PEGylated Molybdenum-Iodine Nanocluster as a Promising Radiodynamic Agent against Prostatic Adenocarcinoma
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38364266
PubMed Central
PMC10915794
DOI
10.1021/acs.inorgchem.4c00084
Knihovny.cz E-zdroje
- MeSH
- adenokarcinom * MeSH
- fotochemoterapie * metody MeSH
- jod * MeSH
- molybden chemie MeSH
- myši MeSH
- polyethylenglykoly MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- jod * MeSH
- molybden MeSH
- polyethylenglykoly MeSH
The combination of photodynamic therapy and radiotherapy has given rise to a modality called radiodynamic therapy (RDT), based on reactive oxygen species-producing radiosensitizers. The production of singlet oxygen, O2(1Δg), by octahedral molybdenum (Mo6) clusters upon X-ray irradiation allows for simplification of the architecture of radiosensitizing systems. In this context, we prepared a radiosensitizing system using copper-free click chemistry between a Mo6 cluster bearing azido ligands and the homo-bifunctional linker bis-dPEG11-DBCO. The resulting compound formed nanoparticles, which featured production of O2(1Δg) and efficient cellular uptake, leading to remarkable photo- and radiotoxic effects against the prostatic adenocarcinoma TRAMP-C2 cell line. Spheroids of TRAMP-C2 cells were also used for evaluation of toxicity and phototoxicity. In vivo experiments on a mouse model demonstrated that subcutaneous injection of the nanoparticles is a safe administration mode at a dose of up to 0.08 g kg-1. The reported results confirm the relevancy of Mo6-based radiosensitizing nanosystems for RDT.
Zobrazit více v PubMed
Algorri J. F.; Ochoa M.; Roldán-Varona P.; Rodríguez-Cobo L.; López-Higuera J. M. Photodynamic Therapy: A Compendium of Latest Reviews. Cancers 2021, 13, 4447.10.3390/cancers13174447. PubMed DOI PMC
Gunaydin G.; Gedik M. E.; Ayan S. Photodynamic Therapy-Current Limitations and Novel Approaches. Front. Chem. 2021, 9 (9), 691–697. 10.3389/fchem.2021.691697. PubMed DOI PMC
Brown S. Two photons are better than one. Nat. Photonics 2008, 2, 394–395. 10.1038/nphoton.2008.112. DOI
Fan N.; Li P.; Wu C.; Wang X.; Zhou Y.; Tang B. ALP-Activated Chemiluminescence PDT Nano-Platform for Liver Cancer-Specific Theranostics. ACS Appl. Bio Mater. 2021, 4, 1740–1748. 10.1021/acsabm.0c01504. PubMed DOI
Wang G. D.; Nguyen H. T.; Chen H.; Cox P. B.; Wang L.; Nagata K.; Hao Z.; Wang A.; Li Z.; Xie J. X-Ray Induced Photodynamic Therapy: A Combination of Radiotherapy and Photodynamic Therapy. Theranostics 2016, 6 (13), 2295–2305. 10.7150/thno.16141. PubMed DOI PMC
Chen W.; Zhang J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. 10.1166/jnn.2006.327. PubMed DOI
Zhang G.; Guo M.; Ma H.; Wang J.; Zhang X.-D. Catalytic Nanotechnology of X-Ray Photodynamics for Cancer Treatments. Biomater. Sci. 2023, 11, 1153–1181. 10.1039/D2BM01698B. PubMed DOI
Sun W.; Zhou Z.; Pratx G.; Chen X.; Chen H. Nanoscintillator-Mediated X-Ray Induced Photodynamic Therapy for Deep-Seated Tumors: From Concept to Biomedical Applications. Theranostics 2020, 10, 1296–1318. 10.7150/thno.41578. PubMed DOI PMC
