Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
Grantová podpora
LX22NPO5104
European Union - Next generation EU
61388963
Czech Academy of Sciences
67985823
Czech Academy of Sciences
TN02000109
Technologická Agentura České Republiky (Czech Technological Agency)
PubMed
38577975
PubMed Central
PMC11043025
DOI
10.1042/bsr20231385
PII: 234285
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer´s-like pathology, anorexigenic neuropeptides, antiobesity treatment, neuroprotection,
- MeSH
- Alzheimerova nemoc farmakoterapie metabolismus patologie prevence a kontrola MeSH
- hypothalamus účinky léků metabolismus patologie MeSH
- látky proti obezitě * farmakologie terapeutické užití MeSH
- lidé MeSH
- mozek účinky léků metabolismus patologie MeSH
- neurodegenerativní nemoci farmakoterapie metabolismus prevence a kontrola MeSH
- neuropeptidy * metabolismus farmakologie terapeutické užití MeSH
- neuroprotektivní látky * farmakologie terapeutické užití MeSH
- obezita * farmakoterapie metabolismus MeSH
- přijímání potravy účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- látky proti obezitě * MeSH
- neuropeptidy * MeSH
- neuroprotektivní látky * MeSH
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Zobrazit více v PubMed
Guyenet S.J. and Schwartz M.W. (2012) Clinical review: Regulation of food intake, energy balance, and body fat mass: implications for the pathogenesis and treatment of obesity. J. Clin. Endocrinol. Metab. 97, 745–755 10.1210/jc.2011-2525 PubMed DOI PMC
Sobrino Crespo C., Perianes Cachero A., Puebla Jimenez L., Barrios V. and Arilla Ferreiro E. (2014) Peptides and food intake. Front. Endocrinol. 5, 58 10.3389/fendo.2014.00058 PubMed DOI PMC
Joly-Amado A., Cansell C., Denis R.G., Delbes A.S., Castel J., Martinez S.et al. . (2014) The hypothalamic arcuate nucleus and the control of peripheral substrates. Best Pract. Res. Clin. Endocrinol. Metab. 28, 725–737 10.1016/j.beem.2014.03.003 PubMed DOI
Clayton R.W., Lovell-Badge R. and Galichet C. (2022) The properties and functions of glial cell types of the hypothalamic median eminence. Front Endocrinol. (Lausanne) 13, 953995 10.3389/fendo.2022.953995 PubMed DOI PMC
Jais A. and Bruning J.C. (2022) Arcuate nucleus-dependent regulation of metabolism-pathways to obesity and diabetes mellitus. Endocr. Rev. 43, 314–328 10.1210/endrev/bnab025 PubMed DOI PMC
Friedman J.M. and Halaas J.L. (1998) Leptin and the regulation of body weight in mammals. Nature 395, 763–770 10.1038/27376 PubMed DOI
Frederich R.C., Hamann A., Anderson S., Lollmann B., Lowell B.B. and Flier J.S. (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Med. 1, 1311–1314 10.1038/nm1295-1311 PubMed DOI
Perez-Leighton C., Kerr B., Scherer P.E., Baudrand R. and Cortes V. (2023) The interplay between leptin, glucocorticoids, and GLP1 regulates food intake and feeding behaviour. Biol. Rev. Camb. Philos. Soc. 10.1111/brv.13039 PubMed DOI
Harris R.B. (2014) Direct and indirect effects of leptin on adipocyte metabolism. Biochim. Biophys. Acta 1842, 414–423 10.1016/j.bbadis.2013.05.009 PubMed DOI PMC
Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H. and Kangawa K. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 10.1038/45230 PubMed DOI
Lutz T.A. (2009) Control of food intake and energy expenditure by amylin-therapeutic implications. Int. J. Obes. 33, S24–S27 10.1038/ijo.2009.13 PubMed DOI
Cawthon C.R. and de La Serre C.B. (2021) The critical role of CCK in the regulation of food intake and diet-induced obesity. Peptides 138, 170492 10.1016/j.peptides.2020.170492 PubMed DOI
Muller T.D., Finan B., Bloom S.R., D'Alessio D., Drucker D.J., Flatt P.R.et al. . (2019) Glucagon-like peptide 1 (GLP-1). Mol. Metab. 30, 72–130 10.1016/j.molmet.2019.09.010 PubMed DOI PMC
Karra E., Chandarana K. and Batterham R.L. (2009) The role of peptide YY in appetite regulation and obesity. J. Physiol. 587, 19–25 10.1113/jphysiol.2008.164269 PubMed DOI PMC
Cummings D.E. and Overduin J. (2007) Gastrointestinal regulation of food intake. J. Clin. Invest. 117, 13–23 10.1172/JCI30227 PubMed DOI PMC
Valassi E., Scacchi M. and Cavagnini F. (2008) Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 18, 158–168 10.1016/j.numecd.2007.06.004 PubMed DOI
Lenard N.R. and Berthoud H.R. (2008) Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring) 16, S11–S22 10.1038/oby.2008.511 PubMed DOI PMC
Vrontakis M.E. (2002) Galanin: a biologically active peptide. Curr. Drug Targets CNS Neurol. Disord. 1, 531–541 10.2174/1568007023338914 PubMed DOI
Qu D., Ludwig D.S., Gammeltoft S., Piper M., Pelleymounter M.A., Cullen M.J.et al. . (1996) A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature 380, 243–247 10.1038/380243a0 PubMed DOI
Rodgers R.J., Ishii Y., Halford J.C. and Blundell J.E. (2002) Orexins and appetite regulation. Neuropeptides 36, 303–325 10.1016/S0143-4179(02)00085-9 PubMed DOI
Mastorakos G. and Zapanti E. (2004) The hypothalamic-pituitary-adrenal axis in the neuroendocrine regulation of food intake and obesity: the role of corticotropin releasing hormone. Nutr. Neurosci. 7, 271–280 10.1080/10284150400020516 PubMed DOI
Bozadjieva-Kramer N., Ross R.A., Johnson D.Q., Fenselau H., Haggerty D.L., Atwood B.et al. . (2021) The role of mediobasal hypothalamic PACAP in the control of body weight and metabolism. Endocrinology 162, 10.1210/endocr/bqab012 PubMed DOI PMC
Morley J.E., Horowitz M., Morley P.M. and Flood J.F. (1992) Pituitary adenylate cyclase activating polypeptide (PACAP) reduces food intake in mice. Peptides 13, 1133–1135 10.1016/0196-9781(92)90019-Y PubMed DOI
Lawrence C.B., Celsi F., Brennand J. and Luckman S.M. (2000) Alternative role for prolactin-releasing peptide in the regulation of food intake. Nat. Neurosci. 3, 645–646 10.1038/76597 PubMed DOI
Choi Y.H., Hartzell D., Azain M.J. and Baile C.A. (2002) TRH decreases food intake and increases water intake and body temperature in rats. Physiol. Behav. 77, 1–4 10.1016/S0031-9384(02)00784-9 PubMed DOI
Arora S. and Anubhuti (2006) Role of neuropeptides in appetite regulation and obesity–a review. Neuropeptides 40, 375–401 10.1016/j.npep.2006.07.001 PubMed DOI
Yu J.H. and Kim M.S. (2012) Molecular mechanisms of appetite regulation. Diabetes Metab. J. 36, 391–398 10.4093/dmj.2012.36.6.391 PubMed DOI PMC
Kennedy G.C. (1953) The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci. 140, 578–596 10.1098/rspb.1953.0009 PubMed DOI
Vaneckova I., Maletinska L., Behuliak M., Nagelova V., Zicha J. and Kunes J. (2014) Obesity-related hypertension: possible pathophysiological mechanisms. J. Endocrinol. 223, R63–R78 10.1530/JOE-14-0368 PubMed DOI
Kloock S., Ziegler C.G. and Dischinger U. (2023) Obesity and its comorbidities, current treatment options and future perspectives: challenging bariatric surgery? Pharmacol. Ther. 251, 108549 10.1016/j.pharmthera.2023.108549 PubMed DOI
Alford S., Patel D., Perakakis N. and Mantzoros C.S. (2018) Obesity as a risk factor for Alzheimer's disease: weighing the evidence. Obes. Rev. 19, 269–280 10.1111/obr.12629 PubMed DOI
Rahman M.M., Islam M.R., Supti F.A., Dhar P.S., Shohag S., Ferdous J.et al. . (2023) Exploring the therapeutic effect of neurotrophins and neuropeptides in neurodegenerative diseases: at a glance. Mol. Neurobiol. 60, 4206–4231 10.1007/s12035-023-03328-5 PubMed DOI
Pini L., Pievani M., Bocchetta M., Altomare D., Bosco P., Cavedo E.et al. . (2016) Brain atrophy in Alzheimer's disease and aging. Ageing Res. Rev. 30, 25–48 10.1016/j.arr.2016.01.002 PubMed DOI
Ball M.J. (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol. (Berl) 37, 111–118 10.1007/BF00692056 PubMed DOI
