Posttransplant Complications and Genetic Loci Involved in Telomere Maintenance in Heart Transplant Patients
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36292740
PubMed Central
PMC9601297
DOI
10.3390/genes13101855
PII: genes13101855
Knihovny.cz E-zdroje
- Klíčová slova
- SNP, genetic risk score, heart transplantation, rejection, telomere,
- MeSH
- DNA metabolismus MeSH
- dospělí MeSH
- genetické lokusy MeSH
- leukocyty metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- telomery * genetika MeSH
- transplantace srdce * škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
Reaching critically short telomeres induces cellular senescence and ultimately cell death. Cellular senescence contributes to the loss of tissue function. We aimed to determine the association between variants within genes involved in telomere length maintenance, posttransplant events, and aortic telomere length in heart transplant patients. DNA was isolated from paired aortic samples of 383 heart recipients (age 50.7 ± 11.9 years) and corresponding donors (age 38.7 ± 12.0 years). Variants within the TERC (rs12696304), TERF2IP (rs3784929 and rs8053257), and OBCF1 (rs4387287) genes were genotyped, and telomere length was measured using qPCR. We identified similar frequencies of genotypes in heart donors and recipients. Antibody-mediated rejection (AMR) was more common (p < 0.05) in carriers of at least one G allele within the TERF2IP locus (rs3784929). Chronic graft dysfunction (CGD) was associated with the TERC (rs12696304) GG donor genotype (p = 0.05). The genetic risk score did not determine posttransplant complication risk prediction. No associations between the analyzed polymorphisms and telomere length were detected in either donor or recipient DNA. In conclusion, possible associations between donor TERF2IP (rs3784929) and AMR and between TERC (rs12696304) and CGD were found. SNPs within the examined genes were not associated with telomere length in transplanted patients.
Cardio Center Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Statistical Unit Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Zobrazit více v PubMed
Colvin-Adams M., Harcourt N., Duprez D. Endothelial dysfunction and cardiac allograft vasculopathy. J. Cardiovasc. Transl. Res. 2013;6:263–277. doi: 10.1007/s12265-012-9414-3. PubMed DOI
López-Sainz Á., Barge-Caballero E., Barge-Caballero G., Couto-Mallón D., Paniagua-Martin M.J., Seoane-Quiroga L., Iglesias-Gil C., Herrera-Noreña J.M., Cuenca-Castillo J.J., Vázquez-Rodríguez J.M., et al. Late graft failure in heart transplant recipients: Incidence, risk factors and clinical outcomes. Eur. J. Heart Fail. 2018;20:385–394. doi: 10.1002/ejhf.886. PubMed DOI
Aschacher T., Salameh O., Enzmann F., Messner B., Bergmann M. Telomere biology and thoracic aortic aneurysm. Int. J. Mol. Sci. 2017;19:3. doi: 10.3390/ijms19010003. PubMed DOI PMC
Blackburn E.H. Switching and signaling at the telomere. Cell. 2001;106:661–673. doi: 10.1016/S0092-8674(01)00492-5. PubMed DOI
Saliques S., Zeller M., Lorin J., Lorgis L., Teyssier J.R., Cottin Y., Rochette L., Vergely C. Telomere length and cardiovascular disease. Arch. Cardiovasc. Dis. 2010;103:454–459. doi: 10.1016/j.acvd.2010.08.002. PubMed DOI
Saliques S., Teyssier J.R., Vergely C., Lorgis L., Lorin J., Farnier M., Donzel A., Sicard P., Berchoud J., Lagrost A.C., et al. Circulating leukocyte telomere length and oxidative stress: A new target for statin therapy. Atherosclerosis. 2011;219:753–760. doi: 10.1016/j.atherosclerosis.2011.09.011. PubMed DOI
Soerensen M., Thinggaard M., Nygaard M., Dato S., Tan Q., Hjelmborg J., Andersen-Ranberg K., Stevnsner T., Bohr V.A., Kimura M., et al. Genetic variation in TERT and TERC and human leukocyte telomere length and longevity: A cross-sectional and longitudinal analysis. Aging Cell. 2012;11:223–227. doi: 10.1111/j.1474-9726.2011.00775.x. PubMed DOI PMC
