Sustained Inflammatory Signalling through Stat1/Stat2/IRF9 Is Associated with Amoeboid Phenotype of Melanoma Cells

. 2020 Aug 28 ; 12 (9) : . [epub] 20200828

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32872349

Grantová podpora
18-15684J Grantová Agentura České Republiky

The invasive behaviour of cancer cells underlies metastatic dissemination; however, due to the large plasticity of invasion modes, it is challenging to target. It is now widely accepted that various secreted cytokines modulate the tumour microenvironment and pro-inflammatory signalling can promote tumour progression. Here, we report that cells after mesenchymal-amoeboid transition show the increased expression of genes associated with the type I interferon response. Moreover, the sustained activation of type I interferon signalling in response to IFNβ mediated by the Stat1/Stat2/IRF9 complex enhances the round amoeboid phenotype in melanoma cells, whereas its downregulation by various approaches promotes the mesenchymal invasive phenotype. Overall, we demonstrate that interferon signalling is associated with the amoeboid phenotype of cancer cells and suggest a novel role of IFNβ in promoting cancer invasion plasticity, aside from its known role as a tumour suppressor.

Zobrazit více v PubMed

Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: Redirecting R&D in Solid Cancer towards Metastasis? Trends Cancer. 2019;5:755–756. doi: 10.1016/j.trecan.2019.10.011. PubMed DOI

Odenthal J., Takes R., Friedl P. Plasticity of tumor cell invasion: Governance by growth factors and cytokines. Carcinogenesis. 2016 doi: 10.1093/carcin/bgw098. PubMed DOI

Roizen M. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.yane.2012.02.046. PubMed DOI

Brábek J., Mierke C.T., Rosel D., Veselý P., Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun. Signal. 2010;8:22. doi: 10.1186/1478-811X-8-22. PubMed DOI PMC

Parekh A., Weaver A.M. Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adhes. Migr. 2009;3:288–292. doi: 10.4161/cam.3.3.8888. PubMed DOI PMC

Friedl P., Alexander S. Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell. 2011;147:992–1009. doi: 10.1016/j.cell.2011.11.016. PubMed DOI

Pánková K., Rosel D., Novotný M., Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2009;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC

Friedl P., Locker J., Sahai E., Segall J.E. Classifying collective cancer cell invasion. Nat. Cell Biol. 2012;14:777–783. doi: 10.1038/ncb2548. PubMed DOI

Tolde O., Gandalovičová A., Křížová A., Veselý P., Chmelík R., Rosel D., Brábek J. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC

Friedl P., Wolf K. Proteolytic interstitial cell migration: A five-step process. Cancer Metastasis Rev. 2009;28:129–135. doi: 10.1007/s10555-008-9174-3. PubMed DOI

Wyckoff J.B., Pinner S.E., Gschmeissner S., Condeelis J.S., Sahai E. ROCK- and Myosin-Dependent Matrix Deformation Enables Protease-Independent Tumor-Cell Invasion In Vivo. Curr. Biol. 2006;16:1515–1523. doi: 10.1016/j.cub.2006.05.065. PubMed DOI

Lämmermann T., Sixt M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 2009;21:636–644. doi: 10.1016/j.ceb.2009.05.003. PubMed DOI

Pandya P., Orgaz J.L., Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol. Oncol. 2016;11:5–27. doi: 10.1002/1878-0261.12019. PubMed DOI PMC

Gandalovičová A., Vomastek T., Rosel D., Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget. 2016;7:25022–25049. doi: 10.18632/oncotarget.7214. PubMed DOI PMC

Čermák V., Gandalovičová A., Merta L., Harant K., Rösel D., Brábek J. High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen. Sci. Data. 2020;7:1–11. doi: 10.1038/s41597-020-0499-2. PubMed DOI PMC

Boekhorst V.T., Friedl P. Plasticity of Cancer Cell Invasion—Mechanisms and Implications for Therapy. Adv. Cancer Res. 2016;132:209–264. doi: 10.1016/bs.acr.2016.07.005. PubMed DOI

Sanz-Moreno V., Gaggioli C., Yeo M., Albrengues J., Wallberg F., Virós A., Hooper S., Mitter R., Féral C.C., Cook M., et al. ROCK and JAK1 Signaling Cooperate to Control Actomyosin Contractility in Tumor Cells and Stroma. Cancer Cell. 2011;20:229–245. doi: 10.1016/j.ccr.2011.06.018. PubMed DOI

