Reduction of Neuroinflammation as a Common Mechanism of Action of Anorexigenic and Orexigenic Peptide Analogues in the Triple Transgenic Mouse Model of Alzheimer´s Disease
Language English Country United States Media electronic
Document type Journal Article
Grant support
22-11155S
Grantová Agentura České Republiky
22-11155S
Grantová Agentura České Republiky
22-11155S
Grantová Agentura České Republiky
22-11155S
Grantová Agentura České Republiky
61388963
Akademie Věd České Republiky
61388963
Akademie Věd České Republiky
61388963
Akademie Věd České Republiky
61388963
Akademie Věd České Republiky
61388963
Akademie Věd České Republiky
TN02000109
Technologická Agentura České Republiky
TN02000109
Technologická Agentura České Republiky
TN02000109
Technologická Agentura České Republiky
TN02000109
Technologická Agentura České Republiky
PubMed
39932627
PubMed Central
PMC11813825
DOI
10.1007/s11481-025-10174-w
PII: 10.1007/s11481-025-10174-w
Knihovny.cz E-resources
- Keywords
- 3xTg-AD mice, Alzheimer’s disease, Anorexigenic peptide analogues, Neuroinflammation, Orexigenic peptide analogues,
- MeSH
- Alzheimer Disease * drug therapy metabolism pathology MeSH
- Amyloid beta-Peptides metabolism MeSH
- Amyloid beta-Protein Precursor genetics metabolism MeSH
- Ghrelin pharmacology analogs & derivatives therapeutic use metabolism MeSH
- Prolactin-Releasing Hormone * analogs & derivatives pharmacology MeSH
- Humans MeSH
- Liraglutide pharmacology therapeutic use MeSH
- Disease Models, Animal * MeSH
- Mice, Inbred C57BL MeSH
- Mice, Transgenic * MeSH
- Mice MeSH
- Neuroprotective Agents pharmacology therapeutic use MeSH
- Neuroinflammatory Diseases drug therapy metabolism MeSH
- Presenilin-1 genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Amyloid beta-Peptides MeSH
- Amyloid beta-Protein Precursor MeSH
- Ghrelin MeSH
- Prolactin-Releasing Hormone * MeSH
- Liraglutide MeSH
- Neuroprotective Agents MeSH
- Presenilin-1 MeSH
Alzheimer's disease (AD) is the most common form of dementia. Characterized by progressive neurodegeneration, AD typically begins with mild cognitive decline escalating to severe impairment in communication and responsiveness. It primarily affects cerebral regions responsible for cognition, memory, and language processing, significantly impeding the functional independence of patients. With nearly 50 million dementia cases worldwide, a number expected to triple by 2050, the need for effective treatments is more urgent than ever. Recent insights into the association between obesity, type 2 diabetes mellitus, and neurodegenerative disorders have led to the development of promising treatments involving antidiabetic and anti-obesity agents. One such novel promising candidate for addressing AD pathology is a lipidized analogue of anorexigenic peptide called prolactin-releasing peptide (palm11-PrRP31). Interestingly, anorexigenic and orexigenic peptides have opposite effects on food intake regulation, however, both types exhibit neuroprotective properties. Recent studies have also identified ghrelin, an orexigenic peptide, as a potential neuroprotective agent. Hence, we employed both anorexigenic and orexigenic compounds to investigate the common mechanisms underpinning their neuroprotective effects in a triple transgenic mouse model of AD (3xTg-AD mouse model) combining amyloid-beta (Aβ) pathology and Tau pathology, two hallmarks of AD. We treated 3xTg-AD mice for 4 months with two stable lipidized anorexigenic peptide analogues - palm11-PrRP31, and liraglutide, a glucagon-like peptide 1 (GLP-1) analogue - as well as Dpr3-ghrelin, a stable analogue of the orexigenic peptide ghrelin, and using the method of immunohistochemistry and western blot demonstrate the effects of these compounds on the development of AD-like pathology in the brain. Palm11-PrRP31, Dpr3-ghrelin, and liraglutide reduced intraneuronal deposits of Aβ plaque load in the hippocampi and amygdalae of 3xTg-AD mice. Palm11-PrRP31 and Dpr3-ghrelin reduced microgliosis in the hippocampi, amygdalae, and cortices of 3xTg-AD mice. Palm11-PrRP31 and liraglutide reduced astrocytosis in the amygdalae of 3xTg-AD mice. We propose that these peptides are involved in reducing inflammation, a common mechanism underlying their therapeutic effects. This is the first study to demonstrate improvements in AD pathology following the administration of both orexigenic and anorexigenic compounds, highlighting the therapeutic potential of food intake-regulating peptides in neurodegenerative disorders.