WHO (2016) Dementia. [cited 2024 30.01.]. Available from: http://www.who.int/mediacentre/factsheets/fs362/en/
Serrano-Pozo A., Frosch M.P., Masliah E. and Hyman B.T. (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 1, a006189 10.1101/cshperspect.a006189 PubMed DOI PMC
Flores-Cordero J.A., Perez-Perez A., Jimenez-Cortegana C., Alba G., Flores-Barragan A. and Sanchez-Margalet V. (2022) Obesity as a risk factor for dementia and Alzheimer's disease: the role of leptin. Int. J. Mol. Sci. 23, 10.3390/ijms23095202 PubMed DOI PMC
Liu Y., Liu F., Grundke-Iqbal I., Iqbal K. and Gong C.X. (2011) Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes. J. Pathol. 225, 54–62 10.1002/path.2912 PubMed DOI PMC
Kacirova M., Zmeskalova A., Korinkova L., Zelezna B., Kunes J. and Maletinska L. (2020) Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer's disease-like pathology? Clin. Sci. (Lond.) 134, 547–570 10.1042/CS20191313 PubMed DOI
Nunomura A. and Perry G. (2020) RNA and oxidative stress in Alzheimer's disease: focus on microRNAs. Oxid. Med. Cell Longev. 2020, 2638130 10.1155/2020/2638130 PubMed DOI PMC
Launer L.J. (2002) Demonstrating the case that AD is a vascular disease: epidemiologic evidence. Ageing Res. Rev. 1, 61–77 10.1016/S0047-6374(01)00364-5 PubMed DOI
Lopez-Gambero A.J., Rosell-Valle C., Medina-Vera D., Navarro J.A., Vargas A., Rivera P.et al. . (2021) A negative energy balance is associated with metabolic dysfunctions in the hypothalamus of a humanized preclinical model of Alzheimer's disease, the 5XFAD mouse. Int. J. Mol. Sci. 22, 10.3390/ijms22105365 PubMed DOI PMC
Akter K., Lanza E.A., Martin S.A., Myronyuk N., Rua M. and Raffa R.B. (2011) Diabetes mellitus and Alzheimer's disease: shared pathology and treatment? Br. J. Clin. Pharmacol. 71, 365–376 10.1111/j.1365-2125.2010.03830.x PubMed DOI PMC
Vanhanen M., Koivisto K., Moilanen L., Helkala E.L., Hanninen T., Soininen H.et al. . (2006) Association of metabolic syndrome with Alzheimer disease: a population-based study. Neurology 67, 843–847 10.1212/01.wnl.0000234037.91185.99 PubMed DOI
Basaranoglu M. and Neuschwander-Tetri B.A. (2006) Nonalcoholic fatty liver disease: clinical features and pathogenesis. Gastroenterol Hepatol (N Y) 2, 282–291 PubMed PMC
Li X., Song D. and Leng S.X. (2015) Link between type 2 diabetes and Alzheimer's disease: from epidemiology to mechanism and treatment. Clin. Interv. Aging. 10, 549–560 10.2147/CIA.S74042 PubMed DOI PMC
Maletinska L., Popelova A., Zelezna B., Bencze M. and Kunes J. (2019) The impact of anorexigenic peptides in experimental models of Alzheimer's disease pathology. J. Endocrinol. 240, R47–R72 10.1530/JOE-18-0532 PubMed DOI
Chen X.Y., Du Y.F. and Chen L. (2018) Neuropeptides exert neuroprotective effects in Alzheimer's disease. Front. Mol. Neurosci. 11, 493 10.3389/fnmol.2018.00493 PubMed DOI PMC
Holscher C. (2018) Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer's and Parkinson's disease models. Neuropharmacology 136, 251–259 10.1016/j.neuropharm.2018.01.040 PubMed DOI
Cummings J.L., Osse A.M.L. and Kinney J.W. (2023) Alzheimer's disease: novel targets and investigational drugs for disease modification. Drugs 83, 1387–1408 10.1007/s40265-023-01938-w PubMed DOI PMC
Paladugu L., Gharaibeh A., Kolli N., Learman C., Hall T.C., Li L.et al. . (2021) Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer's Disease. Int. J. Mol. Sci. 22, 10.3390/ijms22020860 PubMed DOI PMC
Bader M., Li Y., Tweedie D., Shlobin N.A., Bernstein A., Rubovitch V.et al. . (2019) Neuroprotective effects and treatment potential of incretin mimetics in a murine model of mild traumatic brain injury. Front Cell Dev. Biol. 7, 356 10.3389/fcell.2019.00356 PubMed DOI PMC
Batista A.F., Forny-Germano L., Clarke J.R., Lyra E.S.N.M., Brito-Moreira J., Boehnke S.E.et al. . (2018) The diabetes drug liraglutide reverses cognitive impairment in mice and attenuates insulin receptor and synaptic pathology in a non-human primate model of Alzheimer's disease. J. Pathol. 245, 85–100 10.1002/path.5056 PubMed DOI PMC
Holubova M., Hruba L., Popelova A., Bencze M., Prazienkova V., Gengler S.et al. . (2019) Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of beta-amyloid pathology. Neuropharmacology 144, 377–387 10.1016/j.neuropharm.2018.11.002 PubMed DOI
Duarte-Neves J., Pereira de Almeida L. and Cavadas C. (2016) Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases. Neurobiol. Dis. 95, 210–224 10.1016/j.nbd.2016.07.022 PubMed DOI
Pain S., Brot S. and Gaillard A. (2022) Neuroprotective effects of neuropeptide Y against neurodegenerative disease. Curr. Neuropharmacol. 20, 1717–1725 10.2174/1570159X19666210906120302 PubMed DOI PMC
Reichmann F. and Holzer P. (2016) Neuropeptide Y: A stressful review. Neuropeptides 55, 99–109 10.1016/j.npep.2015.09.008 PubMed DOI PMC
dos Santos V.V., Santos D.B., Lach G., Rodrigues A.L.S., Farina M., De Lima T.C.M.et al. . (2013) Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ1–40) administration in mice. Behav. Brain Res. 244, 107–115 10.1016/j.bbr.2013.01.039 PubMed DOI
Lee N.K., Park S.E., Kwon S.J., Shim S., Byeon Y., Kim J.-H.et al. . (2017) Agouti related peptide secreted via human mesenchymal stem cells upregulates proteasome activity in an Alzheimer's disease model. Sci. Rep. 7, 39340 10.1038/srep39340 PubMed DOI PMC
Calafate S., Ozturan G., Thrupp N., Vanderlinden J., Santa-Marinha L., Morais-Ribeiro R.et al. . (2023) Early alterations in the MCH system link aberrant neuronal activity and sleep disturbances in a mouse model of Alzheimer's disease. Nat. Neurosci. 26, 1021–1031 10.1038/s41593-023-01325-4 PubMed DOI PMC
Oh S.T., Liu Q.F., Jeong H.J., Lee S., Samidurai M., Jo J.et al. . (2019) Nasal cavity administration of melanin-concentrating hormone improves memory impairment in memory-impaired and Alzheimer's disease mouse models. Mol. Neurobiol. 56, 8076–8086 10.1007/s12035-019-01662-1 PubMed DOI
Monzon M.E., de Souza M.M., Izquierdo L.A., Izquierdo I., Barros D.M. and de Barioglio S.R. (1999) Melanin-concentrating hormone (MCH) modifies memory retention in rats ☆. Peptides 20, 1517–1519 10.1016/S0196-9781(99)00164-3 PubMed DOI
Varas M., Pérez M., Monzón M.E. and de Barioglio S.R. (2002) Melanin-concentrating hormone, hippocampal nitric oxide levels and memory retention. Peptides 23, 2213–2221 10.1016/S0196-9781(02)00252-8 PubMed DOI
Varas M.M., Pérez M.F., Ramírez O.A. and de Barioglio S.R. (2003) Increased susceptibility to LTP generation and changes in NMDA-NR1 and -NR2B subunits mRNA expression in rat hippocampus after MCH administration. Peptides 24, 1403–1411 10.1016/j.peptides.2003.09.006 PubMed DOI
Couvineau A., Voisin T., Nicole P., Gratio V., Abad C. and Tan Y.V. (2019) Orexins as novel therapeutic targets in inflammatory and neurodegenerative diseases. Front Endocrinol. (Lausanne) 10, 709 10.3389/fendo.2019.00709 PubMed DOI PMC
Becquet L., Abad C., Leclercq M., Miel C., Jean L., Riou G.et al. . (2019) Systemic administration of orexin A ameliorates established experimental autoimmune encephalomyelitis by diminishing neuroinflammation. J. Neuroinflamm. 16, 64 10.1186/s12974-019-1447-y PubMed DOI PMC
Liu M.F., Xue Y., Liu C., Liu Y.H., Diao H.L., Wang Y.et al. . (2018) Orexin-A exerts neuroprotective effects via OX1R in Parkinson's disease. Front Neurosci. 12, 835 10.3389/fnins.2018.00835 PubMed DOI PMC
Borroto-Escuela D.O., Fores R., Pita M., Barbancho M.A., Zamorano-Gonzalez P., Casares N.G.et al. . (2022) Intranasal delivery of galanin 2 and neuropeptide Y1 agonists enhanced spatial memory performance and neuronal precursor cells proliferation in the dorsal hippocampus in rats. Front Pharmacol. 13, 820210 10.3389/fphar.2022.820210 PubMed DOI PMC
