RNA-seq of macrophages of amoeboid or mesenchymal migratory phenotype due to specific structure of environment

. 2018 Oct 02 ; 5 () : 180198. [epub] 20181002

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu dataset, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30277482

M2-polarized macrophages have been shown to adapt their 3D migration mode to physical properties of surrounding extracellular matrix. They migrate in the integrin-mediated adhesion and proteolytic activity-dependent "mesenchymal" mode in stiff matrices and in the integrin and protease-independent "amoeboid" mode in low density, porous environments. To find out what impact the switching between the migration modes has on expression of both protein-coding and non-coding genes we employed RNA sequencing of total RNA depleted of ribosomal RNA isolated from macrophages migrating in either mode in 3D collagens. Differentially expressed genes from both categories have been detected and the changes in expression of selected genes were further validated with RT-qPCR. The acquired data will facilitate better understanding of how mechanical properties of tissue microenvironment reflect in macrophage immune function and how the transitions between mesenchymal and amoeboid migratory modes are regulated at the gene expression level.

Zobrazit více v PubMed

Čermák V., et al. . 2018. figshare. https://doi.org/10.6084/m9.figshare.c.4140770 DOI

2018. ArrayExpress. E-MTAB-6643

Binamé F., Pawlak G., Roux P. & Hibner U. What makes cells move: requirements and obstacles for spontaneous cell motility. Mol. Biosyst. 6, 648–661 (2010). PubMed

Friedl P. & Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147, 992–1009 (2011). PubMed

Van Goethem E., Poincloux R., Gauffre F., Maridonneau-Parini I. & Le Cabec V. Matrix architecture dictates three-dimensional migration modes of human macrophages: differential involvement of proteases and podosome-like structures. J. Immunol. 184, 1049–1061 (2010). PubMed

Taddei M. L., Giannoni E., Comito G. & Chiarugi P. Microenvironment and tumor cell plasticity: an easy way out. Cancer Lett. 341, 80–96 (2013). PubMed

Charras G. & Sahai E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014). PubMed

Wolf K. et al. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160, 267–277 (2003). PubMed PMC

Nagano M., Hoshino D., Koshikawa N., Akizawa T. & Seiki M. Turnover of focal adhesions and cancer cell migration. Int. J. Cell Biol. 2012, 310616 (2012). PubMed PMC

Lämmermann T. & Sixt M. Mechanical modes of ‘amoeboid’ cell migration. Curr. Opin. Cell Biol. 21, 636–644 (2009). PubMed

Charras G. & Paluch E. Blebs lead the way: how to migrate without lamellipodia. Nat. Rev. Mol. Cell Biol. 9, 730–736 (2008). PubMed

Friedl P. & Wolf K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010). PubMed PMC

Liu Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015). PubMed

Paňková K., Rösel D., Novotný M. & Brábek J. The molecular mechanisms of transition between mesenchymal and amoeboid invasiveness in tumor cells. Cell. Mol. Life Sci. 67, 63–71 (2010). PubMed PMC

Paňková D. et al. NG2-mediated Rho activation promotes amoeboid invasiveness of cancer cells. Eur. J. Cell Biol. 91, 969–977 (2012). PubMed

Ladhani O., Sanchez-Martinez C., Orgaz J. L., Jimenez B. & Volpert O. V. Pigment epithelium-derived factor blocks tumor extravasation by suppressing amoeboid morphology and mesenchymal proteolysis. Neoplasia 13, 633–642 (2011). PubMed PMC

Cougoule C. et al. Blood leukocytes and macrophages of various phenotypes have distinct abilities to form podosomes and to migrate in 3D environments. Eur. J. Cell Biol. 91, 938–949 (2012). PubMed

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12 (2011).

Dobin A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). PubMed PMC

Love M. I., Huber W. & Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). PubMed PMC

Bushnell B. BBTools software package. BBTools - DOE Joint Genome Institute https://jgi.doe.gov/data-and-tools/bbtools (2014).

Bustin S. A. et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 55, 611–622 (2009). PubMed

Hellemans J., Mortier G., De Paepe A., Speleman F. & Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8, R19 (2007). PubMed PMC

Vandesompele J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034.1–0034.11 (2002). PubMed PMC

Andrews S. FastQC: a quality control tool for high throughput sequence data. Babraham Bioinformatics https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010).

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.4140770

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...