Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients

. 2022 Oct 14 ; 13 (10) : . [epub] 20221014

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36292740

Reaching critically short telomeres induces cellular senescence and ultimately cell death. Cellular senescence contributes to the loss of tissue function. We aimed to determine the association between variants within genes involved in telomere length maintenance, posttransplant events, and aortic telomere length in heart transplant patients. DNA was isolated from paired aortic samples of 383 heart recipients (age 50.7 ± 11.9 years) and corresponding donors (age 38.7 ± 12.0 years). Variants within the TERC (rs12696304), TERF2IP (rs3784929 and rs8053257), and OBCF1 (rs4387287) genes were genotyped, and telomere length was measured using qPCR. We identified similar frequencies of genotypes in heart donors and recipients. Antibody-mediated rejection (AMR) was more common (p < 0.05) in carriers of at least one G allele within the TERF2IP locus (rs3784929). Chronic graft dysfunction (CGD) was associated with the TERC (rs12696304) GG donor genotype (p = 0.05). The genetic risk score did not determine posttransplant complication risk prediction. No associations between the analyzed polymorphisms and telomere length were detected in either donor or recipient DNA. In conclusion, possible associations between donor TERF2IP (rs3784929) and AMR and between TERC (rs12696304) and CGD were found. SNPs within the examined genes were not associated with telomere length in transplanted patients.

Zobrazit více v PubMed

Colvin-Adams M., Harcourt N., Duprez D. Endothelial dysfunction and cardiac allograft vasculopathy. J. Cardiovasc. Transl. Res. 2013;6:263–277. doi: 10.1007/s12265-012-9414-3. PubMed DOI

López-Sainz Á., Barge-Caballero E., Barge-Caballero G., Couto-Mallón D., Paniagua-Martin M.J., Seoane-Quiroga L., Iglesias-Gil C., Herrera-Noreña J.M., Cuenca-Castillo J.J., Vázquez-Rodríguez J.M., et al. Late graft failure in heart transplant recipients: Incidence, risk factors and clinical outcomes. Eur. J. Heart Fail. 2018;20:385–394. doi: 10.1002/ejhf.886. PubMed DOI

Aschacher T., Salameh O., Enzmann F., Messner B., Bergmann M. Telomere biology and thoracic aortic aneurysm. Int. J. Mol. Sci. 2017;19:3. doi: 10.3390/ijms19010003. PubMed DOI PMC

Blackburn E.H. Switching and signaling at the telomere. Cell. 2001;106:661–673. doi: 10.1016/S0092-8674(01)00492-5. PubMed DOI

Saliques S., Zeller M., Lorin J., Lorgis L., Teyssier J.R., Cottin Y., Rochette L., Vergely C. Telomere length and cardiovascular disease. Arch. Cardiovasc. Dis. 2010;103:454–459. doi: 10.1016/j.acvd.2010.08.002. PubMed DOI

Saliques S., Teyssier J.R., Vergely C., Lorgis L., Lorin J., Farnier M., Donzel A., Sicard P., Berchoud J., Lagrost A.C., et al. Circulating leukocyte telomere length and oxidative stress: A new target for statin therapy. Atherosclerosis. 2011;219:753–760. doi: 10.1016/j.atherosclerosis.2011.09.011. PubMed DOI

Soerensen M., Thinggaard M., Nygaard M., Dato S., Tan Q., Hjelmborg J., Andersen-Ranberg K., Stevnsner T., Bohr V.A., Kimura M., et al. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: A cross-sectional and longitudinal analysis. Aging Cell. 2012;11:223–227. doi: 10.1111/j.1474-9726.2011.00775.x. PubMed DOI PMC

Burnett-Hartman A.N., Fitzpatrick A.L., Kronmal R.A., Psaty B.M., Jenny N.S., Bis J.C., Tracy R.P., Kimura M., Aviv A. Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: The Cardiovascular Health Study. Mech. Ageing Dev. 2012;133:275–281. doi: 10.1016/j.mad.2012.03.002. PubMed DOI PMC

Maubaret C.G., Salpea K.D., Romanoski C.E., Folkersen L., Cooper J.A., Stephanou C., Li K.W., Palmen J., Hamsten A., Neil A., et al. Association of TERC and OBFC1 haplotypes with mean leukocyte telomere length and risk for coronary heart disease. PLoS ONE. 2013;8:e83122. doi: 10.1371/journal.pone.0083122. PubMed DOI PMC