Beltran-Casanueva R., Hernández-García A., de Amo García P., Blanco-Reina E., Serrano-Castro P., García-Casares N.et al. . (2024) Neuropeptide Y receptor 1 and galanin receptor 2 (NPY1R-GALR2) interactions in the dentate gyrus and their relevance for neurogenesis and cognition. Front Cell Neurosci. 18, 1323986 10.3389/fncel.2024.1323986 PubMed DOI PMC
Abbosh C., Lawkowski A., Zaben M. and Gray W. (2011) GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. J. Neurochem. 117, 425–436 10.1111/j.1471-4159.2011.07204.x PubMed DOI
Bertolini A., Tacchi R. and Vergoni A.V. (2009) Brain effects of melanocortins. Pharmacol. Res. 59, 13–47 10.1016/j.phrs.2008.10.005 PubMed DOI
Harno E. and White A. (2016) Chapter 8 - Adrenocorticotropic Hormone. In Endocrinology: Adult and Pediatric (Seventh Edition)(Jameson J.L., De Groot L.J., de Kretser D.M., Giudice L.C., Grossman A.B., Melmed S.et al.., eds), pp. 129.e5–146.e5, W.B. Saunders, Philadelphia
Day R. (2009) Proopiomelanocortin. Encyclopedia Neurosci. 1139–1141 10.1016/B978-008045046-9.01197-9 DOI
Dores R.M. (2009) Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective. Ann. N. Y. Acad. Sci. 1163, 93–100 10.1111/j.1749-6632.2009.04434.x PubMed DOI
Wikberg J.E., Muceniece R., Mandrika I., Prusis P., Lindblom J., Post C.et al. . (2000) New aspects on the melanocortins and their receptors. Pharmacol. Res. 42, 393–420 10.1006/phrs.2000.0725 PubMed DOI
Cone R.D. (2006) Studies on the physiological functions of the melanocortin system. Endocr. Rev. 27, 736–749 10.1210/er.2006-0034 PubMed DOI
Yanik T. and Durhan S.T. (2023) Specific functions of melanocortin 3 receptor (MC3R). J. Clin. Res. Pediatr Endocrinol. 15, 1–6 10.4274/jcrpe.galenos.2022.2022-5-21 PubMed DOI PMC
Ollmann M.M., Wilson B.D., Yang Y.K., Kerns J.A., Chen Y., Gantz I.et al. . (1997) Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 278, 135–138 10.1126/science.278.5335.135 PubMed DOI
Dutia R., Kim A.J., Modes M., Rothlein R., Shen J.M., Tian Y.E.et al. . (2013) Effects of AgRP inhibition on energy balance and metabolism in rodent models. PLoS ONE 8, e65317 10.1371/journal.pone.0065317 PubMed DOI PMC
Smith A.I. and Funder J.W. (1988) Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 9, 159–179 10.1210/edrv-9-1-159 PubMed DOI
Kuhnen P., Krude H. and Biebermann H. (2019) Melanocortin-4 receptor signalling: importance for weight regulation and obesity treatment. Trends Mol. Med. 25, 136–148 10.1016/j.molmed.2018.12.002 PubMed DOI
Irani B.G., Xiang Z., Yarandi H.N., Holder J.R., Moore M.C., Bauzo R.M.et al. . (2011) Implication of the melanocortin-3 receptor in the regulation of food intake. Eur. J. Pharmacol. 660, 80–87 10.1016/j.ejphar.2010.10.101 PubMed DOI PMC
Huszar D., Lynch C.A., Fairchild-Huntress V., Dunmore J.H., Fang Q., Berkemeier L.R.et al. . (1997) Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 88, 131–141 10.1016/S0092-8674(00)81865-6 PubMed DOI
Chen A.S., Marsh D.J., Trumbauer M.E., Frazier E.G., Guan X.M., Yu H.et al. . (2000) Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 26, 97–102 10.1038/79254 PubMed DOI
Farooqi I.S., Yeo G.S., Keogh J.M., Aminian S., Jebb S.A., Butler G.et al. . (2000) Dominant and recessive inheritance of morbid obesity associated with melanocortin 4 receptor deficiency. J. Clin. Invest. 106, 271–279 10.1172/JCI9397 PubMed DOI PMC
Krude H., Biebermann H., Luck W., Horn R., Brabant G. and Gruters A. (1998) Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 19, 155–157 10.1038/509 PubMed DOI
Butler A.A. and Cone R.D. (2002) The melanocortin receptors: lessons from knockout models. Neuropeptides 36, 77–84 10.1054/npep.2002.0890 PubMed DOI
Hansen M.J., Schioth H.B. and Morris M.J. (2005) Feeding responses to a melanocortin agonist and antagonist in obesity induced by a palatable high-fat diet. Brain Res. 1039, 137–145 10.1016/j.brainres.2005.01.063 PubMed DOI
Clegg D.J., Benoit S.C., Air E.L., Jackman A., Tso P., D'Alessio D.et al. . (2003) Increased dietary fat attenuates the anorexic effects of intracerebroventricular injections of MTII. Endocrinology 144, 2941–2946 10.1210/en.2002-0218 PubMed DOI
Fan W., Boston B.A., Kesterson R.A., Hruby V.J. and Cone R.D. (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385, 165–168 10.1038/385165a0 PubMed DOI
Marsh D.J., Hollopeter G., Huszar D., Laufer R., Yagaloff K.A., Fisher S.L.et al. . (1999) Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21, 119–122 10.1038/5070 PubMed DOI
Chen A.S., Metzger J.M., Trumbauer M.E., Guan X.M., Yu H., Frazier E.G.et al. . (2000) Role of the melanocortin-4 receptor in metabolic rate and food intake in mice. Transgenic Res. 9, 145–154 10.1023/A:1008983615045 PubMed DOI
Conde-Frieboes K., Thogersen H., Lau J.F., Sensfuss U., Hansen T.K., Christensen L.et al. . (2012) Identification and in vivo and in vitro characterization of long acting and melanocortin 4 receptor (MC4-R) selective alpha-melanocyte-stimulating hormone (alpha-MSH) analogues. J. Med. Chem. 55, 1969–1977 10.1021/jm201489a PubMed DOI
Fosgerau K., Raun K., Nilsson C., Dahl K. and Wulff B.S. (2014) Novel alpha-MSH analog causes weight loss in obese rats and minipigs and improves insulin sensitivity. J. Endocrinol. 220, 97–107 10.1530/JOE-13-0284 PubMed DOI PMC
Rodrigues A.R., Salazar M.J., Rocha-Rodrigues S., Goncalves I.O., Cruz C., Neves D.et al. . (2019) Peripherally administered melanocortins induce mice fat browning and prevent obesity. Int. J. Obes. (Lond.) 43, 1058–1069 10.1038/s41366-018-0155-5 PubMed DOI
Kumar K.G., Sutton G.M., Dong J.Z., Roubert P., Plas P., Halem H.A.et al. . (2009) Analysis of the therapeutic functions of novel melanocortin receptor agonists in MC3R- and MC4R-deficient C57BL/6J mice. Peptides 30, 1892–1900 10.1016/j.peptides.2009.07.012 PubMed DOI PMC
Ma K. and McLaurin J. (2017) alpha-melanocyte stimulating hormone as a potential therapy for Alzheimer’s disease. Curr Alzheimer Res. 14, 18–29 10.2174/1567205013666160819130641 PubMed DOI
Costa A., Bini P., Hamze-Sinno M., Moglia A., Franciotta D., Sinforiani E.et al. . (2011) Galanin and alpha-MSH autoantibodies in cerebrospinal fluid of patients with Alzheimer's disease. J. Neuroimmunol. 240-241, 114–120 10.1016/j.jneuroim.2011.10.003 PubMed DOI
Arai H., Moroji T., Kosaka K. and Iizuka R. (1986) Extrahypophyseal distribution of alpha-melanocyte stimulating hormone (alpha-MSH)-like immunoreactivity in postmortem brains from normal subjects and Alzheimer-type dementia patients. Brain Res. 377, 305–310 10.1016/0006-8993(86)90873-5 PubMed DOI
Ma K. and McLaurin J. (2014) alpha-Melanocyte stimulating hormone prevents GABAergic neuronal loss and improves cognitive function in Alzheimer's disease. J. Neurosci. 34, 6736–6745 10.1523/JNEUROSCI.5075-13.2014 PubMed DOI PMC
Forslin Aronsson S., Spulber S., Popescu L.M., Winblad B., Post C., Oprica M.et al. . (2006) alpha-Melanocyte-stimulating hormone is neuroprotective in rat global cerebral ischemia. Neuropeptides 40, 65–75 10.1016/j.npep.2005.10.006 PubMed DOI
Giuliani D., Zaffe D., Ottani A., Spaccapelo L., Galantucci M., Minutoli L.et al. . (2011) Treatment of cerebral ischemia with melanocortins acting at MC4 receptors induces marked neurogenesis and long-lasting functional recovery. Acta Neuropathol. 122, 443–453 10.1007/s00401-011-0873-4 PubMed DOI
Giuliani D., Bitto A., Galantucci M., Zaffe D., Ottani A., Irrera N.et al. . (2014) Melanocortins protect against progression of Alzheimer's disease in triple-transgenic mice by targeting multiple pathophysiological pathways. Neurobiol. Aging 35, 537–547 10.1016/j.neurobiolaging.2013.08.030 PubMed DOI