1st Faculty of Medicine Charles University Kateřinská 32 12108 Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Vídeňská 1083 142 00 Prague Czech Republic
See more in PubMed
Alford S, Patel D, Perakakis N, Mantzoros CS (2018) Obesity as a risk factor for Alzheimer’s disease: weighing the evidence. Obes Rev 19(2):269–280. 10.1111/obr.12629 PubMed
Beach TG, McGeer EG (1988) Lamina-specific arrangement of astrocytic gliosis and senile plaques in Alzheimer’s disease visual cortex. Brain Res 463(2):357–361. 10.1016/0006-8993(88)90410-6 PubMed
Belfiore R, Rodin A, Ferreira E, Velazquez R, Branca C, Caccamo A, Oddo S (2019) Temporal and regional progression of Alzheimer’s disease-like pathology in 3xTg-AD mice. Aging Cell 18(1):e12873. 10.1111/acel.12873 PubMed PMC
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM (2005) Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 45(5):675–688. 10.1016/j.neuron.2005.01.040 PubMed
Bronzuoli MR, Iacomino A, Steardo L, Scuderi C (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9:199–208. 10.2147/JIR.S86958 PubMed PMC
Calvo-Rodriguez M, García-Rodríguez C, Villalobos C, Núñez L (2020) Role of toll like receptor 4 in alzheimer’s disease. Front Immunol 11:1588. 10.3389/fimmu.2020.01588 PubMed PMC
Caruso D, Barron AM, Brown MA, Abbiati F, Carrero P, Pike CJ, Garcia-Segura LM, Melcangi RC (2013) Age-related changes in neuroactive steroid levels in 3xTg-AD mice. Neurobiol Aging 34(4):1080–1089. 10.1016/j.neurobiolaging.2012.10.007 PubMed PMC
Carvalho C, Machado N, Mota PC, Correia SC, Cardoso S, Santos RX, Santos MS, Oliveira CR, Moreira PI (2013) Type 2 diabetic and Alzheimer’s disease mice present similar behavioral, cognitive, and vascular anomalies. J Alzheimers Dis 35(3):623–635. 10.3233/JAD-130005 PubMed
Chen Y, Cao CP, Li CR, Wang W, Zhang D, Han LL, Zhang XQ, Kim A, Kim S, Liu GL (2010) Ghrelin modulates insulin sensitivity and tau phosphorylation in high glucose-induced hippocampal neurons. Biol Pharm Bull 33(7):1165–1169. 10.1248/bpb.33.1165 PubMed
Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, Deng Y (2017) liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res 42(8):2326–2335. 10.1007/s11064-017-2250-8 PubMed
Dallas ML, Widera D (2021) TLR2 and TLR4-mediated inflammation in Alzheimer’s disease: self-defense or sabotage? Neural Regen Res 16(8):1552–1553. 10.4103/1673-5374.303016 PubMed PMC
Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschop MH, Horvath TL (2006) Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9(3):381–388. 10.1038/nn1656 PubMed
Edison P, Femminella GD, Ritchie CW, Holmes C, Walker Z, Ridha BH, Raza S, Livingston NR, Nowell J, Busza G, Frangou E, Love S, Williams G, Lawrence RM, McFarlane B, Archer H, Coulthard E, Underwood B, Koranteng P, ... Ballard C (2021) Evaluation of liraglutide in the treatment of Alzheimer's disease. Alzheimer's Dement 17(S9):e057848. 10.1002/alz.057848
Edison P, Femminella GD, Ritchie C, Nowell J, Holmes C, Walker Z, Ridha BH, Williams G, Lawrence RM, McFarlane B (2023) MRI changes following treatment of GLP-1 analogue, liraglutide in alzheimer’s disease. Alzheimers Dement 19:e080538
Flores-Cordero JA, Pérez-Pérez A, Jiménez-Cortegana C, Alba G, Flores-Barragán A, Sánchez-Margalet V (2022) Obesity as a risk factor for dementia and Alzheimer’s disease: the role of leptin. Int J Mol Sci 23(9):5202 PubMed PMC
Franklin K, Paxinos G (2008) The Mouse Brain in Stereotaxic Coordinates. Academic Press
Frost GR, Li YM (2017) The role of astrocytes in amyloid production and Alzheimer’s disease. Open Biol 7(12):170228. 10.1098/rsob.170228 PubMed PMC
