Sustained Inflammatory Signalling through Stat1/Stat2/IRF9 Is Associated with Amoeboid Phenotype of Melanoma Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-15684J
Grantová Agentura České Republiky
PubMed
32872349
PubMed Central
PMC7564052
DOI
10.3390/cancers12092450
PII: cancers12092450
Knihovny.cz E-zdroje
- Klíčová slova
- amoeboid, inflammation, interferon, invasion, melanoma, mesenchymal, plasticity,
- Publikační typ
- časopisecké články MeSH
The invasive behaviour of cancer cells underlies metastatic dissemination; however, due to the large plasticity of invasion modes, it is challenging to target. It is now widely accepted that various secreted cytokines modulate the tumour microenvironment and pro-inflammatory signalling can promote tumour progression. Here, we report that cells after mesenchymal-amoeboid transition show the increased expression of genes associated with the type I interferon response. Moreover, the sustained activation of type I interferon signalling in response to IFNβ mediated by the Stat1/Stat2/IRF9 complex enhances the round amoeboid phenotype in melanoma cells, whereas its downregulation by various approaches promotes the mesenchymal invasive phenotype. Overall, we demonstrate that interferon signalling is associated with the amoeboid phenotype of cancer cells and suggest a novel role of IFNβ in promoting cancer invasion plasticity, aside from its known role as a tumour suppressor.
Zobrazit více v PubMed
Gandalovičová A., Rosel D., Fernandes M., Veselý P., Heneberg P., Čermák V., Petruželka L., Kumar S., Sanz-Moreno V., Brábek J. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC
Rosel D., Fernandes M., Sanz-Moreno V., Brábek J. Migrastatics: Redirecting R&D in Solid Cancer towards Metastasis? Trends Cancer. 2019;5:755–756. doi: 10.1016/j.trecan.2019.10.011. PubMed DOI
Odenthal J., Takes R., Friedl P. Plasticity of tumor cell invasion: Governance by growth factors and cytokines. Carcinogenesis. 2016 doi: 10.1093/carcin/bgw098. PubMed DOI
Roizen M. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.yane.2012.02.046. PubMed DOI
Brábek J., Mierke C.T., Rosel D., Veselý P., Fabry B. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun. Signal. 2010;8:22. doi: 10.1186/1478-811X-8-22. PubMed DOI PMC
Parekh A., Weaver A.M. Regulation of cancer invasiveness by the physical extracellular matrix environment. Cell Adhes. Migr. 2009;3:288–292. doi: 10.4161/cam.3.3.8888. PubMed DOI PMC
Friedl P., Alexander S. Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell. 2011;147:992–1009. doi: 10.1016/j.cell.2011.11.016. PubMed DOI
Pánková K., Rosel D., Novotný M., Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2009;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC
Friedl P., Locker J., Sahai E., Segall J.E. Classifying collective cancer cell invasion. Nat. Cell Biol. 2012;14:777–783. doi: 10.1038/ncb2548. PubMed DOI
Tolde O., Gandalovičová A., Křížová A., Veselý P., Chmelík R., Rosel D., Brábek J. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC
Friedl P., Wolf K. Proteolytic interstitial cell migration: A five-step process. Cancer Metastasis Rev. 2009;28:129–135. doi: 10.1007/s10555-008-9174-3. PubMed DOI
Wyckoff J.B., Pinner S.E., Gschmeissner S., Condeelis J.S., Sahai E. ROCK- and Myosin-Dependent Matrix Deformation Enables Protease-Independent Tumor-Cell Invasion In Vivo. Curr. Biol. 2006;16:1515–1523. doi: 10.1016/j.cub.2006.05.065. PubMed DOI
Lämmermann T., Sixt M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 2009;21:636–644. doi: 10.1016/j.ceb.2009.05.003. PubMed DOI