Daini E., Vandini E., Bodria M., Liao W., Baraldi C., Secco V.et al. . (2022) Melanocortin receptor agonist NDP-alpha-MSH improves cognitive deficits and microgliosis but not amyloidosis in advanced stages of AD progression in 5XFAD and 3xTg mice. Front Immunol. 13, 1082036 10.3389/fimmu.2022.1082036 PubMed DOI PMC
Giuliani D., Galantucci M., Neri L., Canalini F., Calevro A., Bitto A.et al. . (2014) Melanocortins protect against brain damage and counteract cognitive decline in a transgenic mouse model of moderate Alzheimer's disease. Eur. J. Pharmacol. 740, 144–150 10.1016/j.ejphar.2014.06.063 PubMed DOI
Giuliani D., Neri L., Canalini F., Calevro A., Ottani A., Vandini E.et al. . (2015) NDP-alpha-MSH induces intense neurogenesis and cognitive recovery in Alzheimer transgenic mice through activation of melanocortin MC4 receptors. Mol. Cell. Neurosci. 67, 13–21 10.1016/j.mcn.2015.05.004 PubMed DOI
Johnson G.V. and Bailey C.D. (2003) The p38 MAP kinase signaling pathway in Alzheimer's disease. Exp. Neurol. 183, 263–268 10.1016/S0014-4886(03)00268-1 PubMed DOI
Lau J.K.Y., Tian M., Shen Y., Lau S.F., Fu W.Y., Fu A.K.Y.et al. . (2021) Melanocortin receptor activation alleviates amyloid pathology and glial reactivity in an Alzheimer's disease transgenic mouse model. Sci. Rep. 11, 4359 10.1038/s41598-021-83932-4 PubMed DOI PMC
Douglass J., McKinzie A.A. and Couceyro P. (1995) PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine. J. Neurosci. 15, 2471–2481 10.1523/JNEUROSCI.15-03-02471.1995 PubMed DOI PMC
Thim L., Kristensen P., Nielsen P.F., Wulff B.S. and Clausen J.T. (1999) Tissue-specific processing of cocaine- and amphetamine-regulated transcript peptides in the rat. Proc. Natl. Acad Sci. U.S.A. 96, 2722–2727 10.1073/pnas.96.6.2722 PubMed DOI PMC
Thim L., Nielsen P.F., Judge M.E., Andersen A.S., Diers I., Egel-Mitani M.et al. . (1998) Purification and characterisation of a new hypothalamic satiety peptide, cocaine and amphetamine regulated transcript (CART), produced in yeast. FEBS Lett. 428, 263–268 10.1016/S0014-5793(98)00543-2 PubMed DOI
Dey A., Xhu X., Carroll R., Turck C.W., Stein J. and Steiner D.F. (2003) Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3. J. Biol. Chem. 278, 15007–15014 10.1074/jbc.M212128200 PubMed DOI
Stein J., Steiner D.F. and Dey A. (2006) Processing of cocaine- and amphetamine-regulated transcript (CART) precursor proteins by prohormone convertases (PCs) and its implications. Peptides 27, 1919–1925 10.1016/j.peptides.2005.10.028 PubMed DOI
Spiess J., Villarreal J. and Vale W.J.B. (1981) Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus. 20, 1982–1988 10.1021/bi00510a038 PubMed DOI
Dominguez G. (2006) The CART gene: structure and regulation. Peptides 27, 1913–1918 10.1016/j.peptides.2006.01.025 PubMed DOI
Douglass J. and Daoud S. (1996) Characterization of the human cDNA and genomic DNA encoding CART: a cocaine- and amphetamine-regulated transcript. Gene 169, 241–245 10.1016/0378-1119(96)88651-3 PubMed DOI
Yermolaieva O., Chen J., Couceyro P.R. and Hoshi T. (2001) Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons. J. Neurosci. 21, 7474–7480 10.1523/JNEUROSCI.21-19-07474.2001 PubMed DOI PMC
Lakatos A., Prinster S., Vicentic A., Hall R.A. and Kuhar M.J. (2005) Cocaine- and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors. Neurosci. Lett. 384, 198–202 10.1016/j.neulet.2005.04.072 PubMed DOI
Vicentic A., Lakatos A. and Kuhar M.J. (2005) CART (cocaine- and amphetamine-regulated transcript) peptide receptors: specific binding in AtT20 cells. Eur. J. Pharmacol. 528, 188–189 10.1016/j.ejphar.2005.11.041 PubMed DOI
Maletinska L., Maixnerova J., Matyskova R., Haugvicova R., Sloncova E., Elbert T.et al. . (2007) Cocaine- and amphetamine-regulated transcript (CART) peptide specific binding in pheochromocytoma cells PC12. Eur. J. Pharmacol. 559, 109–114 10.1016/j.ejphar.2006.12.014 PubMed DOI
Nagelova V., Pirnik Z., Zelezna B. and Maletinska L. (2014) CART (cocaine- and amphetamine-regulated transcript) peptide specific binding sites in PC12 cells have characteristics of CART peptide receptors. Brain Res. 1547, 16–24 10.1016/j.brainres.2013.12.024 PubMed DOI
Yosten G.L., Harada C.M., Haddock C., Giancotti L.A., Kolar G.R., Patel R.et al. . (2020) GPR160 de-orphanization reveals critical roles in neuropathic pain in rodents. J. Clin. Invest. 130, 2587–2592 10.1172/JCI133270 PubMed DOI PMC
Freitas-Lima L.C., Pacesova A., Stanurova J., Sacha P., Marek A., Hubalek M.et al. . (2023) GPR160 is not a receptor of anorexigenic cocaine- and amphetamine-regulated transcript peptide. Eur. J. Pharmacol. 949, 175713 10.1016/j.ejphar.2023.175713 PubMed DOI
Gautvik K.M., de Lecea L., Gautvik V.T., Danielson P.E., Tranque P., Dopazo A.et al. . (1996) Overview of the most prevalent hypothalamus-specific mRNAs, as identified by directional tag PCR subtraction. Proc. Natl. Acad Sci. U.S.A. 93, 8733–8738 10.1073/pnas.93.16.8733 PubMed DOI PMC
Koylu E.O., Couceyro P.R., Lambert P.D., Ling N.C., DeSouza E.B. and Kuhar M.J. (1997) Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol. 9, 823–833 10.1046/j.1365-2826.1997.00651.x PubMed DOI
Jensen P.B., Kristensen P., Clausen J.T., Judge M.E., Hastrup S., Thim L.et al. . (1999) The hypothalamic satiety peptide CART is expressed in anorectic and non-anorectic pancreatic islet tumors and in the normal islet of Langerhans. FEBS Lett. 447, 139–143 10.1016/S0014-5793(99)00291-4 PubMed DOI
Ekblad E. (2006) CART in the enteric nervous system. Peptides 27, 2024–2030 10.1016/j.peptides.2005.12.015 PubMed DOI
Koylu E.O., Couceyro P.R., Lambert P.D. and Kuhar M.J. (1998) Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 391, 115–132 10.1002/(SICI)1096-9861(19980202)391:1<115::AID-CNE10>3.0.CO;2-X PubMed DOI
Asnicar M.A., Smith D.P., Yang D.D., Heiman M.L., Fox N., Chen Y.F.et al. . (2001) Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet. Endocrinology 142, 4394–4400 10.1210/endo.142.10.8416 PubMed DOI
Wierup N., Richards W.G., Bannon A.W., Kuhar M.J., Ahrén B. and Sundler F. (2005) CART knock out mice have impaired insulin secretion and glucose intolerance, altered beta cell morphology and increased body weight. Regul. Pept. 129, 203–211 10.1016/j.regpep.2005.02.016 PubMed DOI
Bannon A.W., Seda J., Carmouche M., Francis J.M., Jarosinski M.A. and Douglass J. (2001) Multiple behavioral effects of cocaine- and amphetamine-regulated transcript (CART) peptides in mice: CART 42-89 and CART 49-89 differ in potency and activity. J. Pharmacol. Exp. Ther. 299, 1021–1026 PubMed
Lambert P.D., Couceyro P.R., McGirr K.M., Dall Vechia S.E., Smith Y. and Kuhar M.J. (1998) CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse 29, 293–298 10.1002/(SICI)1098-2396(199808)29:4<293::AID-SYN1>3.0.CO;2-0 PubMed DOI
Kristensen P., Judge M.E., Thim L., Ribel U., Christjansen K.N., Wulff B.S.et al. . (1998) Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393, 72–76 10.1038/29993 PubMed DOI
Wang Z.W., Zhou Y.T., Kakuma T., Lee Y., Higa M., Kalra S.P.et al. . (1999) Comparing the hypothalamic and extrahypothalamic actions of endogenous hyperleptinemia. Proc. Natl. Acad Sci. U.S.A. 96, 10373–10378 10.1073/pnas.96.18.10373 PubMed DOI PMC
Elias C.F., Lee C.E., Kelly J.F., Ahima R.S., Kuhar M., Saper C.B.et al. . (2001) Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 432, 1–19 10.1002/cne.1085 PubMed DOI
Tian D.R., Li X.D., Shi Y.S., Wan Y., Wang X.M., Chang J.K.et al. . (2004) Changes of hypothalamic alpha-MSH and CART peptide expression in diet-induced obese rats. Peptides 25, 2147–2153 10.1016/j.peptides.2004.08.009 PubMed DOI