Hansen DV, Hanson JE, Sheng M (2018) Microglia in Alzheimer’s disease. J Cell Biol 217(2):459–472. 10.1083/jcb.201709069 PubMed PMC
Heneka M, Carson M, El Khoury J, Landreth G, Brosseron F, Feinstein D, Jacobs A, Wyss-Coray T, Vitorica J, Ransohoff R (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. 10.1016/s1474-4422(15)70016-5 PubMed PMC
Hölscher C (2024) Glucagon-like peptide-1 class drugs show clear protective effects in Parkinson’s and Alzheimer’s disease clinical trials: A revolution in the making? Neuropharmacology 253:109952. 10.1016/j.neuropharm.2024.109952 PubMed
Holubova M, Blechova M, Kakonova A, Kunes J, Zelezna B, Maletinska L (2018) In vitro and in vivo characterization of novel stable peptidic ghrelin analogs: beneficial effects in the settings of lipopolysaccharide-induced anorexia in mice. J Pharmacol Exp Ther 366(3):422–432. 10.1124/jpet.118.249086 PubMed
Holubová M, Hrubá L, Popelová A, Bencze M, Pražienková V, Gengler S, Kratochvílová H, Haluzík M, Železná B, Kuneš J, Hölscher C, Maletínská L (2019) Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 144:377–387. 10.1016/j.neuropharm.2018.11.002 PubMed
Jeong YO, Shin SJ, Park JY, Ku BK, Song JS, Kim JJ, Jeon SG, Lee SM, Moon M (2018) MK-0677, a ghrelin agonist, alleviates amyloid beta-related pathology in 5XFAD mice, an animal model of Alzheimer’s disease. Int J Mol Sci 19(6):1800. 10.3390/ijms19061800 PubMed PMC
Kacířová M, Zmeškalová A, Kořínková L, Železná B, Kuneš J, Maletínská L (2020) Inflammation: major denominator of obesity, Type 2 diabetes and Alzheimer’s disease-like pathology? Clin Sci (Lond) 134(5):547–570. 10.1042/cs20191313 PubMed
Kacířová M, Železná B, Blažková M, Holubová M, Popelová A, Kuneš J, Šedivá B, Maletínská L (2021) Aging and high-fat diet feeding lead to peripheral insulin resistance and sex-dependent changes in brain of mouse model of tau pathology THY-Tau22. J Neuroinflammation 18(1):141. 10.1186/s12974-021-02190-3 PubMed PMC
Kashon ML, Ross GW, O’Callaghan JP, Miller DB, Petrovitch H, Burchfiel CM, Sharp DS, Markesbery WR, Davis DG, Hardman J, Nelson J, White LR (2004) Associations of cortical astrogliosis with cognitive performance and dementia status. J Alzheimers Dis 6(6):595–604. 10.3233/jad-2004-6604. (discussion 673-581) PubMed
Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402(6762):656–660. 10.1038/45230 PubMed
Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332:16–30. 10.1016/j.jneuroim.2019.03.012 PubMed
Lane CA, Hardy J, Schott JM (2018) Alzheimer’s disease. Eur J Neurol 25(1):59–70. 10.1111/ene.13439 PubMed
Li Z-W, Chu W, Hu Y, Delhase M, Deerinck T, Ellisman M, Johnson R, Karin M (1999) The IKKβ subunit of IκB kinase (IKK) is essential for nuclear factor κB activation and prevention of apoptosis. J Exp Med 189(11):1839–1845. 10.1084/jem.189.11.1839 PubMed PMC
Li X, Song D, Leng SX (2015) Link between type 2 diabetes and Alzheimer’s disease: from epidemiology to mechanism and treatment. Clin Interv Aging 10:549–560. 10.2147/cia.S74042 PubMed PMC
Liu Y, Liu F, Grundke-Iqbal I, Iqbal K, Gong CX (2011) Deficient brain insulin signalling pathway in Alzheimer’s disease and diabetes. J Pathol 225(1):54–62 PubMed PMC
Liu C, Feng X, Li Q, Wang Y, Li Q, Hua M (2016) Adiponectin, TNF-alpha and inflammatory cytokines and risk of type 2 diabetes: a systematic review and meta-analysis. Cytokine 86:100–109. 10.1016/j.cyto.2016.06.028 PubMed