Georgouli M., Herraiz C., Crosas-Molist E., Fanshawe B., Maiques O., Perdrix A., Pandya P., Rodriguez-Hernandez I., Ilieva K.M., Cantelli G., et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757–774. doi: 10.1016/j.cell.2018.12.038. PubMed DOI PMC

Hölzel M., Tüting T. Inflammation-Induced Plasticity in Melanoma Therapy and Metastasis. Trends Immunol. 2016;37:364–374. doi: 10.1016/j.it.2016.03.009. PubMed DOI

Ivashkiv L.B., Donlin L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2013;14:36–49. doi: 10.1038/nri3581. PubMed DOI PMC

Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI

Einav U., Tabach Y., Getz G., Yitzhaky A., Ozbek U., Amariglio N., Izraeli S., Rechavi G., Domany E. Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene. 2005;24:6367–6375. doi: 10.1038/sj.onc.1208797. PubMed DOI

Weichselbaum R.R., Ishwaran H., Yoon T., Nuyten D.S.A., Baker S.W., Khodarev N., Su A.W., Shaikh A.Y., Roach P., Kreike B., et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl. Acad. Sci. USA. 2008;105:18490–18495. doi: 10.1073/pnas.0809242105. PubMed DOI PMC

Aoyagi S., Hata H., Homma E., Shimizu H. Sequential Local Injection of Low-Dose Interferon-Beta for Maintenance Therapy in Stage II and III Melanoma: A Single-Institution Matched Case-Control Study. Oncology. 2012;82:139–146. doi: 10.1159/000336490. PubMed DOI

Fujimura T., Okuyama R., Ohtani T., Ito Y., Haga T., Hashimoto A., Aiba S. Perilesional treatment of metastatic melanoma with interferon-β. Clin. Exp. Dermatol. 2009;34:793–799. doi: 10.1111/j.1365-2230.2009.03207.x. PubMed DOI

Uehara J., Ohkuri T., Kosaka A., Ishibashi K., Hirata Y., Ohara K., Nagato T., Oikawa K., Aoki N., Harabuchi Y., et al. Intratumoral injection of IFN-β induces chemokine production in melanoma and augments the therapeutic efficacy of anti-PD-L1 mAb. Biochem. Biophys. Res. Commun. 2017;490:521–527. doi: 10.1016/j.bbrc.2017.06.072. PubMed DOI

Kakizaki A., Fujimura T., Furudate S., Kambayashi Y., Yamauchi T., Yagita H., Aiba S. Immunomodulatory effect of peritumorally administered interferon-beta on melanoma through tumor-associated macrophages. OncoImmunology. 2015;4:e1047584. doi: 10.1080/2162402X.2015.1047584. PubMed DOI PMC

Čermák V. Differential Expression Analyses Figshare Dataset. [(accessed on 25 August 2020)];2019 Available online: https://figshare.com/articles/Differential_expression_analyses/10329281/2.

Ge S., Jung D., Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2019;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC

Cooper S., Sadok A., Bousgouni V., Bakal C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol. Biol. Cell. 2015;26:4163–4170. doi: 10.1091/mbc.E15-06-0382. PubMed DOI PMC

Arozarena I., Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer. 2019;19:377–391. doi: 10.1038/s41568-019-0154-4. PubMed DOI

Lazar-Molnar E., Hegyesi H., Tóth S., Falus A. Autocrine and Paracrine Regulation by Cytokines and Growth Factors in Melanoma. Cytokine. 2000;12:547–554. doi: 10.1006/cyto.1999.0614. PubMed DOI

Michalska A., Blaszczyk K., Wesoly J., Bluyssen H.A. A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and Type II IFN Responses. Front. Immunol. 2018;9:1135. doi: 10.3389/fimmu.2018.01135. PubMed DOI PMC

Medrano R.F., Hunger A., Mendonça S.A., Barbuto J.A.M., Strauss B.E. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget. 2017;8:71249–71284. doi: 10.18632/oncotarget.19531. PubMed DOI PMC

Satomi H., Wang B., Fujisawa H., Otsuka F. Interferon-β from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner. Cytokine. 2002;18:108–115. doi: 10.1006/cyto.2002.1028. PubMed DOI

Tjandra S.S., Hsu C., Goh I., Gurung A., Poon R., Nadesan P., Alman B.A. IFN- Signaling Positively Regulates Tumorigenesis in Aggressive Fibromatosis, Potentially by Modulating Mesenchymal Progenitors. Cancer Res. 2007;67:7124–7131. doi: 10.1158/0008-5472.CAN-07-0686. PubMed DOI