Fekete C., Mihaly E., Luo L.G., Kelly J., Clausen J.T., Mao Q.et al. . (2000) Association of cocaine- and amphetamine-regulated transcript-immunoreactive elements with thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic-pituitary-thyroid axis during fasting. J. Neurosci. 20, 9224–9234 10.1523/JNEUROSCI.20-24-09224.2000 PubMed DOI PMC
Fekete C. and Lechan R.M. (2006) Neuroendocrine implications for the association between cocaine- and amphetamine regulated transcript (CART) and hypophysiotropic thyrotropin-releasing hormone (TRH). Peptides 27, 2012–2018 10.1016/j.peptides.2005.11.029 PubMed DOI
Pirnik Z., Maixnerova J., Matyskova R., Koutova D., Zelezna B., Maletinska L.et al. . (2010) Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation. Peptides 31, 139–144 10.1016/j.peptides.2009.09.035 PubMed DOI
Maletinska L., Maixnerova J., Matyskova R., Haugvicova R., Pirnik Z., Kiss A.et al. . (2008) Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neuroscience 9, 101 10.1186/1471-2202-9-101 PubMed DOI PMC
Rohner-Jeanrenaud F., Craft L.S., Bridwell J., Suter T.M., Tinsley F.C., Smiley D.L.et al. . (2002) Chronic central infusion of cocaine- and amphetamine-regulated transcript (CART 55-102): effects on body weight homeostasis in lean and high-fat-fed obese rats. Int. J. Obes. Relat. Metab. Disord. 26, 143–149 10.1038/sj.ijo.0801863 PubMed DOI
Wortley K.E., Chang G.Q., Davydova Z., Fried S.K. and Leibowitz S.F. (2004) Cocaine- and amphetamine-regulated transcript in the arcuate nucleus stimulates lipid metabolism to control body fat accrual on a high-fat diet. Regul. Pept. 117, 89–99 10.1016/j.regpep.2003.08.005 PubMed DOI
Upadhya M.A., Nakhate K.T., Kokare D.M., Singru P.S. and Subhedar N.K. (2011) Cocaine- and amphetamine-regulated transcript peptide increases spatial learning and memory in rats. Life Sci. 88, 322–334 10.1016/j.lfs.2010.12.008 PubMed DOI
Jin J.L., Liou A.K., Shi Y., Yin K.L., Chen L., Li L.L.et al. . (2015) CART treatment improves memory and synaptic structure in APP/PS1 mice. Sci. Rep. 5, 10224 10.1038/srep10224 PubMed DOI PMC
Yin K., Jin J., Zhu X., Yu L., Wang S., Qian L.et al. . (2017) CART modulates beta-amyloid metabolism-associated enzymes and attenuates memory deficits in APP/PS1 mice. Neurol. Res. 39, 885–894 10.1080/01616412.2017.1348689 PubMed DOI
Jiang H., Niu F., Zheng Y. and Xu Y. (2021) CART mitigates oxidative stress and DNA damage in memory deficits of APP/PS1 mice via upregulating beta-amyloid metabolism-associated enzymes. Mol. Med. Rep. 23, 10.3892/mmr.2021.11919 PubMed DOI PMC
Jiao W., Wang Y., Kong L., Ou-Yang T., Meng Q., Fu Q.et al. . (2018) CART peptide activates the Nrf2/HO-1 antioxidant pathway and protects hippocampal neurons in a rat model of Alzheimer's disease. Biochem. Biophys. Res. Commun. 501, 1016–1022 10.1016/j.bbrc.2018.05.101 PubMed DOI
Hannibal J., Mikkelsen J.D., Clausen H., Holst J.J., Wulff B.S. and Fahrenkrug J. (1995) Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul. Pept. 55, 133–148 10.1016/0167-0115(94)00099-J PubMed DOI
Kivipelto L., Absood A., Arimura A., Sundler F., Hakanson R. and Panula P. (1992) The distribution of pituitary adenylate cyclase-activating polypeptide-like immunoreactivity is distinct from helodermin- and helospectin-like immunoreactivities in the rat brain. J. Chem. Neuroanat. 5, 85–94 10.1016/0891-0618(92)90036-P PubMed DOI
Koves K., Arimura A., Gorcs T.G. and Somogyvari-Vigh A. (1991) Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology 54, 159–169 10.1159/000125864 PubMed DOI
Sureshkumar K., Saenz A., Ahmad S.M. and Lutfy K. (2021) The PACAP/PAC1 receptor system and feeding. Brain Sci. 12, 10.3390/brainsci12010013 PubMed DOI PMC
Hawke Z., Ivanov T.R., Bechtold D.A., Dhillon H., Lowell B.B. and Luckman S.M. (2009) PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J. Neurosci. 29, 14828–14835 10.1523/JNEUROSCI.1526-09.2009 PubMed DOI PMC
Mata-Pacheco V., Hernandez J., Varma N., Xu J., Sayers S., Le N.et al. . (2024) Dynamic, sex- and diet-specific pleiotropism in the PAC1 receptor-mediated regulation of arcuate proopiomelanocortin and Neuropeptide Y/Agouti related peptide neuronal excitability by anorexigenic ventromedial nucleus PACAP neurons. J. Neuroendocrinol. 36, e13357 10.1111/jne.13357 PubMed DOI
Adams B.A., Gray S.L., Isaac E.R., Bianco A.C., Vidal-Puig A.J. and Sherwood N.M. (2008) Feeding and metabolism in mice lacking pituitary adenylate cyclase-activating polypeptide. Endocrinology 149, 1571–1580 10.1210/en.2007-0515 PubMed DOI PMC
Vu J.P., Luong L., Sanford D., Oh S., Kuc A., Pisegna R.et al. . (2023) PACAP and VIP neuropeptides' and receptors' effects on appetite, satiety and metabolism. Biology (Basel.) 12, 10.3390/biology12071013 PubMed DOI PMC
Kondo T., Tominaga T., Ichikawa M. and Iijima T. (1997) Differential alteration of hippocampal synaptic strength induced by pituitary adenylate cyclase activating polypeptide-38 (PACAP-38). Neurosci. Lett. 221, 189–192 10.1016/S0304-3940(96)13323-1 PubMed DOI
Toth D., Reglodi D., Schwieters L. and Tamas A. (2023) Role of endocrine PACAP in age-related diseases. Front Endocrinol. (Lausanne) 14, 1118927 10.3389/fendo.2023.1118927 PubMed DOI PMC
Rat D., Schmitt U., Tippmann F., Dewachter I., Theunis C., Wieczerzak E.et al. . (2011) Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 25, 3208–3218 10.1096/fj.10-180133 PubMed DOI PMC
Hinuma S., Habata Y., Fujii R., Kawamata Y., Hosoya M., Fukusumi S.et al. . (1998) A prolactin-releasing peptide in the brain. Nature 393, 272–276 10.1038/30515 PubMed DOI
Samson W.K., Resch Z.T., Murphy T.C. and Chang J.K. (1998) Gender-biased activity of the novel prolactin releasing peptides: comparison with thyrotropin releasing hormone reveals only pharmacologic effects. Endocrine 9, 289–291 10.1385/ENDO:9:3:289 PubMed DOI
Jarry H., Heuer H., Schomburg L. and Bauer K. (2000) Prolactin-releasing peptides do not stimulate prolactin release in vivo. Neuroendocrinology 71, 262–267, 54544 10.1159/000054544 PubMed DOI
Boyle R.G., Downham R., Ganguly T., Humphries J., Smith J. and Travers S. (2005) Structure-activity studies on prolactin-releasing peptide (PrRP). Analogues of PrRP-(19-31)-peptide. J. Peptide Sci. 11, 161–165 10.1002/psc.612 PubMed DOI
Roland B.L., Sutton S.W., Wilson S.J., Luo L., Pyati J., Huvar R.et al. . (1999) Anatomical distribution of prolactin-releasing peptide and its receptor suggests additional functions in the central nervous system and periphery. Endocrinology 140, 5736–5745 10.1210/endo.140.12.7211 PubMed DOI
Maletinska L., Spolcova A., Maixnerova J., Blechova M. and Zelezna B. (2011) Biological properties of prolactin-releasing peptide analogs with a modified aromatic ring of a C-terminal phenylalanine amide. Peptides 32, 1887–1892 10.1016/j.peptides.2011.08.011 PubMed DOI
Engstrom M., Brandt A., Wurster S., Savola J.M. and Panula P. (2003) Prolactin releasing peptide has high affinity and efficacy at neuropeptide FF2 receptors. J. Pharmacol. Exp. Ther. 305, 825–832 10.1124/jpet.102.047118 PubMed DOI
Maruyama M., Matsumoto H., Fujiwara K., Kitada C., Hinuma S., Onda H.et al. . (1999) Immunocytochemical localization of prolactin-releasing peptide in the rat brain. Endocrinology 140, 2326–2333 10.1210/endo.140.5.6685 PubMed DOI
Matsumoto H., Murakami Y., Horikoshi Y., Noguchi J., Habata Y., Kitada C.et al. . (1999) Distribution and characterization of immunoreactive prolactin-releasing peptide (PrRP) in rat tissue and plasma. Biochem. Biophys. Res. Commun. 257, 264–268 10.1006/bbrc.1999.0463 PubMed DOI
Fujii R., Fukusumi S., Hosoya M., Kawamata Y., Habata Y., Hinuma S.et al. . (1999) Tissue distribution of prolactin-releasing peptide (PrRP) and its receptor. Regul. Pept. 83, 1–10 10.1016/S0167-0115(99)00028-2 PubMed DOI