Pandya P., Orgaz J.L., Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol. Oncol. 2016;11:5–27. doi: 10.1002/1878-0261.12019. PubMed DOI PMC
Gandalovičová A., Vomastek T., Rosel D., Brábek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget. 2016;7:25022–25049. doi: 10.18632/oncotarget.7214. PubMed DOI PMC
Čermák V., Gandalovičová A., Merta L., Harant K., Rösel D., Brábek J. High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen. Sci. Data. 2020;7:1–11. doi: 10.1038/s41597-020-0499-2. PubMed DOI PMC
Boekhorst V.T., Friedl P. Plasticity of Cancer Cell Invasion—Mechanisms and Implications for Therapy. Adv. Cancer Res. 2016;132:209–264. doi: 10.1016/bs.acr.2016.07.005. PubMed DOI
Sanz-Moreno V., Gaggioli C., Yeo M., Albrengues J., Wallberg F., Virós A., Hooper S., Mitter R., Féral C.C., Cook M., et al. ROCK and JAK1 Signaling Cooperate to Control Actomyosin Contractility in Tumor Cells and Stroma. Cancer Cell. 2011;20:229–245. doi: 10.1016/j.ccr.2011.06.018. PubMed DOI
Georgouli M., Herraiz C., Crosas-Molist E., Fanshawe B., Maiques O., Perdrix A., Pandya P., Rodriguez-Hernandez I., Ilieva K.M., Cantelli G., et al. Regional Activation of Myosin II in Cancer Cells Drives Tumor Progression via a Secretory Cross-Talk with the Immune Microenvironment. Cell. 2019;176:757–774. doi: 10.1016/j.cell.2018.12.038. PubMed DOI PMC
Hölzel M., Tüting T. Inflammation-Induced Plasticity in Melanoma Therapy and Metastasis. Trends Immunol. 2016;37:364–374. doi: 10.1016/j.it.2016.03.009. PubMed DOI
Ivashkiv L.B., Donlin L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 2013;14:36–49. doi: 10.1038/nri3581. PubMed DOI PMC
Platanias L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005;5:375–386. doi: 10.1038/nri1604. PubMed DOI
Einav U., Tabach Y., Getz G., Yitzhaky A., Ozbek U., Amariglio N., Izraeli S., Rechavi G., Domany E. Gene expression analysis reveals a strong signature of an interferon-induced pathway in childhood lymphoblastic leukemia as well as in breast and ovarian cancer. Oncogene. 2005;24:6367–6375. doi: 10.1038/sj.onc.1208797. PubMed DOI
Weichselbaum R.R., Ishwaran H., Yoon T., Nuyten D.S.A., Baker S.W., Khodarev N., Su A.W., Shaikh A.Y., Roach P., Kreike B., et al. An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. Proc. Natl. Acad. Sci. USA. 2008;105:18490–18495. doi: 10.1073/pnas.0809242105. PubMed DOI PMC
Aoyagi S., Hata H., Homma E., Shimizu H. Sequential Local Injection of Low-Dose Interferon-Beta for Maintenance Therapy in Stage II and III Melanoma: A Single-Institution Matched Case-Control Study. Oncology. 2012;82:139–146. doi: 10.1159/000336490. PubMed DOI
Fujimura T., Okuyama R., Ohtani T., Ito Y., Haga T., Hashimoto A., Aiba S. Perilesional treatment of metastatic melanoma with interferon-β. Clin. Exp. Dermatol. 2009;34:793–799. doi: 10.1111/j.1365-2230.2009.03207.x. PubMed DOI
Uehara J., Ohkuri T., Kosaka A., Ishibashi K., Hirata Y., Ohara K., Nagato T., Oikawa K., Aoki N., Harabuchi Y., et al. Intratumoral injection of IFN-β induces chemokine production in melanoma and augments the therapeutic efficacy of anti-PD-L1 mAb. Biochem. Biophys. Res. Commun. 2017;490:521–527. doi: 10.1016/j.bbrc.2017.06.072. PubMed DOI
Kakizaki A., Fujimura T., Furudate S., Kambayashi Y., Yamauchi T., Yagita H., Aiba S. Immunomodulatory effect of peritumorally administered interferon-beta on melanoma through tumor-associated macrophages. OncoImmunology. 2015;4:e1047584. doi: 10.1080/2162402X.2015.1047584. PubMed DOI PMC
Čermák V. Differential Expression Analyses Figshare Dataset. [(accessed on 25 August 2020)];2019 Available online: https://figshare.com/articles/Differential_expression_analyses/10329281/2.
