80–87 10.1016/j.ejphar.2010.10.101 PubMed DOI PMC

Huszar D., Lynch C.A., Fairchild-Huntress V., Dunmore J.H., Fang Q., Berkemeier L.R.et al. . (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 10.1016/S0092-8674(00)81865-6 PubMed DOI

Chen A.S., Marsh D.J., Trumbauer M.E., Frazier E.G., Guan X.M., Yu H.et al. . (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26, 97–102 10.1038/79254 PubMed DOI

Farooqi I.S., Yeo G.S., Keogh J.M., Aminian S., Jebb S.A., Butler G.et al. . (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 10.1172/JCI9397 PubMed DOI PMC

Krude H., Biebermann H., Luck W., Horn R., Brabant G. and Gruters A. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 10.1038/509 PubMed DOI

Butler A.A. and Cone R.D. (2002) The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 10.1054/npep.2002.0890 PubMed DOI

Hansen M.J., Schioth H.B. and Morris M.J. (2005) Feeding responses to a melanocortin agonist and antagonist in obesity induced by a palatable high-fat diet. Brain Res. 1039, 137–145 10.1016/j.brainres.2005.01.063 PubMed DOI

Clegg D.J., Benoit S.C., Air E.L., Jackman A., Tso P., D'Alessio D.et al. . (2003) Increased dietary fat attenuates the anorexic effects of intracerebroventricular injections of MTII. Endocrinology 144, 2941–2946 10.1210/en.2002-0218 PubMed DOI

Fan W., Boston B.A., Kesterson R.A., Hruby V.J. and Cone R.D. (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 10.1038/385165a0 PubMed DOI

Marsh D.J., Hollopeter G., Huszar D., Laufer R., Yagaloff K.A., Fisher S.L.et al. . (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21, 119–122 10.1038/5070 PubMed DOI

Chen A.S., Metzger J.M., Trumbauer M.E., Guan X.M., Yu H., Frazier E.G.et al. . (2000) Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. 9, 145–154 10.1023/A:1008983615045 PubMed DOI

Conde-Frieboes K., Thogersen H., Lau J.F., Sensfuss U., Hansen T.K., Christensen L.et al. . (2012) Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective alpha-melanocyte-stimulating hormone (alpha-MSH) analogues. J. Med. Chem. 55, 1969–1977 10.1021/jm201489a PubMed DOI

Fosgerau K., Raun K., Nilsson C., Dahl K. and Wulff B.S. (2014) Novel alpha-MSH analog causes weight loss in obese rats and minipigs and improves insulin sensitivity. J. Endocrinol. 220, 97–107 10.1530/JOE-13-0284 PubMed DOI PMC

Rodrigues A.R., Salazar M.J., Rocha-Rodrigues S., Goncalves I.O., Cruz C., Neves D.et al. . (2019) Peripherally administered melanocortins induce mice fat browning and prevent obesity. Int. J. Obes. (Lond.) 43, 1058–1069 10.1038/s41366-018-0155-5 PubMed DOI

Kumar K.G., Sutton G.M., Dong J.Z., Roubert P., Plas P., Halem H.A.et al. . (2009) Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 30, 1892–1900 10.1016/j.peptides.2009.07.012 PubMed DOI PMC

Ma K. and McLaurin J. (2017) alpha-melanocyte stimulating hormone as a potential therapy for Alzheimer’s disease. Curr Alzheimer Res. 14, 18–29 10.2174/1567205013666160819130641 PubMed DOI

Costa A., Bini P., Hamze-Sinno M., Moglia A., Franciotta D., Sinforiani E.et al. . (2011) Galanin and alpha-MSH autoantibodies in cerebrospinal fluid of patients with Alzheimer's disease. J. Neuroimmunol. 240-241, 114–120 10.1016/j.jneuroim.2011.10.003 PubMed DOI

Arai H., Moroji T., Kosaka K. and Iizuka R. (1986) Extrahypophyseal distribution of alpha-melanocyte stimulating hormone (alpha-MSH)-like immunoreactivity in postmortem brains from normal subjects and Alzheimer-type dementia patients. Brain Res. 377, 305–310 10.1016/0006-8993(86)90873-5 PubMed DOI

Ma K. and McLaurin J. (2014) alpha-Melanocyte stimulating hormone prevents GABAergic neuronal loss and improves cognitive function in Alzheimer's disease. J. Neurosci. 34, 6736–6745 10.1523/JNEUROSCI.5075-13.2014 PubMed DOI PMC

Forslin Aronsson S., Spulber S., Popescu L.M., Winblad B., Post C., Oprica M.et al. . (2006) alpha-Melanocyte-stimulating hormone is neuroprotective in rat global cerebral ischemia. Neuropeptides 40, 65–75 10.1016/j.npep.2005.10.006 PubMed DOI

Giuliani D., Zaffe D., Ottani A., Spaccapelo L., Galantucci M., Minutoli L.et al. . (2011) Treatment of cerebral ischemia with melanocortins acting at MC4 receptors induces marked neurogenesis and long-lasting functional recovery. Acta Neuropathol. 122, 443–453 10.1007/s00401-011-0873-4 PubMed DOI

Giuliani D., Bitto A., Galantucci M., Zaffe D., Ottani A., Irrera N.et al. . (2014) Melanocortins protect against progression of Alzheimer's disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiol. Aging 35, 537–547 10.1016/j.neurobiolaging.2013.08.030 PubMed DOI

Daini E., Vandini E., Bodria M., Liao W., Baraldi C., Secco V.et al. . (2022) Melanocortin receptor agonist NDP-alpha-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice. Front Immunol. 13, 1082036 10.3389/fimmu.2022.1082036 PubMed DOI PMC

