RNA-seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu dataset, časopisecké články, práce podpořená grantem
PubMed
30277482
PubMed Central
PMC6167950
DOI
10.1038/sdata.2018.198
PII: sdata2018198
Knihovny.cz E-zdroje
- MeSH
- buněčné mikroprostředí * MeSH
- kolagen MeSH
- lidé MeSH
- makrofágy * cytologie metabolismus MeSH
- pohyb buněk * genetika MeSH
- RNA ribozomální * MeSH
- sekvenční analýza RNA MeSH
- test migrace makrofágů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kolagen MeSH
- RNA ribozomální * MeSH
M2-polarized macrophages have been shown to adapt their 3D migration mode to physical properties of surrounding extracellular matrix. They migrate in the integrin-mediated adhesion and proteolytic activity-dependent "mesenchymal" mode in stiff matrices and in the integrin and protease-independent "amoeboid" mode in low density, porous environments. To find out what impact the switching between the migration modes has on expression of both protein-coding and non-coding genes we employed RNA sequencing of total RNA depleted of ribosomal RNA isolated from macrophages migrating in either mode in 3D collagens. Differentially expressed genes from both categories have been detected and the changes in expression of selected genes were further validated with RT-qPCR. The acquired data will facilitate better understanding of how mechanical properties of tissue microenvironment reflect in macrophage immune function and how the transitions between mesenchymal and amoeboid migratory modes are regulated at the gene expression level.
Zobrazit více v PubMed
Čermák V., et al. . 2018. figshare. https://doi.org/10.6084/m9.figshare.c.4140770 DOI
2018. ArrayExpress. E-MTAB-6643
Binamé F., Pawlak G., Roux P. & Hibner U. What makes cells move: requirements and obstacles for spontaneous cell motility. Mol. Biosyst. 6, 648–661 (2010). PubMed
Friedl P. & Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011). PubMed
Van Goethem E., Poincloux R., Gauffre F., Maridonneau-Parini I. & Le Cabec V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J. Immunol. 184, 1049–1061 (2010). PubMed
Taddei M. L., Giannoni E., Comito G. & Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 341, 80–96 (2013). PubMed
Charras G. & Sahai E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014). PubMed
Wolf K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003). PubMed PMC
Nagano M., Hoshino D., Koshikawa N., Akizawa T. & Seiki M. Turnover of focal adhesions and cancer cell migration. Int. J. Cell Biol. 2012, 310616 (2012). PubMed PMC
Lämmermann T. & Sixt M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009). PubMed
Charras G. & Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008). PubMed
Friedl P. & Wolf K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010). PubMed PMC
Liu Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015). PubMed
Paňková K., Rösel D., Novotný M. & Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67, 63–71 (2010). PubMed PMC
Paňková D. et al. NG2-mediated Rho activation promotes amoeboid invasiveness of cancer cells. Eur. J. Cell Biol. 91, 969–977 (2012). PubMed
Ladhani O., Sanchez-Martinez C., Orgaz J. L., Jimenez B. & Volpert O. V. Pigment epithelium-derived factor blocks tumor extravasation by suppressing amoeboid morphology and mesenchymal proteolysis. Neoplasia 13, 633–642 (2011). PubMed PMC
Cougoule C. et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91, 938–949 (2012). PubMed
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).
Dobin A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC
Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC
Bushnell B. BBTools software package. BBTools - DOE Joint Genome Institute https://jgi.doe.gov/data-and-tools/bbtools (2014).
Bustin S. A. et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 55, 611–622 (2009). PubMed
Hellemans J., Mortier G., De Paepe A., Speleman F. & Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007). PubMed PMC
Vandesompele J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–0034.11 (2002). PubMed PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).
Microtubule-associated NAV3 regulates invasive phenotypes in glioblastoma cells
Increased Level of Long Non-Coding RNA MALAT1 is a Common Feature of Amoeboid Invasion
figshare
10.6084/m9.figshare.c.4140770