Zhang Y., Liu Z. STAT1 in cancer: Friend or foe? Discov. Med. 2017;24:19–29. PubMed

Greenwood C., Metodieva G., Al-Janabi K., Lausen B., Alldridge L., Leng L., Bucala R., Fernández N., Metodiev M.V. Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer. J. Proteom. 2012;75:3031–3040. doi: 10.1016/j.jprot.2011.11.033. PubMed DOI

Emad A., Ray T., Jensen T.W., Parat M., Natrajan R., Sinha S., Ray P.S. Superior breast cancer metastasis risk stratification using an epithelial-mesenchymal-amoeboid transition gene signature. Breast Cancer Res. 2020;22:1–13. doi: 10.1186/s13058-020-01304-8. PubMed DOI PMC

Cheon H., Borden E.C., Stark G.R. Interferons and Their Stimulated Genes in the Tumor Microenvironment. Semin. Oncol. 2014;41:156–173. doi: 10.1053/j.seminoncol.2014.02.002. PubMed DOI PMC

Iriarte A.R., Arwert E., Milford E., Chakravarty P., Melcher A., Harrington K., Sahai E. Interaction between cancer associated fibroblasts and cancer cells influence immune infiltrate and is modulated by therapeutic agents. Ann. Oncol. 2018;29:viii657. doi: 10.1093/annonc/mdy303.023. DOI

Lehmann S., Boekhorst V.T., Odenthal J., Bianchi R., Van Helvert S., Ikenberg K., Ilina O., Stoma S., Xandry J., Jiang L., et al. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells. Curr. Biol. 2017;27:392–400. doi: 10.1016/j.cub.2016.11.057. PubMed DOI

Cheon H., Holvey-Bates E.G., Schoggins J.W., Forster S.C., Hertzog P., Imanaka N., Rice C.M., Jackson M.W., Junk D.J., Stark G.R. IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013;32:2751–2763. doi: 10.1038/emboj.2013.203. PubMed DOI PMC

Edsbäcker E., Serviss J.T., Kolosenko I., Palm-Apergi C., De Milito A., Tamm K.P. STAT3 is activated in multicellular spheroids of colon carcinoma cells and mediates expression of IRF9 and interferon stimulated genes. Sci. Rep. 2019;9:536. doi: 10.1038/s41598-018-37294-z. PubMed DOI PMC

Kolosenko I., Fryknäs M., Forsberg S., Johnsson P., Cheon H., Holvey-Bates E.G., Edsbäcker E., Pellegrini P., Rassoolzadeh H., Brnjic S., et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int. J. Cancer. 2014;136:E51–E61. doi: 10.1002/ijc.29161. PubMed DOI

E Luker K., Pica C.M., Schreiber R.D., Piwnica-Worms D. Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells. Cancer Res. 2001;61:6540–6547. PubMed

Khodarev N.N., Beckett M., Labay E., Darga T., Roizman B., Weichselbaum R.R. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc. Natl. Acad. Sci. USA. 2004;101:1714–1719. doi: 10.1073/pnas.0308102100. PubMed DOI PMC

Silginer M., Nagy S., Happold C., Schneider H., Weller M., Roth P. Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neuro Oncol. 2017;19:1338–1349. doi: 10.1093/neuonc/nox051. PubMed DOI PMC

Ransohoff R.M., Cardona A.E. The myeloid cells of the central nervous system parenchyma. Nature. 2010;468:253–262. doi: 10.1038/nature09615. PubMed DOI

Scheu S., Ali S., Mann-Nüttel R., Richter L., Arolt V., Dannlowski U., Kuhlmann T., Klotz L., Alferink J. Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. Int. J. Mol. Sci. 2019;20:190. doi: 10.3390/ijms20010190. PubMed DOI PMC

Ogony J., Choi H.J., Lui A., Cristofanilli M., Lewis-Wambi J. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res. 2016;18:25. doi: 10.1186/s13058-016-0683-7. PubMed DOI PMC

Nan J., Wang Y., Yang J., Stark G.R. IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression. Proc. Natl. Acad. Sci. USA. 2018;115:3906–3911. doi: 10.1073/pnas.1714102115. PubMed DOI PMC