Kirakci K.; Kubát P.; Fejfarová K.; Martinčík J.; Nikl M.; Lang K. X-Ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorg. Chem. 2016, 55, 803–809. 10.1021/acs.inorgchem.5b02282. PubMed DOI
Maverick A. W.; Najdzionek J. S.; MacKenzie D.; Nocera D. G.; Gray H. B. Spectroscopic, Electrochemical, and Photochemical Properties of Molybdenum(II) and Tungsten(II) Halide Clusters. J. Am. Chem. Soc. 1983, 105, 1878–1882. 10.1021/ja00345a034. DOI
Kirakci K.; Kubát P.; Dušek M.; Fejfarová K.; Šícha V.; Mosinger J.; Lang K. A Highly Luminescent Hexanuclear Molybdenum Cluster – A Promising Candidate toward Photoactive Materials. Eur. J. Inorg. Chem. 2012, 2012 (19), 3107–3111. 10.1002/ejic.201200402. DOI
Kirakci K.; Kubát P.; Langmaier J.; Polívka T.; Fuciman M.; Fejfarová K.; Lang K. A Comparative Study of the Redox and Excited State Properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, or I). Dalton Trans. 2013, 42 (19), 7224.10.1039/c3dt32863e. PubMed DOI
Kirakci K.; Zelenka J.; Rumlová M.; Cvačka J.; Ruml T.; Lang K. Cationic Octahedral Molybdenum Cluster Complexes Functionalized with Mitochondria-Targeting Ligands: Photodynamic Anticancer and Antibacterial Activities. Biomater. Sci. 2019, 7 (4), 1386–1392. 10.1039/C8BM01564C. PubMed DOI
Kirakci K.; Demel J.; Hynek J.; Zelenka J.; Rumlová M.; Ruml T.; Lang K. Phosphinate Apical Ligands: A Route to a Water-Stable Octahedral Molybdenum Cluster Complex. Inorg. Chem. 2019, 58 (24), 16546–16552. 10.1021/acs.inorgchem.9b02569. PubMed DOI
Kirakci K.; Zelenka J.; Křížová I.; Ruml T.; Lang K. Octahedral Molybdenum Cluster Complexes with Optimized Properties for Photodynamic Applications. Inorg. Chem. 2020, 59 (13), 9287–9293. 10.1021/acs.inorgchem.0c01173. PubMed DOI
Kirakci K.; Kubáňová M.; Přibyl T.; Rumlová M.; Zelenka J.; Ruml T.; Lang K. A Cell Membrane Targeting Molybdenum-Iodine Nanocluster: Rational Ligand Design toward Enhanced Photodynamic Activity. Inorg. Chem. 2022, 61 (12), 5076–5083. 10.1021/acs.inorgchem.2c00040. PubMed DOI
Brandhonneur N.; Hatahet T.; Amela-Cortes M.; Molard Y.; Cordier S.; Dollo G. Molybdenum cluster loaded PLGA nanoparticles: An innovative theranostic approach for the treatment of ovarian cancer. Eur. J. Pharm. Biopharm. 2018, 125, 95–105. 10.1016/j.ejpb.2018.01.007. PubMed DOI
Brandhonneur N.; Boucaud Y.; Verger A.; Dumait N.; Molard Y.; Cordier S.; Dollo G. Molybdenum cluster loaded PLGA nanoparticles as efficient tools against epithelial ovarian cancer. Int. J. Pharm. 2021, 592, 120079.10.1016/j.ijpharm.2020.120079. PubMed DOI
Verger A.; Dollo G.; Martinais S.; Molard Y.; Cordier S.; Amela-Cortes M.; Brandhonneur N. Molybdenum-Iodine Cluster Loaded Polymeric Nanoparticles Allowing a Coupled Therapeutic Action with Low Side Toxicity for Treatment of Ovarian Cancer. J. Pharm. Sci. 2022, 111, 3377–3383. 10.1016/j.xphs.2022.09.010. PubMed DOI
Solovieva A. O.; Vorotnikov Y. A.; Trifonova K. E.; Efremova O. A.; Krasilnikova A. A.; Brylev K. A.; Vorontsova E. V.; Avrorov P. A.; Shestopalova L. V.; Poveshchenko A. F.; Mironov Y. V.; Shestopalov M. A. Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo6I8}4+ metal clusters. J. Mater. Chem. B 2016, 4 (28), 4839–4846. 10.1039/C6TB00723F. PubMed DOI