López-Gambero AJ, Rosell-Valle C, Medina-Vera D, Navarro JA, Vargas A, Rivera P, Sanjuan C, Rodríguez de Fonseca F, Suárez J (2021) A negative energy balance is associated with metabolic dysfunctions in the hypothalamus of a humanized preclinical model of Alzheimer’s disease, the 5XFAD mouse. Int J Mol Sci 22(10):5365 PubMed PMC
Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7(4):354–365. 10.1016/j.nurt.2010.05.014 PubMed PMC
Maletinska L, Pychova M, Holubova M, Blechova M, Demianova Z, Elbert T, Zelezna B (2012) Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J Pharmacol Exp Ther 340(3):781–786. 10.1124/jpet.111.185371 PubMed
Maletinska L, Popelova A, Zelezna B, Bencze M, Kunes J (2019) The impact of anorexigenic peptides in experimental models of Alzheimer’s disease pathology. J Endocrinol 240(2):R47–R72. 10.1530/JOE-18-0532 PubMed
Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12(1):39–49. 10.1016/j.arr.2012.06.008 PubMed
McClean PL, Holscher C (2014) Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology 76(Pt A):57–67. 10.1016/j.neuropharm.2013.08.005 PubMed
McClean PL, Parthsarathy V, Faivre E, Holscher C (2011) The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 31(17):6587–6594. 10.1523/JNEUROSCI.0529-11.2011 PubMed PMC
McClean PL, Jalewa J, Holscher C (2015) Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res 293:96–106. 10.1016/j.bbr.2015.07.024 PubMed
Mengr A, Hruba L, Exnerova A, Holubova M, Popelova A, Zelezna B, Kunes J, Maletinska L (2021) Palmitoylated prolactin-releasing peptide reduced abeta plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res 18(8):607–622. 10.2174/1567205018666210922110652 PubMed
Miao Y, Xia Q, Hou Z, Zheng Y, Pan H, Zhu S (2007) Ghrelin protects cortical neuron against focal ischemia/reperfusion in rats. Biochem Biophys Res Commun 359(3):795–800. 10.1016/j.bbrc.2007.05.192 PubMed
Moon M, Choi JG, Nam DW, Hong HS, Choi YJ, Oh MS, Mook-Jung I (2011) Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-beta1-42 oligomer-injected mice. J Alzheimers Dis 23(1):147–159. 10.3233/JAD-2010-101263 PubMed
Mrak RE, Sheng JG, Griffin WS (1996) Correlation of astrocytic S100 beta expression with dystrophic neurites in amyloid plaques of Alzheimer’s disease. J Neuropathol Exp Neurol 55(3):273–279. 10.1097/00005072-199603000-00002 PubMed PMC
Muntsant A, Castillo-Ruiz MD, Giménez-Llort L (2023) Survival bias, non-lineal behavioral and cortico-limbic neuropathological signatures in 3xTg-AD mice for Alzheimer’s disease from premorbid to advanced stages and compared to normal aging. Int J Mol Sci 24(18):13796 PubMed PMC
Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM (2003) Triple-transgenic model of Alzheimer's disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 39(3):409–421. http://www.ncbi.nlm.nih.gov/pubmed/12895417. Accessed 03/23 PubMed
Pacesova A, Holubova M, Hruba L, Strnadova V, Neprasova B, Pelantova H, Kuzma M, Zelezna B, Kunes J, Maletinska L (2022) Age-related metabolic and neurodegenerative changes in SAMP8 mice. Aging (Albany NY) 14(18):7300–7327. 10.18632/aging.204284 PubMed PMC
Paladugu L, Gharaibeh A, Kolli N, Learman C, Hall TC, Li L, Rossignol J, Maiti P, Dunbar GL (2021) Liraglutide has anti-inflammatory and anti-amyloid properties in streptozotocin-induced and 5xFAD mouse models of Alzheimer’s disease. Int J Mol Sci 22(2):860. 10.3390/ijms22020860 PubMed PMC
Pomytkin I, Costa-Nunes J, Kasatkin V, Veniaminova E, Demchenko A, Lyundup A, Lesch K, Ponomarev E, Strekalova T (2018) Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment. CNS Neurosci Ther 24:763–774. 10.1111/cns.12866 PubMed PMC
