High-throughput transcriptomic and proteomic profiling of mesenchymal-amoeboid transition in 3D collagen

. 2020 May 27 ; 7 (1) : 160. [epub] 20200527

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu dataset, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32461585

Grantová podpora
712217 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency) - International
1292217 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency) - International
NA Kellner Family Foundation - International
NA Kellner Family Foundation - International

Odkazy

PubMed 32461585
PubMed Central PMC7253430
DOI 10.1038/s41597-020-0499-2
PII: 10.1038/s41597-020-0499-2
Knihovny.cz E-zdroje

The plasticity of cancer cell invasion represents substantial hindrance for effective anti-metastatic therapy. To better understand the cancer cells' plasticity, we performed complex transcriptomic and proteomic profiling of HT1080 fibrosarcoma cells undergoing mesenchymal-amoeboid transition (MAT). As amoeboid migratory phenotype can fully manifest only in 3D conditions, all experiments were performed with 3D collagen-based cultures. Two previously described approaches to induce MAT were used: doxycycline-inducible constitutively active RhoA expression and dasatinib treatment. RNA sequencing was performed with ribo-depleted total RNA. Protein samples were analysed with tandem mass tag (TMT)-based mass spectrometry. The data provide unprecedented insight into transcriptome and proteome changes accompanying MAT in true 3D conditions.

Zobrazit více v PubMed

Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Vaškovičová K, et al. Invasive cells in animals and plants: searching for LECA machineries in later eukaryotic life. Biol. Direct. 2013;8:8. doi: 10.1186/1745-6150-8-8. PubMed DOI PMC

Tolde O, et al. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC

Parsons JT, Horwitz AR, Schwartz MA. Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 2010;11:633–643. doi: 10.1038/nrm2957. PubMed DOI PMC

Tolde O, Rösel D, Veselý P, Folk P, Brábek J. The structure of invadopodia in a complex 3D environment. Eur. J. Cell Biol. 2010;89:674–680. doi: 10.1016/j.ejcb.2010.04.003. PubMed DOI

Nabeshima K, Inoue T, Shimao Y, Sameshima T. Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol. Int. 2002;52:255–64. doi: 10.1046/j.1440-1827.2002.01343.x. PubMed DOI

Friedl P, Wolf K. Tube Travel: The Role of Proteases in Individual and Collective Cancer Cell Invasion. Cancer Res. 2008;68:7247–7249. doi: 10.1158/0008-5472.CAN-08-0784. PubMed DOI

Wyckoff JB, Pinner SE, Gschmeissner S, Condeelis JS, Sahai E. ROCK- and myosin-dependent matrix deformation enables protease-independent tumor-cell invasion in vivo. Curr. Biol. 2006;16:1515–1523. doi: 10.1016/j.cub.2006.05.065. PubMed DOI

Wolf K, et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 2003;160:267–277. doi: 10.1083/jcb.200209006. PubMed DOI PMC

Lämmermann T, et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature. 2008;453:51–55. doi: 10.1038/nature06887. PubMed DOI

Charras GT. A short history of blebbing. J. Microsc. 2008;231:466–478. doi: 10.1111/j.1365-2818.2008.02059.x. PubMed DOI

Agarwal P, Zaidel-Bar R. Diverse roles of non-muscle myosin II contractility in 3D cell migration. Essays in Biochemistry. 2019;63:497–508. doi: 10.1042/EBC20190026. PubMed DOI

Panková K, Rösel D, Novotný M, Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 2010;67:63–71. doi: 10.1007/s00018-009-0132-1. PubMed DOI PMC

Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol. Oncol. 2017;11:5–27. doi: 10.1002/1878-0261.12019. PubMed DOI PMC

Gandalovičová A, et al. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends in Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Sanz-Moreno V, et al. ROCK and JAK1 Signaling Cooperate to Control Actomyosin Contractility in Tumor Cells and Stroma. Cancer Cell. 2011;20:229–245. doi: 10.1016/j.ccr.2011.06.018. PubMed DOI

Taddei ML, et al. Mesenchymal to amoeboid transition is associated with stem-like features of melanoma cells. Cell Commun. Signal. 2014;12:24. doi: 10.1186/1478-811X-12-24. PubMed DOI PMC

Čermák V, et al. RNA-seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment. Sci. Data. 2018;5:180198. doi: 10.1038/sdata.2018.198. PubMed DOI PMC

Kosla J, et al. Metastasis of aggressive amoeboid sarcoma cells is dependent on Rho/ROCK/MLC signaling. Cell Commun. Signal. 2013;11:51. doi: 10.1186/1478-811X-11-51. PubMed DOI PMC

MacKay JL, Kumar S. Simultaneous and independent tuning of RhoA and Rac1 activity with orthogonally inducible promoters. Integr. Biol. 2014;6:885–894. doi: 10.1039/c4ib00099d. PubMed DOI PMC

Ahn J, Sanz-Moreno V, Marshall CJ. The metastasis gene NEDD9 product acts through integrin 3 and Src to promote mesenchymal motility and inhibit amoeboid motility. J. Cell Sci. 2012;125:1814–1826. doi: 10.1242/jcs.101444. PubMed DOI

Logue JS, Cartagena-Rivera AX, Chadwick RS. c-Src activity is differentially required by cancer cell motility modes. Oncogene. 2018;37:2104–2121. doi: 10.1038/s41388-017-0071-5. PubMed DOI PMC

Riedl J, et al. Lifeact: a versatile marker to visualize F-actin. Nat. Methods. 2008;5:605–607. doi: 10.1038/nmeth.1220. PubMed DOI PMC

Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI

Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Čermák V, Gandalovičová A, Merta L, Rösel D, Brábek J. 2019. Transcriptomic profiling of HT1080 fibrosarcoma cells of mesenchymal or amoeboid migratory phenotype. ArrayExpress. E-MTAB-6823

Erban T, Harant K, Chalupnikova J, Kocourek F, Stara J. Beyond the survival and death of the deltamethrin-threatened pollen beetle Meligethes aeneus: An in-depth proteomic study employing a transcriptome database. J. Proteomics. 2017;150:281–289. doi: 10.1016/j.jprot.2016.09.016. PubMed DOI

Wang Y, et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics. 2011;11:2019–26. doi: 10.1002/pmic.201000722. PubMed DOI PMC

McAlister GC, et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 2014;86:7150–8. doi: 10.1021/ac502040v. PubMed DOI PMC

Vizcaíno JA, et al. 2016 update of the PRIDE database and its related tools. Nucleic Acids Res. 2016;44:D447–56. doi: 10.1093/nar/gkv1145. PubMed DOI PMC

Harant K, Čermák V, Rösel D, Brábek J. 2020. Proteomic profiling of HT1080 fibrosarcoma cells of mesenchymal or amoeboid migratory phenotype. PRIDE Archive. PXD010425

Gatto L, Lilley KS. MSnbase-an R/Bioconductor package for isobaric tagged mass spectrometry data visualization, processing and quantitation. Bioinformatics. 2012;28:288–9. doi: 10.1093/bioinformatics/btr645. PubMed DOI

Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47–e47. doi: 10.1093/nar/gkv007. PubMed DOI PMC

Čermák V, 2020. Mesenchymal-Amoeboid Transition in HT1080 Cells. figshare. DOI

Koudelková L, et al. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem. Biol. 2019;26:255–268.e4. doi: 10.1016/j.chembiol.2018.10.024. PubMed DOI

Andrews, S. FastQC: a quality control tool for high throughput sequence data. [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...