Prazienkova V., Popelova A., Kunes J. and Maletinska L. (2019) Prolactin-releasing peptide: physiological and pharmacological properties. Int. J. Mol. Sci. 20, 10.3390/ijms20215297 PubMed DOI PMC
Seal L.J., Small C.J., Dhillo W.S., Stanley S.A., Abbott C.R., Ghatei M.A.et al. . (2001) PRL-releasing peptide inhibits food intake in male rats via the dorsomedial hypothalamic nucleus and not the paraventricular hypothalamic nucleus. Endocrinology 142, 4236–4243 10.1210/endo.142.10.8419 PubMed DOI
Ellacott K.L., Lawrence C.B., Pritchard L.E. and Luckman S.M. (2003) Repeated administration of the anorectic factor prolactin-releasing peptide leads to tolerance to its effects on energy homeostasis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1005–R1010 10.1152/ajpregu.00237.2003 PubMed DOI
Ellacott K.L., Lawrence C.B., Rothwell N.J. and Luckman S.M. (2002) PRL-releasing peptide interacts with leptin to reduce food intake and body weight. Endocrinology 143, 368–374 10.1210/endo.143.2.8608 PubMed DOI
Bechtold D.A. and Luckman S.M. (2006) Prolactin-releasing peptide mediates cholecystokinin-induced satiety in mice. Endocrinology 147, 4723–4729 10.1210/en.2006-0753 PubMed DOI
Takayanagi Y., Matsumoto H., Nakata M., Mera T., Fukusumi S., Hinuma S.et al. . (2008) Endogenous prolactin-releasing peptide regulates food intake in rodents. J. Clin. Invest. 118, 4014–4024 10.1172/JCI34682 PubMed DOI PMC
Bjursell M., Lenneras M., Goransson M., Elmgren A. and Bohlooly Y.M. (2007) GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 363, 633–638 10.1016/j.bbrc.2007.09.016 PubMed DOI
Prazienkova V., Funda J., Pirnik Z., Karnosova A., Hruba L., Korinkova L.et al. . (2021) GPR10 gene deletion in mice increases basal neuronal activity, disturbs insulin sensitivity and alters lipid homeostasis. Gene 774, 145427 10.1016/j.gene.2021.145427 PubMed DOI
Maletinska L., Nagelova V., Ticha A., Zemenova J., Pirnik Z., Holubova M.et al. . (2015) Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int. J. Obes. 10.1038/ijo.2015.28 PubMed DOI
Mikulaskova B., Zemenova J., Pirnik Z., Prazienkova V., Bednarova L., Zelezna B.et al. . (2016) Effect of palmitoylated prolactin-releasing peptide on food intake and neural activation after different routes of peripheral administration in rats. Peptides 75, 109–117 10.1016/j.peptides.2015.11.005 PubMed DOI
Pražienková V., Holubová M., Pelantová H., Bugáňová M., Pirník Z., Mikulášková B.et al. . (2017) Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE 12, e0183449 10.1371/journal.pone.0183449 PubMed DOI PMC
Holubova M., Hruba L., Neprasova B., Majercikova Z., Lacinova Z., Kunes J.et al. . (2018) Prolactin-releasing peptide improved leptin hypothalamic signaling in obese mice. J. Mol. Endocrinol. 60, 85–94 10.1530/JME-17-0171 PubMed DOI
Cermakova M., Pelantova H., Neprasova B., Sediva B., Maletinska L., Kunes J.et al. . (2019) Metabolomic study of obesity and its treatment with palmitoylated prolactin-releasing peptide analog in spontaneously hypertensive and normotensive rats. J. Proteome Res. 18, 1735–1750 10.1021/acs.jproteome.8b00964 PubMed DOI
Holubova M., Zemenova J., Mikulaskova B., Panajotova V., Stohr J., Haluzik M.et al. . (2016) Palmitoylated PrRP analog decreases body weight in DIO rats but not in ZDF rats. J. Endocrinol. 229, 85–96 10.1530/JOE-15-0519 PubMed DOI
Mrazikova L., Hojna S., Vaculova P., Strnad S., Vrkoslav V., Pelantova H.et al. . (2023) Lipidized PrRP analog exhibits strong anti-obesity and antidiabetic properties in Old WKY rats with obesity and glucose intolerance. Nutrients 15, 10.3390/nu15020280 PubMed DOI PMC
Mrazikova L., Neprasova B., Mengr A., Popelova A., Strnadova V., Hola L.et al. . (2021) Lipidized prolactin-releasing peptide as a new potential tool to treat obesity and type 2 diabetes mellitus: preclinical studies in rodent models. Front Pharmacol. 12, 779962 10.3389/fphar.2021.779962 PubMed DOI PMC
Pflimlin E., Lear S., Lee C., Yu S., Zou H., To A.et al. . (2019) Design of a long-acting and selective MEG-fatty acid stapled prolactin-releasing peptide analog. ACS Med. Chem. Lett. 10, 1166–1172 10.1021/acsmedchemlett.9b00182 PubMed DOI PMC
Prazienkova V., Ticha A., Blechova M., Spolcova A., Zelezna B. and Maletinska L. (2016) Pharmacological characterization of lipidized analogs of prolactin-releasing peptide with a modified C- terminal aromatic ring. J. Physiol. Pharmacol. 67, 121–128 PubMed
Alexopoulou F., Bech E.M., Pedersen S.L., Thorbek D.D., Leurs U., Rudkjaer L.C.B.et al. . (2022) Lipidated PrRP31 metabolites are long acting dual GPR10 and NPFF2 receptor agonists with potent body weight lowering effect. Sci. Rep. 12, 1696 10.1038/s41598-022-05310-y PubMed DOI PMC
Spolcova A., Mikulaskova B., Holubova M., Nagelova V., Pirnik Z., Zemenova J.et al. . (2015) Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J. Alzheimers Dis. 45, 823–835 10.3233/JAD-143150 PubMed DOI
Popelova A., Prazienkova V., Neprasova B., Kasperova B.J., Hruba L., Holubova M.et al. . (2018) Novel lipidized analog of prolactin-releasing peptide improves memory impairment and attenuates hyperphosphorylation of tau protein in a mouse model of tauopathy. J. Alzheimers Dis. 62, 1725–1736 10.3233/JAD-171041 PubMed DOI
Mengr A., Hruba L., Exnerova A., Holubova M., Popelova A., Zelezna B.et al. . (2021) Palmitoylated prolactin-releasing peptide reduced Abeta plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res. 10.2174/1567205018666210922110652 PubMed DOI
Strnad S., PraZienkova V., Holubova M., Sykora D., Cvacka J., Maletinska L.et al. . (2020) Mass spectrometry imaging of free-floating brain sections detects pathological lipid distribution in a mouse model of Alzheimer's-like pathology. Analyst 10.1039/D0AN00592D PubMed DOI
Jorgensen S.K., Karnosova A., Mazzaferro S., Rowley O., Chen H.C., Robbins S.J.et al. . (2023) An analogue of the prolactin releasing peptide reduces obesity and promotes adult neurogenesis. EMBO Rep. 10.1038/s44319-023-00016-2 PubMed DOI PMC
Macias M., Acha B., Corroza J., Urdanoz-Casado A., Roldan M., Robles M.et al. . (2023) Liquid biopsy in Alzheimer's disease patients reveals epigenetic changes in the PRLHR gene. Cells 12, 10.3390/cells12232679 PubMed DOI PMC
Yang H.Y., Fratta W., Majane E.A. and Costa E. (1985) Isolation, sequencing, synthesis, and pharmacological characterization of two brain neuropeptides that modulate the action of morphine. Proc. Natl. Acad Sci. U.S.A. 82, 7757–7761 10.1073/pnas.82.22.7757 PubMed DOI PMC
Panula P., Aarnisalo A.A. and Wasowicz K. (1996) Neuropeptide FF, a mammalian neuropeptide with multiple functions. Prog. Neurobiol. 48, 461–487 10.1016/0301-0082(96)00001-9 PubMed DOI
Vilim F.S., Aarnisalo A.A., Nieminen M.L., Lintunen M., Karlstedt K., Kontinen V.K.et al. . (1999) Gene for pain modulatory neuropeptide NPFF: induction in spinal cord by noxious stimuli. Mol. Pharmacol. 55, 804–811 PubMed
Kivipelto L. and Panula P. (1991) Central neuronal pathways containing FLFQPQRFamide-like (morphine-modulating) peptides in the rat brain. Neuroscience 41, 137–148 10.1016/0306-4522(91)90204-2 PubMed DOI
Jhamandas J.H., Jhamandas A. and Harris K.H. (2001) New central projections of neuropeptide FF: colateral branching pathways in the brainstem and hypothalamus in the rat. J. Chem. Neuroanat. 21, 171–179 10.1016/S0891-0618(01)00094-1 PubMed DOI
Gouarderes C., Puget A. and Zajac J.M. (2004) Detailed distribution of neuropeptide FF receptors (NPFF1 and NPFF2) in the rat, mouse, octodon, rabbit, guinea pig, and marmoset monkey brains: a comparative autoradiographic study. Synapse 51, 249–269 10.1002/syn.10305 PubMed DOI