Beltrán A.; Mikhailov M.; Sokolov M. N.; Pérez-Laguna V.; Rezusta A.; Revillo M. J.; Galindo F. A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus. J. Mater. Chem. B 2016, 4 (36), 5975–5979. 10.1039/C6TB01966H. PubMed DOI
Vorotnikova N. A.; Alekseev A. Y.; Vorotnikov Y. A.; Evtushok D. V.; Molard Y.; Amela-Cortes M.; Cordier S.; Smolentsev A. I.; Burton C. G.; Kozhin P. M.; Zhu P.; Topham P. D.; Mironov Y. V.; Bradley M.; Efremova O. A.; Shestopalov M. A. Octahedral molybdenum cluster as a photoactive antimicrobial additive to a fluoroplastic. Mater. Sci. Eng. C 2019, 105, 110150.10.1016/j.msec.2019.110150. PubMed DOI
Felip-León C.; Arnau del Valle C.; Pérez-Laguna V.; Isabel Millán-Lou M.; Miravet J. F.; Mikhailov M.; Sokolov M. N.; Rezusta-López A.; Galindo F. Superior performance of macroporous over gel type polystyrene as a support for the development of photo-bactericidal materials. J. Mater. Chem. B 2017, 5 (30), 6058–6064. 10.1039/C7TB01478C. PubMed DOI
Kirakci K.; Nguyen T. K. N.; Grasset F.; Uchikoshi T.; Zelenka J.; Kubát P.; Ruml T.; Lang K. Electrophoretically Deposited Layers of Octahedral Molybdenum Cluster Complexes: A Promising Coating for Mitigation of Pathogenic Bacterial Biofilms under Blue Light. ACS Appl. Mater. Interfaces 2020, 12 (47), 52492–52499. 10.1021/acsami.0c19036. PubMed DOI
Kirakci K.; Zelenka J.; Rumlová M.; Martinčík J.; Nikl M.; Ruml T.; Lang K. Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. J. Mater. Chem. B 2018, 6 (26), 4301–4307. 10.1039/C8TB00893K. PubMed DOI
Kirakci K.; Pozmogova T. N.; Protasevich A. Y.; Vavilov G. D.; Stass D. V.; Shestopalov M. A.; Lang K. A water-soluble octahedral molybdenum cluster complex as a potential agent for X-ray induced photodynamic therapy. Biomater. Sci. 2021, 9 (8), 2893–2902. 10.1039/D0BM02005B. PubMed DOI
Koncošová M.; Rumlová M.; Mikyšková R.; Reiniš M.; Zelenka J.; Ruml T.; Kirakci K.; Lang K. Avenue to X-ray-induced photodynamic therapy of prostatic carcinoma with octahedral molybdenum cluster nanoparticles. J. Mater. Chem. B 2022, 10 (17), 3303–3310. 10.1039/D2TB00141A. PubMed DOI
Pozmogova T. N.; Sitnikova N. A.; Pronina E. V.; Miroshnichenko S. M.; Kushnarenko A. O.; Solovieva A. O.; Bogachev S. S.; Vavilov G. D.; Efremova O. A.; Vorotnikov Y. A.; Shestopalov M. A. Hybrid system {W6I8}-cluster/dsDNA as an agent for targeted X-ray induced photodynamic therapy of cancer stem cells. Mater. Chem. Front. 2021, 5 (20), 7499–7507. 10.1039/D1QM00956G. DOI
Jokerst J. V.; Lobovkina T.; Zare R. N.; Gambhir S. S. Nanoparticle PEGylation for imaging and therapy. Nanomedicine 2011, 6 (4), 715–728. 10.2217/nnm.11.19. PubMed DOI PMC
Mironova A. D.; Mikhailov M. A.; Brylev K. A.; Gushchin A. L.; Sukhikh T. S.; Sokolov M. N. Phosphorescent complexes of {Mo6I8}4+ with triazolates: [2 + 3] cycloaddition of alkynes to [Mo6I8(N3)6]2–. New J. Chem. 2020, 44, 20620–20625. 10.1039/D0NJ04259E. DOI
Kirakci K.; Kubát P.; Kučeráková M.; Šícha V.; Gbelcová H.; Lovecká P.; Grznárová P.; Ruml T.; Lang K. Water-soluble octahedral molybdenum cluster compounds Na2[Mo6I8(N3)6] and Na2[Mo6I8(NCS)6]: Syntheses, luminescence, and in vitro studies. Inorg. Chim. Acta 2016, 441, 42–49. 10.1016/j.ica.2015.10.043. DOI