Jobe N.P., Rosel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J., Smetana K. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Croner R.S., Sturzl M., Rau T.T., Metodieva G., Geppert C.I., Naschberger E., Lausen B., Metodiev M.V. Quantitative proteome profiling of lymph node-positive vs. -negative colorectal carcinomas pinpoints MX1 as a marker for lymph node metastasis. Int. J. Cancer. 2014;135:2878–2886. doi: 10.1002/ijc.28929. PubMed DOI PMC

Desai S.D., E Reed R., Burks J., Wood L.M., Pullikuth A.K., Haas A.L., Liu L.F., Breslin J.W., Meiners S., Sankar S. ISG15 disrupts cytoskeletal architecture and promotes motility in human breast cancer cells. Exp. Biol. Med. 2012;237:38–49. doi: 10.1258/ebm.2011.011236. PubMed DOI

Burks J., Reed R.E., Desai S.D. ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene. 2013;33:794–803. doi: 10.1038/onc.2012.633. PubMed DOI

Cruz A.C.T., González C.C.C., Cruz-Ramos E., Jarquín J.O.R., Romero-Mandujano A.K., Sosa-Garrocho M. Interplay between interferon-stimulated gene 15/ISGylation and interferon gamma signaling in breast cancer cells. Cell. Signal. 2019;54:91–101. doi: 10.1016/j.cellsig.2018.11.021. PubMed DOI

Cerikan B., Shaheen R., Colo G.P., Gläßer C., Hata S., Knobeloch K.-P., Alkuraya F.S., Fässler R., Schiebel E. Cell-Intrinsic Adaptation Arising from Chronic Ablation of a Key Rho GTPase Regulator. Dev. Cell. 2016;39:28–43. doi: 10.1016/j.devcel.2016.08.020. PubMed DOI

Cruz-Ramos E., Macías-Silva M., Sandoval-Hernández A., Tecalco-Cruz A.C. Non-muscle myosin IIA is post-translationally modified by interferon-stimulated gene 15 in breast cancer cells. Int. J. Biochem. Cell Biol. 2019;107:14–26. doi: 10.1016/j.biocel.2018.12.002. PubMed DOI

Jeon Y.J., Choi J.S., Lee J.Y., Yu K.R., Kim S.M., Ka S.H., Oh K.H., Kim K.I., Zhang D.-E., Bang O.S., et al. ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep. 2009;10:374–380. doi: 10.1038/embor.2009.23. PubMed DOI PMC

Xie B., Zhao J., Kitagawa M., Durbin J., Madri J.A., Guan J.-L., Fu X.-Y. Focal Adhesion Kinase Activates Stat1 in Integrin-mediated Cell Migration and Adhesion. J. Biol. Chem. 2001;276:19512–19523. doi: 10.1074/jbc.M009063200. PubMed DOI

Zhang L., Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol. Med. Rep. 2015;12:7869–7876. doi: 10.3892/mmr.2015.4443. PubMed DOI PMC

Pedersen E., Wang Z., Stanley A., Peyrollier K., Roesner L.M., Werfel T., Quondamatteo F., Brakebusch C. RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1. J. Cell Sci. 2012;125:5379–5390. doi: 10.1242/jcs.107011. PubMed DOI

Vincent K.M., Postovit L.M. Investigating the utility of human melanoma cell lines as tumour models. Oncotarget. 2017;8:10498–10509. doi: 10.18632/oncotarget.14443. PubMed DOI PMC

Lin W.M., Baker A.C., Beroukhim R., Winckler W., Feng W., Marmion J.M., Laine E., Greulich H., Tseng H., Gates C., et al. Modeling Genomic Diversity and Tumor Dependency in Malignant Melanoma. Cancer Res. 2008;68:664–673. doi: 10.1158/0008-5472.CAN-07-2615. PubMed DOI PMC

Hoek K.S., Eichhoff O.M., Schlegel N.C., Döbbeling U., Kobert N., Schaerer L., Hemmi S., Dummer R. In vivo Switching of Human Melanoma Cells between Proliferative and Invasive States. Cancer Res. 2008;68:650–656. doi: 10.1158/0008-5472.CAN-07-2491. PubMed DOI

Merta L., Gandalovičová A., Cermak V., Dibus M., Gutschner T., Diederichs S., Rosel D., Brábek J. Increased Level of Long Non-Coding RNA MALAT1 is a Common Feature of Amoeboid Invasion. Cancers. 2020;12:1136. doi: 10.3390/cancers12051136. PubMed DOI PMC

Bustin S.A., Benes V., Garson J., Hellemans J., Huggett J.F., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...