Bonini J.A., Jones K.A., Adham N., Forray C., Artymyshyn R., Durkin M.M.et al. . (2000) Identification and characterization of two G protein-coupled receptors for neuropeptide FF. J. Biol. Chem. 275, 39324–39331 10.1074/jbc.M004385200 PubMed DOI
Roumy M. and Zajac J.M. (1998) Neuropeptide FF, pain and analgesia. Eur. J. Pharmacol. 345, 1–11 10.1016/S0014-2999(97)01604-X PubMed DOI
Elhabazi K., Trigo J.M., Mollereau C., Mouledous L., Zajac J.M., Bihel F.et al. . (2012) Involvement of neuropeptide FF receptors in neuroadaptive responses to acute and chronic opiate treatments. Br. J. Pharmacol. 165, 424–435 10.1111/j.1476-5381.2011.01563.x PubMed DOI PMC
Devillers J.P., Mazarguil H., Allard M., Dickenson A.H., Zajac J.M. and Simonnet G. (1994) Characterization of a potent agonist for NPFF receptors: binding study on rat spinal cord membranes. Neuropharmacology 33, 661–669 10.1016/0028-3908(94)90172-4 PubMed DOI
Gicquel S., Mazarguil H., Allard M., Simonnet G. and Zajac J.M. (1992) Analogues of F8Famide resistant to degradation, with high affinity and in vivo effects. Eur. J. Pharmacol. 222, 61–67 10.1016/0014-2999(92)90463-E PubMed DOI
Vyas N., Mollereau C., Cheve G. and McCurdy C.R. (2006) Structure-activity relationships of neuropeptide FF and related peptidic and non-peptidic derivatives. Peptides 27, 990–996 10.1016/j.peptides.2005.07.024 PubMed DOI
Simonin F., Schmitt M., Laulin J.P., Laboureyras E., Jhamandas J.H., MacTavish D.et al. . (2006) RF9, a potent and selective neuropeptide FF receptor antagonist, prevents opioid-induced tolerance associated with hyperalgesia. Proc. Natl. Acad Sci. U.S.A. 103, 466–471 10.1073/pnas.0502090103 PubMed DOI PMC
Fang Q., Wang Y.Q., He F., Guo J., Guo J., Chen Q.et al. . (2008) Inhibition of neuropeptide FF (NPFF)-induced hypothermia and anti-morphine analgesia by RF9, a new selective NPFF receptors antagonist. Regul. Pept. 147, 45–51 10.1016/j.regpep.2007.12.007 PubMed DOI
Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T.et al. . (2013) Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 1498, 33–40 10.1016/j.brainres.2012.12.037 PubMed DOI
Murase T., Arima H., Kondo K. and Oiso Y. (1996) Neuropeptide FF reduces food intake in rats. Peptides 17, 353–354 10.1016/0196-9781(95)02137-X PubMed DOI
Sunter D., Hewson A.K., Lynam S. and Dickson S.L. (2001) Intracerebroventricular injection of neuropeptide FF, an opioid modulating neuropeptide, acutely reduces food intake and stimulates water intake in the rat. Neurosci. Lett. 313, 145–148 10.1016/S0304-3940(01)02267-4 PubMed DOI
Nicklous D.M. and Simansky K.J. (2003) Neuropeptide FF exerts pro- and anti-opioid actions in the parabrachial nucleus to modulate food intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R1046–R1054 10.1152/ajpregu.00107.2003 PubMed DOI
Bechtold D.A. and Luckman S.M. (2007) The role of RFamide peptides in feeding. J. Endocrinol. 192, 3–15 10.1677/JOE-06-0069 PubMed DOI
Cline M.A., Nandar W. and Rogers J.O. (2007) Central neuropeptide FF reduces feed consumption and affects hypothalamic chemistry in chicks. Neuropeptides 41, 433–439 10.1016/j.npep.2007.08.003 PubMed DOI
Cline M.A., Newmyer B.A. and Smith M.L. (2009) The anorectic effect of neuropeptide AF is associated with satiety-related hypothalamic nuclei. J. Neuroendocrinol. 21, 595–601 10.1111/j.1365-2826.2009.01876.x PubMed DOI
Maletinska L., Ticha A., Nagelova V., Spolcova A., Blechova M., Elbert T.et al. . (2013) Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration. Brain Res. 1498, 33–40 10.1016/j.brainres.2012.12.037 PubMed DOI
Waqas S.F.H., Hoang A.C., Lin Y.T., Ampem G., Azegrouz H., Balogh L.et al. . (2017) Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J. Clin. Invest. 127, 3559 10.1172/JCI95841 PubMed DOI PMC
Strnadova V., Morgan A., Skrlova M., Haasova E., Bardova K., Myskova A.et al. . (2024) Peripheral administration of lipidized NPAF and NPFF analogs does not influence central food intake regulation but induces anxiety-like behavior. Neuropeptides 104, 102417 10.1016/j.npep.2024.102417 PubMed DOI
Roth B.L., Disimone J., Majane E.A. and Yang H.Y. (1987) Elevation of arterial pressure in rats by two new vertebrate peptides FLFQPQRF-NH2 and AGEGLSSPFWSLAAPQRF-NH2 which are immunoreactive to FMRF-NH2 antiserum. Neuropeptides 10, 37–42 10.1016/0143-4179(87)90087-4 PubMed DOI
Jhamandas J.H. and Goncharuk V. (2013) Role of neuropeptide FF in central cardiovascular and neuroendocrine regulation. Front. Endocrinol. 4, 8 10.3389/fendo.2013.00008 PubMed DOI PMC
Desprat C. and Zajac J.M. (1997) Hypothermic effects of neuropeptide FF analogues in mice. Pharmacol. Biochem. Behav. 58, 559–563 10.1016/S0091-3057(97)00249-9 PubMed DOI
Findeisen M., Rathmann D. and Beck-Sickinger A.G. (2011) RFamide peptides: structure, function, mechanisms and pharmaceutical potential. 4, 1248–1280 10.3390/ph4091248 PubMed DOI
Kotlinska J., Pachuta A., Dylag T. and Silberring J. (2007) The role of neuropeptide FF (NPFF) in the expression of sensitization to hyperlocomotor effect of morphine and ethanol. Neuropeptides 41, 51–58 10.1016/j.npep.2006.09.048 PubMed DOI
Kotlinska J., Pachuta A. and Silberring J. (2008) Neuropeptide FF (NPFF) reduces the expression of cocaine-induced conditioned place preference and cocaine-induced sensitization in animals. Peptides 29, 933–939 10.1016/j.peptides.2008.01.008 PubMed DOI
Kotlinska J.H., Gibula-Bruzda E., Koltunowska D., Raoof H., Suder P. and Silberring J. (2012) Modulation of neuropeptide FF (NPFF) receptors influences the expression of amphetamine-induced conditioned place preference and amphetamine withdrawal anxiety-like behavior in rats. Peptides 33, 156–163 10.1016/j.peptides.2011.12.002 PubMed DOI
Cador M., Marco N., Stinus L. and Simonnet G. (2002) Interaction between neuropeptide FF and opioids in the ventral tegmental area in the behavioral response to novelty. Neuroscience 110, 309–318 10.1016/S0306-4522(01)00587-5 PubMed DOI
Kavaliers M. and Colwell D.D. (1993) Neuropeptide FF (FLQPQRFamide) and IgG from neuropeptide FF antiserum affect spatial learning in mice. Neurosci. Lett. 157, 75–78 10.1016/0304-3940(93)90646-3 PubMed DOI
Betourne A., Marty V., Ceccom J., Halley H., Lassalle J.M., Zajac J.M.et al. . (2010) Central locomotor and cognitive effects of a NPFF receptor agonist in mouse. Peptides 31, 221–226 10.1016/j.peptides.2009.11.009 PubMed DOI
Palotai M., Telegdy G., Tanaka M., Bagosi Z. and Jaszberenyi M. (2014) Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice. Behav. Brain Res. 274, 264–269 10.1016/j.bbr.2014.08.007 PubMed DOI
Sun S., Sun S., Meng Y., Shi B. and Chen Y. (2021) Elevated serum neuropeptide FF levels are associated with cognitive decline in patients with spinal cord injury. Dis. Markers 2021, 4549049 10.1155/2021/4549049 PubMed DOI PMC
Craig A., Guest R., Tran Y. and Middleton J. (2017) Cognitive impairment and mood states after spinal cord injury. J. Neurotrauma 34, 1156–1163 10.1089/neu.2016.4632 PubMed DOI
Sundblom D.M., Panula P. and Fyhrquist F. (1995) Neuropeptide FF-like immunoreactivity in human plasma. Peptides 16, 347–350 10.1016/0196-9781(94)00163-4 PubMed DOI
Guillemin R. and Rosenberg B. (1955) Humoral hypothalamic control of anterior pituitary: a study with combined tissue cultures. Endocrinology 57, 599–607 10.1210/endo-57-5-599 PubMed DOI
Vale W., Spiess J., Rivier C. and Rivier J. (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213, 1394–1397 10.1126/science.6267699 PubMed DOI
Owens M.J. and Nemeroff C.B. (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol. Rev. 43, 425–473 PubMed