Giuliani D., Galantucci M., Neri L., Canalini F., Calevro A., Bitto A.et al. . (2014) Melanocortins protect against brain damage and counteract cognitive decline in a transgenic mouse model of moderate Alzheimer's disease. Eur. J. Pharmacol. 740, 144–150 10.1016/j.ejphar.2014.06.063 PubMed DOI

Giuliani D., Neri L., Canalini F., Calevro A., Ottani A., Vandini E.et al. . (2015) NDP-alpha-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors. Mol. Cell. Neurosci. 67, 13–21 10.1016/j.mcn.2015.05.004 PubMed DOI

Johnson G.V. and Bailey C.D. (2003) The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp. Neurol. 183, 263–268 10.1016/S0014-4886(03)00268-1 PubMed DOI

Lau J.K.Y., Tian M., Shen Y., Lau S.F., Fu W.Y., Fu A.K.Y.et al. . (2021) Melanocortin receptor activation alleviates amyloid pathology and glial reactivity in an Alzheimer's disease transgenic mouse model. Sci. Rep. 11, 4359 10.1038/s41598-021-83932-4 PubMed DOI PMC

Douglass J., McKinzie A.A. and Couceyro P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471–2481 10.1523/JNEUROSCI.15-03-02471.1995 PubMed DOI PMC

Thim L., Kristensen P., Nielsen P.F., Wulff B.S. and Clausen J.T. (1999) Tissue-specific processing of cocaine- and amphetamine-regulated transcript peptides in the rat. Proc. Natl. Acad Sci. U.S.A. 96, 2722–2727 10.1073/pnas.96.6.2722 PubMed DOI PMC

Thim L., Nielsen P.F., Judge M.E., Andersen A.S., Diers I., Egel-Mitani M.et al. . (1998) Purification and characterisation of a new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast. FEBS Lett. 428, 263–268 10.1016/S0014-5793(98)00543-2 PubMed DOI

Dey A., Xhu X., Carroll R., Turck C.W., Stein J. and Steiner D.F. (2003) Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. J. Biol. Chem. 278, 15007–15014 10.1074/jbc.M212128200 PubMed DOI

Stein J., Steiner D.F. and Dey A. (2006) Processing of cocaine- and amphetamine-regulated transcript (CART) precursor proteins by prohormone convertases (PCs) and its implications. Peptides 27, 1919–1925 10.1016/j.peptides.2005.10.028 PubMed DOI

Spiess J., Villarreal J. and Vale W.J.B. (1981) Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. 20, 1982–1988 10.1021/bi00510a038 PubMed DOI

Dominguez G. (2006) The CART gene: structure and regulation. Peptides 27, 1913–1918 10.1016/j.peptides.2006.01.025 PubMed DOI

Douglass J. and Daoud S. (1996) Characterization of the human cDNA and genomic DNA encoding CART: a cocaine- and amphetamine-regulated transcript. Gene 169, 241–245 10.1016/0378-1119(96)88651-3 PubMed DOI

Yermolaieva O., Chen J., Couceyro P.R. and Hoshi T. (2001) Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons. J. Neurosci. 21, 7474–7480 10.1523/JNEUROSCI.21-19-07474.2001 PubMed DOI PMC

Lakatos A., Prinster S., Vicentic A., Hall R.A. and Kuhar M.J. (2005) Cocaine- and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors. Neurosci. Lett. 384, 198–202 10.1016/j.neulet.2005.04.072 PubMed DOI

Vicentic A., Lakatos A. and Kuhar M.J. (2005) CART (cocaine- and amphetamine-regulated transcript) peptide receptors: specific binding in AtT20 cells. Eur. J. Pharmacol. 528, 188–189 10.1016/j.ejphar.2005.11.041 PubMed DOI

Maletinska L., Maixnerova J., Matyskova R., Haugvicova R., Sloncova E., Elbert T.et al. . (2007) Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12. Eur. J. Pharmacol. 559, 109–114 10.1016/j.ejphar.2006.12.014 PubMed DOI

Nagelova V., Pirnik Z., Zelezna B. and Maletinska L. (2014) CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res. 1547, 16–24 10.1016/j.brainres.2013.12.024 PubMed DOI

Yosten G.L., Harada C.M., Haddock C., Giancotti L.A., Kolar G.R., Patel R.et al. . (2020) GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J. Clin. Invest. 130, 2587–2592 10.1172/JCI133270 PubMed DOI PMC

Freitas-Lima L.C., Pacesova A., Stanurova J., Sacha P., Marek A., Hubalek M.et al. . (2023) GPR160 is not a receptor of anorexigenic cocaine- and amphetamine-regulated transcript peptide. Eur. J. Pharmacol. 949, 175713 10.1016/j.ejphar.2023.175713 PubMed DOI

Gautvik K.M., de Lecea L., Gautvik V.T., Danielson P.E., Tranque P., Dopazo A.et al. . (1996) Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl. Acad Sci. U.S.A. 93, 8733–8738 10.1073/pnas.93.16.8733 PubMed DOI PMC

Koylu E.O., Couceyro P.R., Lambert P.D., Ling N.C., DeSouza E.B. and Kuhar M.J. (1997) Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol. 9, 823–833 10.1046/j.1365-2826.1997.00651.x PubMed DOI

Jensen P.B., Kristensen P., Clausen J.T., Judge M.E., Hastrup S., Thim L.et al. . (1999) The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islet tumors and in the normal islet of Langerhans. FEBS Lett. 447, 139–143 10.1016/S0014-5793(99)00291-4 PubMed DOI

Ekblad E. (2006) CART in the enteric nervous system. Peptides 27, 2024–2030 10.1016/j.peptides.2005.12.015 PubMed DOI

Koylu E.O., Couceyro P.R., Lambert P.D. and Kuhar M.J. (1998) Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 391, 115–132 10.1002/(SICI)1096-9861(19980202)391:1<115::AID-CNE10>3.0.CO;2-X PubMed DOI