Wang L.; Yang H.; Li B. Photodynamic Therapy for Prostate Cancer: A Systematic Review and Meta-Analysis. Prostate Int. 2019, 7, 83–90. 10.1016/j.prnil.2018.12.002. PubMed DOI PMC
Wilkins A.; Parker C. Treating Prostate Cancer with Radiotherapy. Nat. Rev. Clin. Oncol. 2010, 7, 583–589. 10.1038/nrclinonc.2010.135. PubMed DOI
Kessel D.; Reiners J. J. Photodynamic Therapy: Autophagy and Mitophagy, Apoptosis and Paraptosis. Autophagy 2020, 16, 2098–2101. 10.1080/15548627.2020.1783823. PubMed DOI PMC
Petri A.; Yova D.; Alexandratou E.; Kyriazi M.; Rallis M. Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan® and Fospeg in a human prostate cancer cell line. Photodiagn. Photodyn. Ther. 2012, 9, 344–354. 10.1016/j.pdpdt.2012.03.008. PubMed DOI
Dhar S.; Gu F. X.; Langer R.; Farokhzad O. C.; Lippard S. J. Targeted Delivery of Cisplatin to Prostate Cancer Cells by Aptamer Functionalized Pt(IV) Prodrug-PLGA–PEG Nanoparticles. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 17356–17361. 10.1073/pnas.0809154105. PubMed DOI PMC
Verger A.; Dollo G.; Brandhonneur N.; Martinais S.; Cordier S.; Lang K.; Amela-Cortes M.; Kirakci K. PEGylated Poly(Lactic-Co-Glycolic Acid) Nanoparticles Doped with Molybdenum-Iodide Nanoclusters as a Promising Photodynamic Therapy Agent against Ovarian Cancer. Mater. Adv. 2023, 4, 3207–3214. 10.1039/D3MA00206C. DOI
Mishchenko T.; Balalaeva I.; Gorokhova A.; Vedunova M.; Krysko D. V. Which Cell Death Modality Wins the Contest for Photodynamic Therapy of Cancer?. Cell Death Dis. 2022, 13, 455.10.1038/s41419-022-04851-4. PubMed DOI PMC
Zelenka J.; Koncošová M.; Ruml T. Targeting of Stress Response Pathways in the Prevention and Treatment of Cancer. Biotechnol. Adv. 2018, 36, 583–602. 10.1016/j.biotechadv.2018.01.007. PubMed DOI
Riegman M.; Sagie L.; Galed C.; Levin T.; Steinberg N.; Dixon S. J.; Wiesner U.; Bradbury M. S.; Niethammer P.; Zaritsky A.; Overholtzer M. Ferroptosis Occurs through an Osmotic Mechanism and Propagates Independently of Cell Rupture. Nat. Cell Biol. 2020, 22, 1042–1048. 10.1038/s41556-020-0565-1. PubMed DOI PMC
Wu C.; Zhao W.; Yu J.; Li S.; Lin L.; Chen X. Induction of Ferroptosis and Mitochondrial Dysfunction by Oxidative Stress in PC12 Cells. Sci. Rep. 2018, 8, 574.10.1038/s41598-017-18935-1. PubMed DOI PMC
Hamilton G.; Rath B. Applicability of Tumor Spheroids for In Vitro Chemosensitivity Assays. Expert Opin. Drug Metab. Toxicol 2019, 15, 15–23. 10.1080/17425255.2019.1554055. PubMed DOI
Lener J.; Bíbr B. Effects of molybdenum on the organism (a review). J. Hyg., Epidemiol., Microbiol., Immunol. 1984, 28 (4), 405–419. PubMed
Krasilnikova A. A.; Solovieva A. O.; Ivanov A. A.; Trifonova K. E.; Pozmogova T. N.; Tsygankova A. R.; Smolentsev A. I.; Kretov E. I.; Sergeevichev D. S.; Shestopalov M. A.; Mironov Y. V.; Shestopalov A. M.; Poveshchenko A. F.; Shestopalova L. V. Comprehensive Study of Hexarhenium Cluster Complex Na4[{Re6Te8}(CN)6] – In Terms of a New Promising Luminescent and X-Ray Contrast Agent. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 755–763. 10.1016/j.nano.2016.10.016. PubMed DOI