Ge S., Jung D., Yao R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2019;36:2628–2629. doi: 10.1093/bioinformatics/btz931. PubMed DOI PMC
Cooper S., Sadok A., Bousgouni V., Bakal C. Apolar and polar transitions drive the conversion between amoeboid and mesenchymal shapes in melanoma cells. Mol. Biol. Cell. 2015;26:4163–4170. doi: 10.1091/mbc.E15-06-0382. PubMed DOI PMC
Arozarena I., Wellbrock C. Phenotype plasticity as enabler of melanoma progression and therapy resistance. Nat. Rev. Cancer. 2019;19:377–391. doi: 10.1038/s41568-019-0154-4. PubMed DOI
Lazar-Molnar E., Hegyesi H., Tóth S., Falus A. Autocrine and Paracrine Regulation by Cytokines and Growth Factors in Melanoma. Cytokine. 2000;12:547–554. doi: 10.1006/cyto.1999.0614. PubMed DOI
Michalska A., Blaszczyk K., Wesoly J., Bluyssen H.A. A Positive Feedback Amplifier Circuit That Regulates Interferon (IFN)-Stimulated Gene Expression and Controls Type I and Type II IFN Responses. Front. Immunol. 2018;9:1135. doi: 10.3389/fimmu.2018.01135. PubMed DOI PMC
Medrano R.F., Hunger A., Mendonça S.A., Barbuto J.A.M., Strauss B.E. Immunomodulatory and antitumor effects of type I interferons and their application in cancer therapy. Oncotarget. 2017;8:71249–71284. doi: 10.18632/oncotarget.19531. PubMed DOI PMC
Satomi H., Wang B., Fujisawa H., Otsuka F. Interferon-β from melanoma cells suppresses the proliferations of melanoma cells in an autocrine manner. Cytokine. 2002;18:108–115. doi: 10.1006/cyto.2002.1028. PubMed DOI
Tjandra S.S., Hsu C., Goh I., Gurung A., Poon R., Nadesan P., Alman B.A. IFN- Signaling Positively Regulates Tumorigenesis in Aggressive Fibromatosis, Potentially by Modulating Mesenchymal Progenitors. Cancer Res. 2007;67:7124–7131. doi: 10.1158/0008-5472.CAN-07-0686. PubMed DOI
Zhang Y., Liu Z. STAT1 in cancer: Friend or foe? Discov. Med. 2017;24:19–29. PubMed
Greenwood C., Metodieva G., Al-Janabi K., Lausen B., Alldridge L., Leng L., Bucala R., Fernández N., Metodiev M.V. Stat1 and CD74 overexpression is co-dependent and linked to increased invasion and lymph node metastasis in triple-negative breast cancer. J. Proteom. 2012;75:3031–3040. doi: 10.1016/j.jprot.2011.11.033. PubMed DOI
Emad A., Ray T., Jensen T.W., Parat M., Natrajan R., Sinha S., Ray P.S. Superior breast cancer metastasis risk stratification using an epithelial-mesenchymal-amoeboid transition gene signature. Breast Cancer Res. 2020;22:1–13. doi: 10.1186/s13058-020-01304-8. PubMed DOI PMC
Cheon H., Borden E.C., Stark G.R. Interferons and Their Stimulated Genes in the Tumor Microenvironment. Semin. Oncol. 2014;41:156–173. doi: 10.1053/j.seminoncol.2014.02.002. PubMed DOI PMC
Iriarte A.R., Arwert E., Milford E., Chakravarty P., Melcher A., Harrington K., Sahai E. Interaction between cancer associated fibroblasts and cancer cells influence immune infiltrate and is modulated by therapeutic agents. Ann. Oncol. 2018;29:viii657. doi: 10.1093/annonc/mdy303.023. DOI
Lehmann S., Boekhorst V.T., Odenthal J., Bianchi R., Van Helvert S., Ikenberg K., Ilina O., Stoma S., Xandry J., Jiang L., et al. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells. Curr. Biol. 2017;27:392–400. doi: 10.1016/j.cub.2016.11.057. PubMed DOI