Popelová A, Kákonová A, Hrubá L, Kuneš J, Maletínská L, Železná B (2018a) Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res 67(2):339–346. 10.33549/physiolres.933761 PubMed
Popelová A, Pražienková V, Neprašová B, Kasperová BJ, Hrubá L, Holubová M, Zemenová J, Blum D, Železná B, Galas MC, Kuneš J, Maletínská L (2018b) Novel lipidized analog of prolactin-releasing peptide improves memory impairment and attenuates hyperphosphorylation of tau protein in a mouse model of tauopathy. J Alzheimers Dis 62(4):1725–1736. 10.3233/JAD-171041 PubMed
Pražienková V, Holubová M, Pelantová H, Bugáňová M, Pirník Z, Mikulášková B, Popelová A, Blechová M, Haluzík M, Železná B, Kuzma M, Kuneš J, Maletínská L (2017) Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS ONE 12(8):e0183449. 10.1371/journal.pone.0183449 PubMed PMC
Ramsden M, Kotilinek L, Forster C, Paulson J, McGowan E, SantaCruz K, Guimaraes A, Yue M, Lewis J, Carlson G, Hutton M, Ashe KH (2005) Age-dependent neurofibrillary tangle formation, neuron loss, and memory impairment in a mouse model of human tauopathy (P301L). J Neurosci 25(46):10637–10647. 10.1523/JNEUROSCI.3279-05.2005 PubMed PMC
Sayas CL, Avila J (2021) GSK-3 and Tau: a key duet in Alzheimer’s disease. Cells 10(4):721. 10.3390/cells10040721 PubMed PMC
Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG (2000) Central nervous system control of food intake. Nature 404(6778):661–671. 10.1038/35007534 PubMed
Shira K (2012) Amygdala in Alzheimer's disease. In: Barbara F (ed) The Amygdala (pp Ch. 15). IntechOpen. 10.5772/52804
Sierra A, de Castro F, Del Rio-Hortega J, Rafael Iglesias-Rozas J, Garrosa M, Kettenmann H (2016) The “Big-Bang” for modern glial biology: translation and comments on Pio del Rio-Hortega 1919 series of papers on microglia. Glia 64(11):1801–1840. 10.1002/glia.23046 PubMed
Spolcova A, Mikulaskova B, Holubova M, Nagelova V, Pirnik Z, Zemenova J, Haluzik M, Zelezna B, Galas MC, Maletinska L (2015) Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity. J Alzheimers Dis 45(3):823–835. 10.3233/JAD-143150 PubMed
Steele ML, Robinson SR (2012) Reactive astrocytes give neurons less support: implications for Alzheimer’s disease. Neurobiol Aging 33(2):423 e421–413. 10.1016/j.neurobiolaging.2010.09.018 PubMed
Strnadova V, Pacesova A, Charvat V, Smotkova Z, Zelezna B, Kunes J, Maletinska L (2024) Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 44(4):BSR20231385. 10.1042/BSR20231385 PubMed PMC
Sun E, Motolani A, Campos L, Lu T (2022) The Pivotal Role of NF-kB in the Pathogenesis and Therapeutics of Alzheimer’s Disease. Int J Mol Sci 23(16):8972 PubMed PMC
Tai J, Liu W, Li Y, Li L, Holscher C (2018) Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res 1678:64–74. 10.1016/j.brainres.2017.10.012 PubMed
Wang ZJ, Li XR, Chai SF, Li WR, Li S, Hou M, Li JL, Ye YC, Cai HY, Holscher C, Wu MN (2023) Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer’s disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology 240:109716. 10.1016/j.neuropharm.2023.109716 PubMed
Wu L, Xian X, Xu G, Tan Z, Dong F, Zhang M, Zhang F (2022) Toll-like receptor 4: a promising therapeutic target for Alzheimer’s disease. Mediat Inflamm 2022(1):7924199. 10.1155/2022/7924199 PubMed PMC
Zhang H, Chu Y, Zheng H, Wang J, Song B, Sun Y (2020) Liraglutide improved the cognitive function of diabetic mice via the receptor of advanced glycation end products down-regulation. Aging (Albany NY) 13(1):525–536. 10.18632/aging.202162 PubMed PMC
Zhao Y, Zhao B (2013) Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid Med Cell Longev 2013:316523 PubMed PMC