Burnett-Hartman A.N., Fitzpatrick A.L., Kronmal R.A., Psaty B.M., Jenny N.S., Bis J.C., Tracy R.P., Kimura M., Aviv A. Telomere-associated polymorphisms correlate with cardiovascular disease mortality in Caucasian women: The Cardiovascular Health Study. Mech. Ageing Dev. 2012;133:275–281. doi: 10.1016/j.mad.2012.03.002. PubMed DOI PMC
Maubaret C.G., Salpea K.D., Romanoski C.E., Folkersen L., Cooper J.A., Stephanou C., Li K.W., Palmen J., Hamsten A., Neil A., et al. Association of TERC and OBFC1 haplotypes with mean leukocyte telomere length and risk for coronary heart disease. PLoS ONE. 2013;8:e83122. doi: 10.1371/journal.pone.0083122. PubMed DOI PMC
Cui G., Sun J., Zhang L., Li R., Wang Y., Cianflone K., Ding H., Wang D.W. Lack of causal relationship between leukocyte telomere length and coronary heart disease. Atherosclerosis. 2014;233:375–380. doi: 10.1016/j.atherosclerosis.2014.01.008. PubMed DOI
Al Khaldi R., Mojiminiyi O., AlMulla F., Abdella N. Associations of TERC single nucleotide polymorphisms with human leukocyte telomere length and the risk of type 2 diabetes mellitus. PLoS ONE. 2015;10:e0145721. doi: 10.1371/journal.pone.0145721. PubMed DOI PMC
Dlouha D., Pitha J., Mesanyova J., Mrazkova J., Fellnerova A., Stanek V., Lanska V., Hubacek J.A. Genetic variants within telomere associated genes, leukocyte telomere length and the risk of acute coronary syndrome in Czech women. Clin. Chim. Acta. 2016;454:62–65. doi: 10.1016/j.cca.2015.12.041. PubMed DOI
Njajou O.T., Blackburn E.H., Pawlikowska L., Mangino M., Damcott C.M., Kwok P.Y., Spector T.D., Newman A.B., Harris T.B., Cummings S.R., et al. A common variant in the telomerase RNA component is associated with short telomere length. PLoS ONE. 2010;5:e13048. doi: 10.1371/journal.pone.0013048. PubMed DOI PMC
Shen Q., Zhang Z., Yu L., Cao L., Zhou D., Kan M., Li B., Zhang D., He L., Liu Y. Common variants near TERC are associated with leukocyte telomere length in the Chinese Han population. Eur. J. Hum. Genet. 2011;19:721–723. doi: 10.1038/ejhg.2011.4. PubMed DOI PMC
Jones A.M., Beggs A.D., Carvajal-Carmona L., Farrington S., Tenesa A., Walker M., Howarth K., Ballereau S., Hodgson S.V., Zauber A., et al. TERC polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut. 2012;61:248–254. doi: 10.1136/gut.2011.239772. PubMed DOI PMC
Li Y., Cheang I., Zhang Z., Yao W., Zhou Y., Zhang H., Liu Y., Zuo X., Li X., Cao Q. Prognostic association of TERC, TERT gene polymorphism, and leukocyte telomere length in acute heart failure: A prospective study. Front. Endocrinol. 2021;12:650922. doi: 10.3389/fendo.2021.650922. PubMed DOI PMC
Crocco P., Barale R., Rose G., Rizzato C., Santoro A., De Rango F., Carrai M., Fogar P., Monti D., Biondi F., et al. Population-specific association of genes for telomere-associated proteins with longevity in an Italian population. Biogerontology. 2015;16:353–364. doi: 10.1007/s10522-015-9551-6. PubMed DOI
Zee R.Y., Ridker P.M., Chasman D.I. Genetic variants in eleven telomere-associated genes and the risk of incident cardio/cerebrovascular disease: The Women’s Genome Health Study. Clin. Chim. Acta. 2011;412:199–202. doi: 10.1016/j.cca.2010.10.003. PubMed DOI PMC
Almén M.S., Jacobsson J.A., Moschonis G., Benedict C., Chrousos G.P., Fredriksson R., Schiöth H.B. Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics. 2012;99:132–137. doi: 10.1016/j.ygeno.2011.12.007. PubMed DOI
Levy D., Neuhausen S.L., Hunt S.C., Kimura M., Hwang S.J., Chen W., Bis J.C., Fitzpatrick A.L., Smith E., Johnson A.D., et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc. Natl. Acad. Sci. USA. 2010;107:9293–9298. doi: 10.1073/pnas.0911494107. PubMed DOI PMC
Lee J.H., Cheng R., Honig L.S., Feitosa M., Kammerer C.M., Kang M.S., Schupf N., Lin S.J., Sanders J.L., Bae H., et al. Genome wide association and linkage analyses identified three loci-4q25, 17q23.2, and 10q11.21 associated with variation in leukocyte telomere length: The Long Life Family Study. Front. Genet. 2014;4:310. doi: 10.3389/fgene.2013.00310. PubMed DOI PMC
Hubacek J.A., Vymetalova J., Lanska V., Dlouha D. The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin. Transpl. 2018;32:e13443. doi: 10.1111/ctr.13443. PubMed DOI