Asnicar M.A., Smith D.P., Yang D.D., Heiman M.L., Fox N., Chen Y.F.et al. . (2001) Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology 142, 4394–4400 10.1210/endo.142.10.8416 PubMed DOI

Wierup N., Richards W.G., Bannon A.W., Kuhar M.J., Ahrén B. and Sundler F. (2005) CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight. Regul. Pept. 129, 203–211 10.1016/j.regpep.2005.02.016 PubMed DOI

Bannon A.W., Seda J., Carmouche M., Francis J.M., Jarosinski M.A. and Douglass J. (2001) Multiple behavioral effects of cocaine- and amphetamine-regulated transcript (CART) peptides in mice: CART 42-89 and CART 49-89 differ in potency and activity. J. Pharmacol. Exp. Ther. 299, 1021–1026 PubMed

Lambert P.D., Couceyro P.R., McGirr K.M., Dall Vechia S.E., Smith Y. and Kuhar M.J. (1998) CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse 29, 293–298 10.1002/(SICI)1098-2396(199808)29:4<293::AID-SYN1>3.0.CO;2-0 PubMed DOI

Kristensen P., Judge M.E., Thim L., Ribel U., Christjansen K.N., Wulff B.S.et al. . (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72–76 10.1038/29993 PubMed DOI

Wang Z.W., Zhou Y.T., Kakuma T., Lee Y., Higa M., Kalra S.P.et al. . (1999) Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia. Proc. Natl. Acad Sci. U.S.A. 96, 10373–10378 10.1073/pnas.96.18.10373 PubMed DOI PMC

Elias C.F., Lee C.E., Kelly J.F., Ahima R.S., Kuhar M., Saper C.B.et al. . (2001) Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 432, 1–19 10.1002/cne.1085 PubMed DOI

Tian D.R., Li X.D., Shi Y.S., Wan Y., Wang X.M., Chang J.K.et al. . (2004) Changes of hypothalamic alpha-MSH and CART peptide expression in diet-induced obese rats. Peptides 25, 2147–2153 10.1016/j.peptides.2004.08.009 PubMed DOI

Fekete C., Mihaly E., Luo L.G., Kelly J., Clausen J.T., Mao Q.et al. . (2000) Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J. Neurosci. 20, 9224–9234 10.1523/JNEUROSCI.20-24-09224.2000 PubMed DOI PMC

Fekete C. and Lechan R.M. (2006) Neuroendocrine implications for the association between cocaine- and amphetamine regulated transcript (CART) and hypophysiotropic thyrotropin-releasing hormone (TRH). Peptides 27, 2012–2018 10.1016/j.peptides.2005.11.029 PubMed DOI

Pirnik Z., Maixnerova J., Matyskova R., Koutova D., Zelezna B., Maletinska L.et al. . (2010) Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides 31, 139–144 10.1016/j.peptides.2009.09.035 PubMed DOI

Maletinska L., Maixnerova J., Matyskova R., Haugvicova R., Pirnik Z., Kiss A.et al. . (2008) Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neuroscience 9, 101 10.1186/1471-2202-9-101 PubMed DOI PMC

Rohner-Jeanrenaud F., Craft L.S., Bridwell J., Suter T.M., Tinsley F.C., Smiley D.L.et al. . (2002) Chronic central infusion of cocaine- and amphetamine-regulated transcript (CART 55-102): effects on body weight homeostasis in lean and high-fat-fed obese rats. Int. J. Obes. Relat. Metab. Disord. 26, 143–149 10.1038/sj.ijo.0801863 PubMed DOI

Wortley K.E., Chang G.Q., Davydova Z., Fried S.K. and Leibowitz S.F. (2004) Cocaine- and amphetamine-regulated transcript in the arcuate nucleus stimulates lipid metabolism to control body fat accrual on a high-fat diet. Regul. Pept. 117, 89–99 10.1016/j.regpep.2003.08.005 PubMed DOI

Upadhya M.A., Nakhate K.T., Kokare D.M., Singru P.S. and Subhedar N.K. (2011) Cocaine- and amphetamine-regulated transcript peptide increases spatial learning and memory in rats. Life Sci. 88, 322–334 10.1016/j.lfs.2010.12.008 PubMed DOI

Jin J.L., Liou A.K., Shi Y., Yin K.L., Chen L., Li L.L.et al. . (2015) CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci. Rep. 5, 10224 10.1038/srep10224 PubMed DOI PMC

Yin K., Jin J., Zhu X., Yu L., Wang S., Qian L.et al. . (2017) CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice. Neurol. Res. 39, 885–894 10.1080/01616412.2017.1348689 PubMed DOI

Jiang H., Niu F., Zheng Y. and Xu Y. (2021) CART mitigates oxidative stress and DNA damage in memory deficits of APP/PS1 mice via upregulating beta-amyloid metabolism-associated enzymes. Mol. Med. Rep. 23, 10.3892/mmr.2021.11919 PubMed DOI PMC

Jiao W., Wang Y., Kong L., Ou-Yang T., Meng Q., Fu Q.et al. . (2018) CART peptide activates the Nrf2/HO-1 antioxidant pathway and protects hippocampal neurons in a rat model of Alzheimer's disease. Biochem. Biophys. Res. Commun. 501, 1016–1022 10.1016/j.bbrc.2018.05.101 PubMed DOI

Hannibal J., Mikkelsen J.D., Clausen H., Holst J.J., Wulff B.S. and Fahrenkrug J. (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul. Pept. 55, 133–148 10.1016/0167-0115(94)00099-J PubMed DOI

Kivipelto L., Absood A., Arimura A., Sundler F., Hakanson R. and Panula P. (1992) The distribution of pituitary adenylate cyclase-activating polypeptide-like immunoreactivity is distinct from helodermin- and helospectin-like immunoreactivities in the rat brain. J. Chem. Neuroanat. 5, 85–94 10.1016/0891-0618(92)90036-P PubMed DOI