Cui G., Sun J., Zhang L., Li R., Wang Y., Cianflone K., Ding H., Wang D.W. Lack of causal relationship between leukocyte telomere length and coronary heart disease. Atherosclerosis. 2014;233:375–380. doi: 10.1016/j.atherosclerosis.2014.01.008. PubMed DOI

Al Khaldi R., Mojiminiyi O., AlMulla F., Abdella N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of type 2 diabetes mellitus. PLoS ONE. 2015;10:e0145721. doi: 10.1371/journal.pone.0145721. PubMed DOI PMC

Dlouha D., Pitha J., Mesanyova J., Mrazkova J., Fellnerova A., Stanek V., Lanska V., Hubacek J.A. Genetic variants within telomere associated genes, leukocyte telomere length and the risk of acute coronary syndrome in Czech women. Clin. Chim. Acta. 2016;454:62–65. doi: 10.1016/j.cca.2015.12.041. PubMed DOI

Njajou O.T., Blackburn E.H., Pawlikowska L., Mangino M., Damcott C.M., Kwok P.Y., Spector T.D., Newman A.B., Harris T.B., Cummings S.R., et al. A common variant in the telomerase RNA component is associated with short telomere length. PLoS ONE. 2010;5:e13048. doi: 10.1371/journal.pone.0013048. PubMed DOI PMC

Shen Q., Zhang Z., Yu L., Cao L., Zhou D., Kan M., Li B., Zhang D., He L., Liu Y. Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur. J. Hum. Genet. 2011;19:721–723. doi: 10.1038/ejhg.2011.4. PubMed DOI PMC

Jones A.M., Beggs A.D., Carvajal-Carmona L., Farrington S., Tenesa A., Walker M., Howarth K., Ballereau S., Hodgson S.V., Zauber A., et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut. 2012;61:248–254. doi: 10.1136/gut.2011.239772. PubMed DOI PMC

Li Y., Cheang I., Zhang Z., Yao W., Zhou Y., Zhang H., Liu Y., Zuo X., Li X., Cao Q. Prognostic association of TERC, TERT gene polymorphism, and leukocyte telomere length in acute heart failure: A prospective study. Front. Endocrinol. 2021;12:650922. doi: 10.3389/fendo.2021.650922. PubMed DOI PMC

Crocco P., Barale R., Rose G., Rizzato C., Santoro A., De Rango F., Carrai M., Fogar P., Monti D., Biondi F., et al. Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. Biogerontology. 2015;16:353–364. doi: 10.1007/s10522-015-9551-6. PubMed DOI

Zee R.Y., Ridker P.M., Chasman D.I. Genetic variants in eleven telomere-associated genes and the risk of incident cardio/cerebrovascular disease: The Women’s Genome Health Study. Clin. Chim. Acta. 2011;412:199–202. doi: 10.1016/j.cca.2010.10.003. PubMed DOI PMC

Almén M.S., Jacobsson J.A., Moschonis G., Benedict C., Chrousos G.P., Fredriksson R., Schiöth H.B. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics. 2012;99:132–137. doi: 10.1016/j.ygeno.2011.12.007. PubMed DOI

Levy D., Neuhausen S.L., Hunt S.C., Kimura M., Hwang S.J., Chen W., Bis J.C., Fitzpatrick A.L., Smith E., Johnson A.D., et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc. Natl. Acad. Sci. USA. 2010;107:9293–9298. doi: 10.1073/pnas.0911494107. PubMed DOI PMC

Lee J.H., Cheng R., Honig L.S., Feitosa M., Kammerer C.M., Kang M.S., Schupf N., Lin S.J., Sanders J.L., Bae H., et al. Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21 associated with variation in leukocyte telomere length: The Long Life Family Study. Front. Genet. 2014;4:310. doi: 10.3389/fgene.2013.00310. PubMed DOI PMC

Hubacek J.A., Vymetalova J., Lanska V., Dlouha D. The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin. Transpl. 2018;32:e13443. doi: 10.1111/ctr.13443. PubMed DOI

Dlouha D., Vymetalova J., Hubacek J.A., Lanska V., Malek I. Association between aortic telomere length and cardiac post-transplant allograft function. Int. J. Cardiol. 2019;290:129–133. doi: 10.1016/j.ijcard.2019.05.006. PubMed DOI