Olschowka J.A., O'Donohue T.L., Mueller G.P. and Jacobowitz D.M. (1982) The distribution of corticotropin releasing factor-like immunoreactive neurons in rat brain. Peptides 3, 995–1015 10.1016/0196-9781(82)90071-7 PubMed DOI
Grammatopoulos D.K. and Ourailidou S. (2017) CRH receptor signalling: potential roles in pathophysiology. Curr Mol. Pharmacol. 10, 296–310 10.2174/1874467210666170110125747 PubMed DOI
Arase K., York D.A., Shimizu H., Shargill N. and Bray G.A. (1988) Effects of corticotropin-releasing factor on food intake and brown adipose tissue thermogenesis in rats. Am. J. Physiol. 255, E255–E259 10.1152/ajpendo.1988.255.3.E255 PubMed DOI
Glowa J.R. and Gold P.W. (1991) Corticotropin releasing hormone produces profound anorexigenic effects in the rhesus monkey. Neuropeptides 18, 55–61 10.1016/0143-4179(91)90164-E PubMed DOI
Canet G., Hernandez C., Zussy C., Chevallier N., Desrumaux C. and Givalois L. (2019) Is AD a stress-related disorder? Focus on the HPA axis and its promising therapeutic targets Front Aging Neurosci. 11, 269 10.3389/fnagi.2019.00269 PubMed DOI PMC
Vandael D., Wierda K., Vints K., Baatsen P., De Groef L., Moons L.et al. . (2021) Corticotropin-releasing factor induces functional and structural synaptic remodelling in acute stress. Transl. Psychiatry 11, 378 10.1038/s41398-021-01497-2 PubMed DOI PMC
Whitehouse P.J., Vale W.W., Zweig R.M., Singer H.S., Mayeux R., Kuhar M.J.et al. . (1987) Reductions in corticotropin releasing factor-like immunoreactivity in cerebral cortex in Alzheimer's disease, Parkinson's disease, and progressive supranuclear palsy. Neurology 37, 905–909 10.1212/WNL.37.6.905 PubMed DOI
De Souza E.B. (1995) Corticotropin-releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20, 789–819 10.1016/0306-4530(95)00011-9 PubMed DOI
De Souza E.B., Whitehouse P.J., Kuhar M.J., Price D.L. and Vale W.W. (1986) Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer's disease. Nature 319, 593–595 10.1038/319593a0 PubMed DOI
Zhang C., Kuo C.C., Moghadam S.H., Monte L., Campbell S.N., Rice K.C.et al. . (2016) Corticotropin-releasing factor receptor-1 antagonism mitigates beta amyloid pathology and cognitive and synaptic deficits in a mouse model of Alzheimer's disease. Alzheimers Dementia 12, 527–537 10.1016/j.jalz.2015.09.007 PubMed DOI PMC
Dong H., Wang S., Zeng Z., Li F., Montalvo-Ortiz J., Tucker C.et al. . (2014) Effects of corticotrophin-releasing factor receptor 1 antagonists on amyloid-beta and behavior in Tg2576 mice. Psychopharmacology (Berl.) 231, 4711–4722 10.1007/s00213-014-3629-8 PubMed DOI PMC
Carroll J.C., Iba M., Bangasser D.A., Valentino R.J., James M.J., Brunden K.R.et al. . (2011) Chronic stress exacerbates tau pathology, neurodegeneration, and cognitive performance through a corticotropin-releasing factor receptor-dependent mechanism in a transgenic mouse model of tauopathy. J. Neurosci. 31, 14436–14449 10.1523/JNEUROSCI.3836-11.2011 PubMed DOI PMC
Dong H., Keegan J.M., Hong E., Gallardo C., Montalvo-Ortiz J., Wang B.et al. . (2018) Corticotrophin releasing factor receptor 1 antagonists prevent chronic stress-induced behavioral changes and synapse loss in aged rats. Psychoneuroendocrinology 90, 92–101 10.1016/j.psyneuen.2018.02.013 PubMed DOI PMC
Lechan R.M. and Jackson I.M. (1982) Immunohistochemical localization of thyrotropin-releasing hormone in the rat hypothalamus and pituitary. Endocrinology 111, 55–65 10.1210/endo-111-1-55 PubMed DOI
Guo F., Bakal K., Minokoshi Y. and Hollenberg A.N. (2004) Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology 145, 2221–2227 10.1210/en.2003-1312 PubMed DOI
Kim M.S., Small C.J., Russell S.H., Morgan D.G., Abbott C.R., alAhmed S.H.et al. . (2002) Effects of melanocortin receptor ligands on thyrotropin-releasing hormone release: evidence for the differential roles of melanocortin 3 and 4 receptors. J. Neuroendocrinol. 14, 276–282 10.1046/j.1365-2826.2002.00769.x PubMed DOI
Fekete C., Kelly J., Mihaly E., Sarkar S., Rand W.M., Legradi G.et al. . (2001) Neuropeptide Y has a central inhibitory action on the hypothalamic-pituitary-thyroid axis. Endocrinology 142, 2606–2613 10.1210/endo.142.6.8207 PubMed DOI
Schaner P., Todd R.B., Seidah N.G. and Nillni E.A. (1997) Processing of prothyrotropin-releasing hormone by the family of prohormone convertases. J. Biol. Chem. 272, 19958–19968 10.1074/jbc.272.32.19958 PubMed DOI
Trubacova R., Drastichova Z. and Novotny J. (2022) Biochemical and physiological insights into TRH receptor-mediated signaling. Front Cell Dev. Biol. 10, 981452 10.3389/fcell.2022.981452 PubMed DOI PMC
Perello M., Cakir I., Cyr N.E., Romero A., Stuart R.C., Chiappini F.et al. . (2010) Maintenance of the thyroid axis during diet-induced obesity in rodents is controlled at the central level. Am. J. Physiol. Endocrinol. Metab. 299, E976–E989 10.1152/ajpendo.00448.2010 PubMed DOI PMC
Blake N.G., Eckland D.J., Foster O.J. and Lightman S.L. (1991) Inhibition of hypothalamic thyrotropin-releasing hormone messenger ribonucleic acid during food deprivation. Endocrinology 129, 2714–2718 10.1210/endo-129-5-2714 PubMed DOI
van Haasteren G.A., Linkels E., Klootwijk W., van Toor H., Rondeel J.M., Themmen A.P.et al. . (1995) Starvation-induced changes in the hypothalamic content of prothyrotrophin-releasing hormone (proTRH) mRNA and the hypothalamic release of proTRH-derived peptides: role of the adrenal gland. J. Endocrinol. 145, 143–153 10.1677/joe.0.1450143 PubMed DOI
Vijayan E. and McCann S.M. (1977) Suppression of feeding and drinking activity in rats following intraventricular injection of thyrotropin releasing hormone (TRH). Endocrinology 100, 1727–1730 10.1210/endo-100-6-1727 PubMed DOI
Steward C.A., Horan T.L., Schuhler S., Bennett G.W. and Ebling F.J. (2003) Central administration of thyrotropin releasing hormone (TRH) and related peptides inhibits feeding behavior in the Siberian hamster. Neuroreport 14, 687–691 10.1097/00001756-200304150-00006 PubMed DOI
Nillni E.A. (2010) Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front. Neuroendocrinol. 31, 134–156 10.1016/j.yfrne.2010.01.001 PubMed DOI PMC
Suzuki T., Kohno H., Sakurada T., Tadano T. and Kisara K. (1982) Intracranial injection of thyrotropin releasing hormone (TRH) suppresses starvation-induced feeding and drinking in rats. Pharmacol. Biochem. Behav. 17, 249–253 10.1016/0091-3057(82)90078-8 PubMed DOI
Morley J.E. and Levine A.S. (1980) Thyrotropin releasing hormone (TRH) suppresses stress induced eating. Life Sci. 27, 269–274 10.1016/0024-3205(80)90147-2 PubMed DOI
Pierpaoli W. and Lesnikov V.A. (2011) Effects of long-term intraperitoneal injection of thyrotropin-releasing hormone (TRH) on aging- and obesity-related changes in body weight, lipid metabolism, and thyroid functions. Curr Aging Sci. 4, 25–32 10.2174/1874609811104010025 PubMed DOI
Luo L., Yano N., Mao Q., Jackson I.M. and Stopa E.G. (2002) Thyrotropin releasing hormone (TRH) in the hippocampus of Alzheimer patients. J. Alzheimers Dis. 4, 97–103 10.3233/JAD-2002-4204 PubMed DOI
Horita A., Carino M.A., Zabawska J. and Lai H. (1989) TRH analog MK-771 reverses neurochemical and learning deficits in medial septal-lesioned rats. Peptides 10, 121–124 10.1016/0196-9781(89)90087-9 PubMed DOI
Stocca G. and Nistri A. (1996) The neuropeptide thyrotropin-releasing hormone modulates GABAergic synaptic transmission on pyramidal neurones of the rat hippocampal slice. Peptides 17, 1197–1202 10.1016/S0196-9781(96)00128-3 PubMed DOI
Ren B., Ma J., Tao M., Jing G., Han S., Zhou C.et al. . (2023) The disturbance of thyroid-associated hormone and its receptors in brain and blood circulation existed in the early stage of mouse model of Alzheimer's disease. Aging (Albany NY) 15, 1591–1602 10.18632/aging.204570 PubMed DOI PMC