Koves K., Arimura A., Gorcs T.G. and Somogyvari-Vigh A. (1991) Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54, 159–169 10.1159/000125864 PubMed DOI

Sureshkumar K., Saenz A., Ahmad S.M. and Lutfy K. (2021) The PACAP/PAC1 receptor system and feeding. Brain Sci. 12, 10.3390/brainsci12010013 PubMed DOI PMC

Hawke Z., Ivanov T.R., Bechtold D.A., Dhillon H., Lowell B.B. and Luckman S.M. (2009) PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J. Neurosci. 29, 14828–14835 10.1523/JNEUROSCI.1526-09.2009 PubMed DOI PMC

Mata-Pacheco V., Hernandez J., Varma N., Xu J., Sayers S., Le N.et al. . (2024) Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons. J. Neuroendocrinol. 36, e13357 10.1111/jne.13357 PubMed DOI

Adams B.A., Gray S.L., Isaac E.R., Bianco A.C., Vidal-Puig A.J. and Sherwood N.M. (2008) Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 149, 1571–1580 10.1210/en.2007-0515 PubMed DOI PMC

Vu J.P., Luong L., Sanford D., Oh S., Kuc A., Pisegna R.et al. . (2023) PACAP and VIP neuropeptides' and receptors' effects on appetite, satiety and metabolism. Biology (Basel.) 12, 10.3390/biology12071013 PubMed DOI PMC

Kondo T., Tominaga T., Ichikawa M. and Iijima T. (1997) Differential alteration of hippocampal synaptic strength induced by pituitary adenylate cyclase activating polypeptide-38 (PACAP-38). Neurosci. Lett. 221, 189–192 10.1016/S0304-3940(96)13323-1 PubMed DOI

Toth D., Reglodi D., Schwieters L. and Tamas A. (2023) Role of endocrine PACAP in age-related diseases. Front Endocrinol. (Lausanne) 14, 1118927 10.3389/fendo.2023.1118927 PubMed DOI PMC

Rat D., Schmitt U., Tippmann F., Dewachter I., Theunis C., Wieczerzak E.et al. . (2011) Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 25, 3208–3218 10.1096/fj.10-180133 PubMed DOI PMC

Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S.et al. . (1998) A prolactin-releasing peptide in the brain. Nature 393, 272–276 10.1038/30515 PubMed DOI

Samson W.K., Resch Z.T., Murphy T.C. and Chang J.K. (1998) Gender-biased activity of the novel prolactin releasing peptides: comparison with thyrotropin releasing hormone reveals only pharmacologic effects. Endocrine 9, 289–291 10.1385/ENDO:9:3:289 PubMed DOI

Jarry H., Heuer H., Schomburg L. and Bauer K. (2000) Prolactin-releasing peptides do not stimulate prolactin release in vivo. Neuroendocrinology 71, 262–267, 54544 10.1159/000054544 PubMed DOI

Boyle R.G., Downham R., Ganguly T., Humphries J., Smith J. and Travers S. (2005) Structure-activity studies on prolactin-releasing peptide (PrRP). Analogues of PrRP-(19-31)-peptide. J. Peptide Sci. 11, 161–165 10.1002/psc.612 PubMed DOI

Roland B.L., Sutton S.W., Wilson S.J., Luo L., Pyati J., Huvar R.et al. . (1999) Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 140, 5736–5745 10.1210/endo.140.12.7211 PubMed DOI

Maletinska L., Spolcova A., Maixnerova J., Blechova M. and Zelezna B. (2011) Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides 32, 1887–1892 10.1016/j.peptides.2011.08.011 PubMed DOI

Engstrom M., Brandt A., Wurster S., Savola J.M. and Panula P. (2003) Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J. Pharmacol. Exp. Ther. 305, 825–832 10.1124/jpet.102.047118 PubMed DOI

Maruyama M., Matsumoto H., Fujiwara K., Kitada C., Hinuma S., Onda H.et al. . (1999) Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology 140, 2326–2333 10.1210/endo.140.5.6685 PubMed DOI

Matsumoto H., Murakami Y., Horikoshi Y., Noguchi J., Habata Y., Kitada C.et al. . (1999) Distribution and characterization of immunoreactive prolactin-releasing peptide (PrRP) in rat tissue and plasma. Biochem. Biophys. Res. Commun. 257, 264–268 10.1006/bbrc.1999.0463 PubMed DOI

Fujii R., Fukusumi S., Hosoya M., Kawamata Y., Habata Y., Hinuma S.et al. . (1999) Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul. Pept. 83, 1–10 10.1016/S0167-0115(99)00028-2 PubMed DOI

Prazienkova V., Popelova A., Kunes J. and Maletinska L. (2019) Prolactin-releasing peptide: physiological and pharmacological properties. Int. J. Mol. Sci. 20, 10.3390/ijms20215297 PubMed DOI PMC

Seal L.J., Small C.J., Dhillo W.S., Stanley S.A., Abbott C.R., Ghatei M.A.et al. . (2001) PRL-releasing peptide inhibits food intake in male rats via the dorsomedial hypothalamic nucleus and not the paraventricular hypothalamic nucleus. Endocrinology 142, 4236–4243 10.1210/endo.142.10.8419 PubMed DOI

Ellacott K.L., Lawrence C.B., Pritchard L.E. and Luckman S.M. (2003) Repeated administration of the anorectic factor prolactin-releasing peptide leads to tolerance to its effects on energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1005–R1010 10.1152/ajpregu.00237.2003 PubMed DOI

Ellacott K.L., Lawrence C.B., Rothwell N.J. and Luckman S.M. (2002) PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology 143, 368–374 10.1210/endo.143.2.8608 PubMed DOI