Cheon H., Holvey-Bates E.G., Schoggins J.W., Forster S.C., Hertzog P., Imanaka N., Rice C.M., Jackson M.W., Junk D.J., Stark G.R. IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J. 2013;32:2751–2763. doi: 10.1038/emboj.2013.203. PubMed DOI PMC
Edsbäcker E., Serviss J.T., Kolosenko I., Palm-Apergi C., De Milito A., Tamm K.P. STAT3 is activated in multicellular spheroids of colon carcinoma cells and mediates expression of IRF9 and interferon stimulated genes. Sci. Rep. 2019;9:536. doi: 10.1038/s41598-018-37294-z. PubMed DOI PMC
Kolosenko I., Fryknäs M., Forsberg S., Johnsson P., Cheon H., Holvey-Bates E.G., Edsbäcker E., Pellegrini P., Rassoolzadeh H., Brnjic S., et al. Cell crowding induces interferon regulatory factor 9, which confers resistance to chemotherapeutic drugs. Int. J. Cancer. 2014;136:E51–E61. doi: 10.1002/ijc.29161. PubMed DOI
E Luker K., Pica C.M., Schreiber R.D., Piwnica-Worms D. Overexpression of IRF9 confers resistance to antimicrotubule agents in breast cancer cells. Cancer Res. 2001;61:6540–6547. PubMed
Khodarev N.N., Beckett M., Labay E., Darga T., Roizman B., Weichselbaum R.R. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. Proc. Natl. Acad. Sci. USA. 2004;101:1714–1719. doi: 10.1073/pnas.0308102100. PubMed DOI PMC
Silginer M., Nagy S., Happold C., Schneider H., Weller M., Roth P. Autocrine activation of the IFN signaling pathway may promote immune escape in glioblastoma. Neuro Oncol. 2017;19:1338–1349. doi: 10.1093/neuonc/nox051. PubMed DOI PMC
Ransohoff R.M., Cardona A.E. The myeloid cells of the central nervous system parenchyma. Nature. 2010;468:253–262. doi: 10.1038/nature09615. PubMed DOI
Scheu S., Ali S., Mann-Nüttel R., Richter L., Arolt V., Dannlowski U., Kuhlmann T., Klotz L., Alferink J. Interferon β-Mediated Protective Functions of Microglia in Central Nervous System Autoimmunity. Int. J. Mol. Sci. 2019;20:190. doi: 10.3390/ijms20010190. PubMed DOI PMC
Ogony J., Choi H.J., Lui A., Cristofanilli M., Lewis-Wambi J. Interferon-induced transmembrane protein 1 (IFITM1) overexpression enhances the aggressive phenotype of SUM149 inflammatory breast cancer cells in a signal transducer and activator of transcription 2 (STAT2)-dependent manner. Breast Cancer Res. 2016;18:25. doi: 10.1186/s13058-016-0683-7. PubMed DOI PMC
Nan J., Wang Y., Yang J., Stark G.R. IRF9 and unphosphorylated STAT2 cooperate with NF-κB to drive IL6 expression. Proc. Natl. Acad. Sci. USA. 2018;115:3906–3911. doi: 10.1073/pnas.1714102115. PubMed DOI PMC
Jobe N.P., Rosel D., Dvořánková B., Kodet O., Lacina L., Mateu R., Smetana K., Brábek J., Smetana K. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Croner R.S., Sturzl M., Rau T.T., Metodieva G., Geppert C.I., Naschberger E., Lausen B., Metodiev M.V. Quantitative proteome profiling of lymph node-positive vs. -negative colorectal carcinomas pinpoints MX1 as a marker for lymph node metastasis. Int. J. Cancer. 2014;135:2878–2886. doi: 10.1002/ijc.28929. PubMed DOI PMC
Desai S.D., E Reed R., Burks J., Wood L.M., Pullikuth A.K., Haas A.L., Liu L.F., Breslin J.W., Meiners S., Sankar S. ISG15 disrupts cytoskeletal architecture and promotes motility in human breast cancer cells. Exp. Biol. Med. 2012;237:38–49. doi: 10.1258/ebm.2011.011236. PubMed DOI