Rothman D.J., Rose E., Awaya T., Cohen B., Daar A., Dzemeshkevich S.L., Lee C.J., Munro R., Reyes H., Rothman S.M., et al. The Bellagio Task Force report on transplantation, bodily integrity, and the International Traffic in Organs. Transpl. Proc. 1997;29:2739–2745. doi: 10.1016/S0041-1345(97)00577-0. PubMed DOI

Stewart S., Winters G.L., Fishbein M.C., Tazelaar H.D., Kobashigawa J., Abrams J., Andersen C.B., Angelini A., Berry G.J., Burke M.M., et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019. PubMed DOI

Berry G.J., Burke M.M., Andersen C., Bruneval P., Fedrigo M., Fishbein M.C., Goddard M., Hammond E.H., Leone O., Marboe C., et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transpl. 2013;32:1147–1162. doi: 10.1016/j.healun.2013.08.011. PubMed DOI

Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC

Salpea K.D., Nicaud V., Tiret L., Talmud P.J., Humphries S.E., EARS II group The association of telomere length with paternal history of premature myocardial infarction in the European Atherosclerosis Research Study II. J. Mol. Med. 2008;86:815–824. doi: 10.1007/s00109-008-0347-x. PubMed DOI PMC

Dlouha D., Maluskova J., Kralova Lesna I., Lanska V., Hubacek J.A. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiol. Res. 2014;63:S343–S350. doi: 10.33549/physiolres.932856. PubMed DOI

Chih S., Chruscinski A., Ross H.J., Tinckam K., Butany J., Rao V. Antibody-mediated rejection: An evolving entity in heart transplantation. J. Transpl. 2012;2012:210210. doi: 10.1155/2012/210210. PubMed DOI PMC

Colvin M.M., Cook J.L., Chang P., Francis G., Hsu D.T., Kiernan M.S., Kobashigawa J.A., Lindenfeld J., Masri S.C., Miller D., et al. Antibody-mediated rejection in cardiac transplantation: Emerging knowledge in diagnosis and management: A scientific statement from the American Heart Association. Circulation. 2015;131:1608–1639. doi: 10.1161/CIR.0000000000000093. PubMed DOI

Mak T.W., Saunders M.E. Transplantation. In: Mak T.W., Saunders M.E., editors. The Immune Response. Academic Press; Cambridge, MA, USA: 2006. pp. 873–921. DOI

Jurk D., Wilson C., Passos J.F., Oakley F., Correia-Mělo C., Greaves L., Saretzki G., Fox C., Lawless C., Anderson R., et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2014;2:4172. doi: 10.1038/ncomms5172. PubMed DOI PMC

Koliada A.K., Krasnenkov D.S., Vaiserman A.M. Telomeric aging: Mitotic clock or stress indicator? Front. Genet. 2015;6:82. doi: 10.3389/fgene.2015.00082. PubMed DOI PMC

Kotla S., Vu H.T., Ko K.A., Wang Y., Imanishi M., Heo K.S., Fujii Y., Thomas T.N., Gi Y.J., Mazhar H., et al. Endothelial senescence is induced by phosphorylation and nuclear export of telomeric repeat binding factor 2-interacting protein. JCI Insight. 2019;4:e124867. doi: 10.1172/jci.insight.124867. PubMed DOI PMC

Singh S.S.A., Dalzell J.R., Berry C., Al-Attar N. Primary graft dysfunction after heart transplantation: A thorn amongst the roses. Heart Fail. Rev. 2019;24:805–820. doi: 10.1007/s10741-019-09794-1. PubMed DOI PMC

Subramani S., Aldrich A., Dwarakanath S., Sugawara A., Hanada S. Early Graft Dysfunction Following Heart Transplant: Prevention and Management. Semin. Cardiothorac. Vasc. Anesth. 2020;24:24–33. doi: 10.1177/1089253219867694. PubMed DOI

Weis M., Cooke J.P. Cardiac allograft vasculopathy and dysregulation of the NO synthase pathway. Arterioscler. Thromb. Vasc. Biol. 2003;23:567–575. doi: 10.1161/01.ATV.0000067060.31369.F9. PubMed DOI

Yin H., Akawi O., Fox S.A., Li F., O’Neil C., Balint B., Arpino J.M., Watson A., Wong J., Guo L., et al. Cardiac-referenced leukocyte telomere length and outcomes after cardiovascular surgery. JACC Basic Transl. Sci. 2018;3:591–600. doi: 10.1016/j.jacbts.2018.07.004. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...