Bechtold D.A. and Luckman S.M. (2006) Prolactin-releasing peptide mediates cholecystokinin-induced satiety in mice. Endocrinology 147, 4723–4729 10.1210/en.2006-0753 PubMed DOI

Takayanagi Y., Matsumoto H., Nakata M., Mera T., Fukusumi S., Hinuma S.et al. . (2008) Endogenous prolactin-releasing peptide regulates food intake in rodents. J. Clin. Invest. 118, 4014–4024 10.1172/JCI34682 PubMed DOI PMC

Bjursell M., Lenneras M., Goransson M., Elmgren A. and Bohlooly Y.M. (2007) GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 363, 633–638 10.1016/j.bbrc.2007.09.016 PubMed DOI

Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L.et al. . (2021) GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 774, 145427 10.1016/j.gene.2021.145427 PubMed DOI

Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M.et al. . (2015) Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 10.1038/ijo.2015.28 PubMed DOI

Mikulaskova B., Zemenova J., Pirnik Z., Prazienkova V., Bednarova L., Zelezna B.et al. . (2016) Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides 75, 109–117 10.1016/j.peptides.2015.11.005 PubMed DOI

Pražienková V., Holubová M., Pelantová H., Bugáňová M., Pirník Z., Mikulášková B.et al. . (2017) Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE 12, e0183449 10.1371/journal.pone.0183449 PubMed DOI PMC

Holubova M., Hruba L., Neprasova B., Majercikova Z., Lacinova Z., Kunes J.et al. . (2018) Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J. Mol. Endocrinol. 60, 85–94 10.1530/JME-17-0171 PubMed DOI

Cermakova M., Pelantova H., Neprasova B., Sediva B., Maletinska L., Kunes J.et al. . (2019) Metabolomic study of obesity and its treatment with palmitoylated prolactin-releasing peptide analog in spontaneously hypertensive and normotensive rats. J. Proteome Res. 18, 1735–1750 10.1021/acs.jproteome.8b00964 PubMed DOI

Holubova M., Zemenova J., Mikulaskova B., Panajotova V., Stohr J., Haluzik M.et al. . (2016) Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 229, 85–96 10.1530/JOE-15-0519 PubMed DOI

Mrazikova L., Hojna S., Vaculova P., Strnad S., Vrkoslav V., Pelantova H.et al. . (2023) Lipidized PrRP analog exhibits strong anti-obesity and antidiabetic properties in Old WKY rats with obesity and glucose intolerance. Nutrients 15, 10.3390/nu15020280 PubMed DOI PMC

Mrazikova L., Neprasova B., Mengr A., Popelova A., Strnadova V., Hola L.et al. . (2021) Lipidized prolactin-releasing peptide as a new potential tool to treat obesity and type 2 diabetes mellitus: preclinical studies in rodent models. Front Pharmacol. 12, 779962 10.3389/fphar.2021.779962 PubMed DOI PMC

Pflimlin E., Lear S., Lee C., Yu S., Zou H., To A.et al. . (2019) Design of a long-acting and selective MEG-fatty acid stapled prolactin-releasing peptide analog. ACS Med. Chem. Lett. 10, 1166–1172 10.1021/acsmedchemlett.9b00182 PubMed DOI PMC

Prazienkova V., Ticha A., Blechova M., Spolcova A., Zelezna B. and Maletinska L. (2016) Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C- terminal aromatic ring. J. Physiol. Pharmacol. 67, 121–128 PubMed

Alexopoulou F., Bech E.M., Pedersen S.L., Thorbek D.D., Leurs U., Rudkjaer L.C.B.et al. . (2022) Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci. Rep. 12, 1696 10.1038/s41598-022-05310-y PubMed DOI PMC

Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J.et al. . (2015) Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 45, 823–835 10.3233/JAD-143150 PubMed DOI

Popelova A., Prazienkova V., Neprasova B., Kasperova B.J., Hruba L., Holubova M.et al. . (2018) Novel lipidized analog of prolactin-releasing peptide improves memory impairment and attenuates hyperphosphorylation of tau protein in a mouse model of tauopathy. J. Alzheimers Dis. 62, 1725–1736 10.3233/JAD-171041 PubMed DOI

Mengr A., Hruba L., Exnerova A., Holubova M., Popelova A., Zelezna B.et al. . (2021) Palmitoylated prolactin-releasing peptide reduced Abeta plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res. 10.2174/1567205018666210922110652 PubMed DOI

Strnad S., PraZienkova V., Holubova M., Sykora D., Cvacka J., Maletinska L.et al. . (2020) Mass spectrometry imaging of free-floating brain sections detects pathological lipid distribution in a mouse model of Alzheimer's-like pathology. Analyst 10.1039/D0AN00592D PubMed DOI

Jorgensen S.K., Karnosova A., Mazzaferro S., Rowley O., Chen H.C., Robbins S.J.et al. . (2023) An analogue of the prolactin releasing peptide reduces obesity and promotes adult neurogenesis. EMBO Rep. 10.1038/s44319-023-00016-2 PubMed DOI PMC

Macias M., Acha B., Corroza J., Urdanoz-Casado A., Roldan M., Robles M.et al. . (2023) Liquid biopsy in Alzheimer's disease patients reveals epigenetic changes in the PRLHR gene. Cells 12, 10.3390/cells12232679 PubMed DOI PMC

Yang H.Y., Fratta W., Majane E.A. and Costa E. (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc. Natl. Acad Sci. U.S.A. 82, 7757–7761 10.1073/pnas.82.22.7757 PubMed DOI PMC

Panula P., Aarnisalo A.A. and Wasowicz K. (1996) Neuropeptide FF, a mammalian neuropeptide with multiple functions. Prog. Neurobiol. 48, 461–487 10.1016/0301-0082(96)00001-9 PubMed DOI

Vilim F.S., Aarnisalo A.A., Nieminen M.L., Lintunen M., Karlstedt K., Kontinen V.K.et al. . (1999) Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol. Pharmacol. 55, 804–811 PubMed