Burks J., Reed R.E., Desai S.D. ISGylation governs the oncogenic function of Ki-Ras in breast cancer. Oncogene. 2013;33:794–803. doi: 10.1038/onc.2012.633. PubMed DOI
Cruz A.C.T., González C.C.C., Cruz-Ramos E., Jarquín J.O.R., Romero-Mandujano A.K., Sosa-Garrocho M. Interplay between interferon-stimulated gene 15/ISGylation and interferon gamma signaling in breast cancer cells. Cell. Signal. 2019;54:91–101. doi: 10.1016/j.cellsig.2018.11.021. PubMed DOI
Cerikan B., Shaheen R., Colo G.P., Gläßer C., Hata S., Knobeloch K.-P., Alkuraya F.S., Fässler R., Schiebel E. Cell-Intrinsic Adaptation Arising from Chronic Ablation of a Key Rho GTPase Regulator. Dev. Cell. 2016;39:28–43. doi: 10.1016/j.devcel.2016.08.020. PubMed DOI
Cruz-Ramos E., Macías-Silva M., Sandoval-Hernández A., Tecalco-Cruz A.C. Non-muscle myosin IIA is post-translationally modified by interferon-stimulated gene 15 in breast cancer cells. Int. J. Biochem. Cell Biol. 2019;107:14–26. doi: 10.1016/j.biocel.2018.12.002. PubMed DOI
Jeon Y.J., Choi J.S., Lee J.Y., Yu K.R., Kim S.M., Ka S.H., Oh K.H., Kim K.I., Zhang D.-E., Bang O.S., et al. ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep. 2009;10:374–380. doi: 10.1038/embor.2009.23. PubMed DOI PMC
Xie B., Zhao J., Kitagawa M., Durbin J., Madri J.A., Guan J.-L., Fu X.-Y. Focal Adhesion Kinase Activates Stat1 in Integrin-mediated Cell Migration and Adhesion. J. Biol. Chem. 2001;276:19512–19523. doi: 10.1074/jbc.M009063200. PubMed DOI
Zhang L., Zou W. Inhibition of integrin β1 decreases the malignancy of ovarian cancer cells and potentiates anticancer therapy via the FAK/STAT1 signaling pathway. Mol. Med. Rep. 2015;12:7869–7876. doi: 10.3892/mmr.2015.4443. PubMed DOI PMC
Pedersen E., Wang Z., Stanley A., Peyrollier K., Roesner L.M., Werfel T., Quondamatteo F., Brakebusch C. RAC1 in keratinocytes regulates crosstalk to immune cells by Arp2/3-dependent control of STAT1. J. Cell Sci. 2012;125:5379–5390. doi: 10.1242/jcs.107011. PubMed DOI
Vincent K.M., Postovit L.M. Investigating the utility of human melanoma cell lines as tumour models. Oncotarget. 2017;8:10498–10509. doi: 10.18632/oncotarget.14443. PubMed DOI PMC
Lin W.M., Baker A.C., Beroukhim R., Winckler W., Feng W., Marmion J.M., Laine E., Greulich H., Tseng H., Gates C., et al. Modeling Genomic Diversity and Tumor Dependency in Malignant Melanoma. Cancer Res. 2008;68:664–673. doi: 10.1158/0008-5472.CAN-07-2615. PubMed DOI PMC
Hoek K.S., Eichhoff O.M., Schlegel N.C., Döbbeling U., Kobert N., Schaerer L., Hemmi S., Dummer R. In vivo Switching of Human Melanoma Cells between Proliferative and Invasive States. Cancer Res. 2008;68:650–656. doi: 10.1158/0008-5472.CAN-07-2491. PubMed DOI
Merta L., Gandalovičová A., Cermak V., Dibus M., Gutschner T., Diederichs S., Rosel D., Brábek J. Increased Level of Long Non-Coding RNA MALAT1 is a Common Feature of Amoeboid Invasion. Cancers. 2020;12:1136. doi: 10.3390/cancers12051136. PubMed DOI PMC
Bustin S.A., Benes V., Garson J., Hellemans J., Huggett J.F., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI