High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
Grantová podpora
712217
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency) - International
1292217
Grantová Agentura, Univerzita Karlova (Charles University Grant Agency) - International
NA
Kellner Family Foundation - International
NA
Kellner Family Foundation - International
PubMed
32461585
PubMed Central
PMC7253430
DOI
10.1038/s41597-020-0499-2
PII: 10.1038/s41597-020-0499-2
Knihovny.cz E-zdroje
- MeSH
- fibrosarkom patologie MeSH
- invazivní růst nádoru * MeSH
- kolagen chemie MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- pohyb buněk * MeSH
- proteom * MeSH
- rhoA protein vázající GTP MeSH
- sekvenční analýza RNA MeSH
- tandemová hmotnostní spektrometrie MeSH
- transkriptom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen MeSH
- proteom * MeSH
- rhoA protein vázající GTP MeSH
- RHOA protein, human MeSH Prohlížeč
The plasticity of cancer cell invasion represents substantial hindrance for effective anti-metastatic therapy. To better understand the cancer cells' plasticity, we performed complex transcriptomic and proteomic profiling of HT1080 fibrosarcoma cells undergoing mesenchymal-amoeboid transition (MAT). As amoeboid migratory phenotype can fully manifest only in 3D conditions, all experiments were performed with 3D collagen-based cultures. Two previously described approaches to induce MAT were used: doxycycline-inducible constitutively active RhoA expression and dasatinib treatment. RNA sequencing was performed with ribo-depleted total RNA. Protein samples were analysed with tandem mass tag (TMT)-based mass spectrometry. The data provide unprecedented insight into transcriptome and proteome changes accompanying MAT in true 3D conditions.
Department of Cell Biology Charles University Viničná 7 Prague Czech Republic
Proteomics Core Facility Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI
Vaškovičová K, et al. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol. Direct. 2013;8:8. doi: 10.1186/1745-6150-8-8. PubMed DOI PMC
Tolde O, et al. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC
Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 2010;11:633–643. doi: 10.1038/nrm2957. PubMed DOI PMC
Tolde O, Rösel D, Veselý P, Folk P, Brábek J. The structure of invadopodia in a complex 3D environment. Eur. J. Cell Biol. 2010;89:674–680. doi: 10.1016/j.ejcb.2010.04.003. PubMed DOI
Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int. 2002;52:255–64. doi: 10.1046/j.1440-1827.2002.01343.x. PubMed DOI
Friedl P, Wolf K. Tube Travel: The Role of Proteases in Individual and Collective Cancer Cell Invasion. Cancer Res. 2008;68:7247–7249. doi: 10.1158/0008-5472.CAN-08-0784. PubMed DOI
Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 2006;16:1515–1523. doi: 10.1016/j.cub.2006.05.065. PubMed DOI
Wolf K, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 2003;160:267–277. doi: 10.1083/jcb.200209006. PubMed DOI PMC
Lämmermann T, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–55. doi: 10.1038/nature06887. PubMed DOI
Charras GT. A short history of blebbing. J. Microsc. 2008;231:466–478. doi: 10.1111/j.1365-2818.2008.02059.x. PubMed DOI
Agarwal P, Zaidel-Bar R. Diverse roles of non-muscle myosin II contractility in 3D cell migration. Essays in Biochemistry. 2019;63:497–508. doi: 10.1042/EBC20190026. PubMed DOI
Panková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2010;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC
Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol. Oncol. 2017;11:5–27. doi: 10.1002/1878-0261.12019. PubMed DOI PMC
Gandalovičová A, et al. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends in Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC
Sanz-Moreno V, et al. ROCK and JAK1 Signaling Cooperate to Control Actomyosin Contractility in Tumor Cells and Stroma. Cancer Cell. 2011;20:229–245. doi: 10.1016/j.ccr.2011.06.018. PubMed DOI
Taddei ML, et al. Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun. Signal. 2014;12:24. doi: 10.1186/1478-811X-12-24. PubMed DOI PMC
Čermák V, et al. RNA-seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment. Sci. Data. 2018;5:180198. doi: 10.1038/sdata.2018.198. PubMed DOI PMC
Kosla J, et al. Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Commun. Signal. 2013;11:51. doi: 10.1186/1478-811X-11-51. PubMed DOI PMC
MacKay JL, Kumar S. Simultaneous and independent tuning of RhoA and Rac1 activity with orthogonally inducible promoters. Integr. Biol. 2014;6:885–894. doi: 10.1039/c4ib00099d. PubMed DOI PMC
Ahn J, Sanz-Moreno V, Marshall CJ. The metastasis gene NEDD9 product acts through integrin 3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J. Cell Sci. 2012;125:1814–1826. doi: 10.1242/jcs.101444. PubMed DOI
Logue JS, Cartagena-Rivera AX, Chadwick RS. c-Src activity is differentially required by cancer cell motility modes. Oncogene. 2018;37:2104–2121. doi: 10.1038/s41388-017-0071-5. PubMed DOI PMC
Riedl J, et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods. 2008;5:605–607. doi: 10.1038/nmeth.1220. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Čermák V, Gandalovičová A, Merta L, Rösel D, Brábek J. 2019. Transcriptomic profiling of HT1080 fibrosarcoma cells of mesenchymal or amoeboid migratory phenotype. ArrayExpress. E-MTAB-6823
Erban T, Harant K, Chalupnikova J, Kocourek F, Stara J. Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J. Proteomics. 2017;150:281–289. doi: 10.1016/j.jprot.2016.09.016. PubMed DOI
Wang Y, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11:2019–26. doi: 10.1002/pmic.201000722. PubMed DOI PMC
McAlister GC, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 2014;86:7150–8. doi: 10.1021/ac502040v. PubMed DOI PMC
Vizcaíno JA, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–56. doi: 10.1093/nar/gkv1145. PubMed DOI PMC
Harant K, Čermák V, Rösel D, Brábek J. 2020. Proteomic profiling of HT1080 fibrosarcoma cells of mesenchymal or amoeboid migratory phenotype. PRIDE Archive. PXD010425
Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics. 2012;28:288–9. doi: 10.1093/bioinformatics/btr645. PubMed DOI
Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC
Čermák V, 2020. Mesenchymal-Amoeboid Transition in HT1080 Cells. figshare. DOI
Koudelková L, et al. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem. Biol. 2019;26:255–268.e4. doi: 10.1016/j.chembiol.2018.10.024. PubMed DOI
Andrews, S. FastQC: a quality control tool for high throughput sequence data. [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells
The emerging role of microtubules in invasion plasticity
Increased Level of Long Non-Coding RNA MALAT1 is a Common Feature of Amoeboid Invasion