Kivipelto L. and Panula P. (1991) Central neuronal pathways containing FLFQPQRFamide-like (morphine-modulating) peptides in the rat brain. Neuroscience 41, 137–148 10.1016/0306-4522(91)90204-2 PubMed DOI

Jhamandas J.H., Jhamandas A. and Harris K.H. (2001) New central projections of neuropeptide FF: colateral branching pathways in the brainstem and hypothalamus in the rat. J. Chem. Neuroanat. 21, 171–179 10.1016/S0891-0618(01)00094-1 PubMed DOI

Gouarderes C., Puget A. and Zajac J.M. (2004) Detailed distribution of neuropeptide FF receptors (NPFF1 and NPFF2) in the rat, mouse, octodon, rabbit, guinea pig, and marmoset monkey brains: a comparative autoradiographic study. Synapse 51, 249–269 10.1002/syn.10305 PubMed DOI

Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M.et al. . (2000) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 275, 39324–39331 10.1074/jbc.M004385200 PubMed DOI

Roumy M. and Zajac J.M. (1998) Neuropeptide FF, pain and analgesia. Eur. J. Pharmacol. 345, 1–11 10.1016/S0014-2999(97)01604-X PubMed DOI

Elhabazi K., Trigo J.M., Mollereau C., Mouledous L., Zajac J.M., Bihel F.et al. . (2012) Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br. J. Pharmacol. 165, 424–435 10.1111/j.1476-5381.2011.01563.x PubMed DOI PMC

Devillers J.P., Mazarguil H., Allard M., Dickenson A.H., Zajac J.M. and Simonnet G. (1994) Characterization of a potent agonist for NPFF receptors: binding study on rat spinal cord membranes. Neuropharmacology 33, 661–669 10.1016/0028-3908(94)90172-4 PubMed DOI

Gicquel S., Mazarguil H., Allard M., Simonnet G. and Zajac J.M. (1992) Analogues of F8Famide resistant to degradation, with high affinity and in vivo effects. Eur. J. Pharmacol. 222, 61–67 10.1016/0014-2999(92)90463-E PubMed DOI

Vyas N., Mollereau C., Cheve G. and McCurdy C.R. (2006) Structure-activity relationships of neuropeptide FF and related peptidic and non-peptidic derivatives. Peptides 27, 990–996 10.1016/j.peptides.2005.07.024 PubMed DOI

Simonin F., Schmitt M., Laulin J.P., Laboureyras E., Jhamandas J.H., MacTavish D.et al. . (2006) RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc. Natl. Acad Sci. U.S.A. 103, 466–471 10.1073/pnas.0502090103 PubMed DOI PMC

Fang Q., Wang Y.Q., He F., Guo J., Guo J., Chen Q.et al. . (2008) Inhibition of neuropeptide FF (NPFF)-induced hypothermia and anti-morphine analgesia by RF9, a new selective NPFF receptors antagonist. Regul. Pept. 147, 45–51 10.1016/j.regpep.2007.12.007 PubMed DOI

Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T.et al. . (2013) Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 1498, 33–40 10.1016/j.brainres.2012.12.037 PubMed DOI

Murase T., Arima H., Kondo K. and Oiso Y. (1996) Neuropeptide FF reduces food intake in rats. Peptides 17, 353–354 10.1016/0196-9781(95)02137-X PubMed DOI

Sunter D., Hewson A.K., Lynam S. and Dickson S.L. (2001) Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neurosci. Lett. 313, 145–148 10.1016/S0304-3940(01)02267-4 PubMed DOI

Nicklous D.M. and Simansky K.J. (2003) Neuropeptide FF exerts pro- and anti-opioid actions in the parabrachial nucleus to modulate food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1046–R1054 10.1152/ajpregu.00107.2003 PubMed DOI

Bechtold D.A. and Luckman S.M. (2007) The role of RFamide peptides in feeding. J. Endocrinol. 192, 3–15 10.1677/JOE-06-0069 PubMed DOI

Cline M.A., Nandar W. and Rogers J.O. (2007) Central neuropeptide FF reduces feed consumption and affects hypothalamic chemistry in chicks. Neuropeptides 41, 433–439 10.1016/j.npep.2007.08.003 PubMed DOI

Cline M.A., Newmyer B.A. and Smith M.L. (2009) The anorectic effect of neuropeptide AF is associated with satiety-related hypothalamic nuclei. J. Neuroendocrinol. 21, 595–601 10.1111/j.1365-2826.2009.01876.x PubMed DOI

Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T.et al. . (2013) Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 1498, 33–40 10.1016/j.brainres.2012.12.037 PubMed DOI

Waqas S.F.H., Hoang A.C., Lin Y.T., Ampem G., Azegrouz H., Balogh L.et al. . (2017) Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J. Clin. Invest. 127, 3559 10.1172/JCI95841 PubMed DOI PMC

Strnadova V., Morgan A., Skrlova M., Haasova E., Bardova K., Myskova A.et al. . (2024) Peripheral administration of lipidized NPAF and NPFF analogs does not influence central food intake regulation but induces anxiety-like behavior. Neuropeptides 104, 102417 10.1016/j.npep.2024.102417 PubMed DOI

Roth B.L., Disimone J., Majane E.A. and Yang H.Y. (1987) Elevation of arterial pressure in rats by two new vertebrate peptides FLFQPQRF-NH2 and AGEGLSSPFWSLAAPQRF-NH2 which are immunoreactive to FMRF-NH2 antiserum. Neuropeptides 10, 37–42 10.1016/0143-4179(87)90087-4 PubMed DOI

Jhamandas J.H. and Goncharuk V. (2013) Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Front. Endocrinol. 4, 8 10.3389/fendo.2013.00008 PubMed DOI PMC

Desprat C. and Zajac J.M. (1997) Hypothermic effects of neuropeptide FF analogues in mice. Pharmacol. Biochem. Behav. 58, 559–563 10.1016/S0091-3057(97)00249-9 PubMed DOI

Findeisen M., Rathmann D. and Beck-Sickinger A.G. (2011) RFamide peptides: structure, function, mechanisms and pharmaceutical potential. 4, 1248–1280 10.3390/ph4091248 PubMed DOI

Kotlinska J., Pachuta A., Dylag T. and Silberring J. (2007) The role of neuropeptide FF (NPFF) in the expression of sensitization to hyperlocomotor effect of morphine and ethanol. Neuropeptides 41, 51–58 10.1016/j.npep.2006.09.048 PubMed DOI

Kotlinska J., Pachuta A. and Silberring J. (2008) Neuropeptide FF (NPFF) reduces the expression of cocaine-induced conditioned place preference and cocaine-induced sensitization in animals. Peptides 29, 933–939 10.1016/j.peptides.2008.01.008 PubMed DOI

Kotlinska J.H., Gibula-Bruzda E., Koltunowska D., Raoof H., Suder P. and Silberring J. (2012) Modulation of neuropeptide FF (NPFF) receptors influences the expression of amphetamine-induced conditioned place preference and amphetamine withdrawal anxiety-like behavior in rats. Peptides 33, 156–163 10.1016/j.peptides.2011.12.002 PubMed DOI

Cador M., Marco N., Stinus L. and Simonnet G. (2002) Interaction between neuropeptide FF and opioids in the ventral tegmental area in the behavioral response to novelty. Neuroscience 110, 309–318 10.1016/S0306-4522(01)00587-5 PubMed DOI

Kavaliers M. and Colwell D.D. (1993) Neuropeptide FF (FLQPQRFamide) and IgG from neuropeptide FF antiserum affect spatial learning in mice. Neurosci. Lett. 157, 75–78 10.1016/0304-3940(93)90646-3 PubMed DOI

Betourne A., Marty V., Ceccom J., Halley H., Lassalle J.M., Zajac J.M.et al. . (2010) Central locomotor and cognitive effects of a NPFF receptor agonist in mouse. Peptides 31, 221–226 10.1016/j.peptides.2009.11.009 PubMed DOI

Palotai M., Telegdy G., Tanaka M., Bagosi Z. and Jaszberenyi M. (2014) Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice. Behav. Brain Res. 274, 264–269 10.1016/j.bbr.2014.08.007 PubMed DOI

Sun S., Sun S., Meng Y., Shi B. and Chen Y. (2021) Elevated serum neuropeptide FF levels are associated with cognitive decline in patients with spinal cord injury. Dis. Markers 2021, 4549049 10.1155/2021/4549049 PubMed DOI PMC

Craig A., Guest R., Tran Y. and Middleton J. (2017) Cognitive impairment and mood states after spinal cord injury. J. Neurotrauma 34, 1156–1163 10.1089/neu.2016.4632 PubMed DOI

Sundblom D.M., Panula P. and Fyhrquist F. (1995) Neuropeptide FF-like immunoreactivity in human plasma. Peptides 16, 347–350 10.1016/0196-9781(94)00163-4 PubMed DOI

Guillemin R. and Rosenberg B. (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57, 599–607 10.1210/endo-57-5-599 PubMed DOI

Vale W., Spiess J., Rivier C. and Rivier J. (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213, 1394–1397 10.1126/science.6267699 PubMed DOI

Owens M.J. and Nemeroff C.B. (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 43, 425–473 PubMed

Olschowka J.A., O'Donohue T.L., Mueller G.P. and Jacobowitz D.M. (1982) The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain. Peptides 3, 995–1015 10.1016/0196-9781(82)90071-7 PubMed DOI

Grammatopoulos D.K. and Ourailidou S. (2017) CRH receptor signalling: potential roles in pathophysiology. Curr Mol. Pharmacol. 10, 296–310 10.2174/1874467210666170110125747 PubMed DOI

Arase K., York D.A., Shimizu H., Shargill N. and Bray G.A. (1988) Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am. J. Physiol. 255, E255–E259 10.1152/ajpendo.1988.255.3.E255 PubMed DOI

Glowa J.R. and Gold P.W. (1991) Corticotropin releasing hormone produces profound anorexigenic effects in the rhesus monkey. Neuropeptides 18, 55–61 10.1016/0143-4179(91)90164-E PubMed DOI

Canet G., Hernandez C., Zussy C., Chevallier N., Desrumaux C. and Givalois L. (2019) Is AD a stress-related disorder? Focus on the HPA axis and its promising therapeutic targets Front Aging Neurosci. 11, 269 10.3389/fnagi.2019.00269 PubMed DOI PMC

Vandael D., Wierda K., Vints K., Baatsen P., De Groef L., Moons L.et al. . (2021) Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress. Transl. Psychiatry 11, 378 10.1038/s41398-021-01497-2 PubMed DOI PMC

Whitehouse P.J., Vale W.W., Zweig R.M., Singer H.S., Mayeux R., Kuhar M.J.et al. . (1987) Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer's disease, Parkinson's disease, and progressive supranuclear palsy. Neurology 37, 905–909 10.1212/WNL.37.6.905 PubMed DOI

De Souza E.B. (1995) Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20, 789–819 10.1016/0306-4530(95)00011-9 PubMed DOI

De Souza E.B., Whitehouse P.J., Kuhar M.J., Price D.L. and Vale W.W. (1986) Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease. Nature 319, 593–595 10.1038/319593a0 PubMed DOI

Zhang C., Kuo C.C., Moghadam S.H., Monte L., Campbell S.N., Rice K.C.et al. . (2016) Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease. Alzheimers Dementia 12, 527–537 10.1016/j.jalz.2015.09.007 PubMed DOI PMC

Dong H., Wang S., Zeng Z., Li F., Montalvo-Ortiz J., Tucker C.et al. . (2014) Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-beta and behavior in Tg2576 mice. Psychopharmacology (Berl.) 231, 4711–4722 10.1007/s00213-014-3629-8 PubMed DOI PMC

Carroll J.C., Iba M., Bangasser D.A., Valentino R.J., James M.J., Brunden K.R.et al. . (2011) Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J. Neurosci. 31, 14436–14449 10.1523/JNEUROSCI.3836-11.2011 PubMed DOI PMC

Dong H., Keegan J.M., Hong E., Gallardo C., Montalvo-Ortiz J., Wang B.et al. . (2018) Corticotrophin releasing factor receptor 1 antagonists prevent chronic stress-induced behavioral changes and synapse loss in aged rats. Psychoneuroendocrinology 90, 92–101 10.1016/j.psyneuen.2018.02.013 PubMed DOI PMC

Lechan R.M. and Jackson I.M. (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111, 55–65 10.1210/endo-111-1-55 PubMed DOI

Guo F., Bakal K., Minokoshi Y. and Hollenberg A.N. (2004) Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology 145, 2221–2227 10.1210/en.2003-1312 PubMed DOI

Kim M.S., Small C.J., Russell S.H., Morgan D.G., Abbott C.R., alAhmed S.H.et al. . (2002) Effects of melanocortin receptor ligands on thyrotropin-releasing hormone release: evidence for the differential roles of melanocortin 3 and 4 receptors. J. Neuroendocrinol. 14, 276–282 10.1046/j.1365-2826.2002.00769.x PubMed DOI

Fekete C., Kelly J., Mihaly E., Sarkar S., Rand W.M., Legradi G.et al. . (2001) Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology 142, 2606–2613 10.1210/endo.142.6.8207 PubMed DOI

Schaner P., Todd R.B., Seidah N.G. and Nillni E.A. (1997) Processing of prothyrotropin-releasing hormone by the family of prohormone convertases. J. Biol. Chem. 272, 19958–19968 10.1074/jbc.272.32.19958 PubMed DOI

Trubacova R., Drastichova Z. and Novotny J. (2022) Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev. Biol. 10, 981452 10.3389/fcell.2022.981452 PubMed DOI PMC

Perello M., Cakir I., Cyr N.E., Romero A., Stuart R.C., Chiappini F.et al. . (2010) Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am. J. Physiol. Endocrinol. Metab. 299, E976–E989 10.1152/ajpendo.00448.2010 PubMed DOI PMC

Blake N.G., Eckland D.J., Foster O.J. and Lightman S.L. (1991) Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology 129, 2714–2718 10.1210/endo-129-5-2714 PubMed DOI

van Haasteren G.A., Linkels E., Klootwijk W., van Toor H., Rondeel J.M., Themmen A.P.et al. . (1995) Starvation-induced changes in the hypothalamic content of prothyrotrophin-releasing hormone (proTRH) mRNA and the hypothalamic release of proTRH-derived peptides: role of the adrenal gland. J. Endocrinol. 145, 143–153 10.1677/joe.0.1450143 PubMed DOI

Vijayan E. and McCann S.M. (1977) Suppression of feeding and drinking activity in rats following intraventricular injection of thyrotropin releasing hormone (TRH). Endocrinology 100, 1727–1730 10.1210/endo-100-6-1727 PubMed DOI

Steward C.A., Horan T.L., Schuhler S., Bennett G.W. and Ebling F.J. (2003) Central administration of thyrotropin releasing hormone (TRH) and related peptides inhibits feeding behavior in the Siberian hamster. Neuroreport 14, 687–691 10.1097/00001756-200304150-00006 PubMed DOI

Nillni E.A. (2010) Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front. Neuroendocrinol. 31, 134–156 10.1016/j.yfrne.2010.01.001 PubMed DOI PMC

Suzuki T., Kohno H., Sakurada T., Tadano T. and Kisara K. (1982) Intracranial injection of thyrotropin releasing hormone (TRH) suppresses starvation-induced feeding and drinking in rats. Pharmacol. Biochem. Behav. 17, 249–253 10.1016/0091-3057(82)90078-8 PubMed DOI

Morley J.E. and Levine A.S. (1980) Thyrotropin releasing hormone (TRH) suppresses stress induced eating. Life Sci. 27, 269–274 10.1016/0024-3205(80)90147-2 PubMed DOI

Pierpaoli W. and Lesnikov V.A. (2011) Effects of long-term intraperitoneal injection of thyrotropin-releasing hormone (TRH) on aging- and obesity-related changes in body weight, lipid metabolism, and thyroid functions. Curr Aging Sci. 4, 25–32 10.2174/1874609811104010025 PubMed DOI

Luo L., Yano N., Mao Q., Jackson I.M. and Stopa E.G. (2002) Thyrotropin releasing hormone (TRH) in the hippocampus of Alzheimer patients. J. Alzheimers Dis. 4, 97–103 10.3233/JAD-2002-4204 PubMed DOI

Horita A., Carino M.A., Zabawska J. and Lai H. (1989) TRH analog MK-771 reverses neurochemical and learning deficits in medial septal-lesioned rats. Peptides 10, 121–124 10.1016/0196-9781(89)90087-9 PubMed DOI

Stocca G. and Nistri A. (1996) The neuropeptide thyrotropin-releasing hormone modulates GABAergic synaptic transmission on pyramidal neurones of the rat hippocampal slice. Peptides 17, 1197–1202 10.1016/S0196-9781(96)00128-3 PubMed DOI

Ren B., Ma J., Tao M., Jing G., Han S., Zhou C.et al. . (2023) The disturbance of thyroid-associated hormone and its receptors in brain and blood circulation existed in the early stage of mouse model of Alzheimer's disease. Aging (Albany NY) 15, 1591–1602 10.18632/aging.204570 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...