Dlouha D., Vymetalova J., Hubacek J.A., Lanska V., Malek I. Association between aortic telomere length and cardiac post-transplant allograft function. Int. J. Cardiol. 2019;290:129–133. doi: 10.1016/j.ijcard.2019.05.006. PubMed DOI
Rothman D.J., Rose E., Awaya T., Cohen B., Daar A., Dzemeshkevich S.L., Lee C.J., Munro R., Reyes H., Rothman S.M., et al. The Bellagio Task Force report on transplantation, bodily integrity, and the International Traffic in Organs. Transpl. Proc. 1997;29:2739–2745. doi: 10.1016/S0041-1345(97)00577-0. PubMed DOI
Stewart S., Winters G.L., Fishbein M.C., Tazelaar H.D., Kobashigawa J., Abrams J., Andersen C.B., Angelini A., Berry G.J., Burke M.M., et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J. Heart Lung Transpl. 2005;24:1710–1720. doi: 10.1016/j.healun.2005.03.019. PubMed DOI
Berry G.J., Burke M.M., Andersen C., Bruneval P., Fedrigo M., Fishbein M.C., Goddard M., Hammond E.H., Leone O., Marboe C., et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transpl. 2013;32:1147–1162. doi: 10.1016/j.healun.2013.08.011. PubMed DOI
Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Salpea K.D., Nicaud V., Tiret L., Talmud P.J., Humphries S.E., EARS II group The association of telomere length with paternal history of premature myocardial infarction in the European Atherosclerosis Research Study II. J. Mol. Med. 2008;86:815–824. doi: 10.1007/s00109-008-0347-x. PubMed DOI PMC
Dlouha D., Maluskova J., Kralova Lesna I., Lanska V., Hubacek J.A. Comparison of the relative telomere length measured in leukocytes and eleven different human tissues. Physiol. Res. 2014;63:S343–S350. doi: 10.33549/physiolres.932856. PubMed DOI
Chih S., Chruscinski A., Ross H.J., Tinckam K., Butany J., Rao V. Antibody-mediated rejection: An evolving entity in heart transplantation. J. Transpl. 2012;2012:210210. doi: 10.1155/2012/210210. PubMed DOI PMC
Colvin M.M., Cook J.L., Chang P., Francis G., Hsu D.T., Kiernan M.S., Kobashigawa J.A., Lindenfeld J., Masri S.C., Miller D., et al. Antibody-mediated rejection in cardiac transplantation: Emerging knowledge in diagnosis and management: A scientific statement from the American Heart Association. Circulation. 2015;131:1608–1639. doi: 10.1161/CIR.0000000000000093. PubMed DOI
Mak T.W., Saunders M.E. Transplantation. In: Mak T.W., Saunders M.E., editors. The Immune Response. Academic Press; Cambridge, MA, USA: 2006. pp. 873–921. DOI
Jurk D., Wilson C., Passos J.F., Oakley F., Correia-Mělo C., Greaves L., Saretzki G., Fox C., Lawless C., Anderson R., et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2014;2:4172. doi: 10.1038/ncomms5172. PubMed DOI PMC
Koliada A.K., Krasnenkov D.S., Vaiserman A.M. Telomeric aging: Mitotic clock or stress indicator? Front. Genet. 2015;6:82. doi: 10.3389/fgene.2015.00082. PubMed DOI PMC
Kotla S., Vu H.T., Ko K.A., Wang Y., Imanishi M., Heo K.S., Fujii Y., Thomas T.N., Gi Y.J., Mazhar H., et al. Endothelial senescence is induced by phosphorylation and nuclear export of telomeric repeat binding factor 2-interacting protein. JCI Insight. 2019;4:e124867. doi: 10.1172/jci.insight.124867. PubMed DOI PMC
Singh S.S.A., Dalzell J.R., Berry C., Al-Attar N. Primary graft dysfunction after heart transplantation: A thorn amongst the roses. Heart Fail. Rev. 2019;24:805–820. doi: 10.1007/s10741-019-09794-1. PubMed DOI PMC
Subramani S., Aldrich A., Dwarakanath S., Sugawara A., Hanada S. Early Graft Dysfunction Following Heart Transplant: Prevention and Management. Semin. Cardiothorac. Vasc. Anesth. 2020;24:24–33. doi: 10.1177/1089253219867694. PubMed DOI
Weis M., Cooke J.P. Cardiac allograft vasculopathy and dysregulation of the NO synthase pathway. Arterioscler. Thromb. Vasc. Biol. 2003;23:567–575. doi: 10.1161/01.ATV.0000067060.31369.F9. PubMed DOI
Yin H., Akawi O., Fox S.A., Li F., O’Neil C., Balint B., Arpino J.M., Watson A., Wong J., Guo L., et al. Cardiac-referenced leukocyte telomere length and outcomes after cardiovascular surgery. JACC Basic Transl. Sci. 2018;3:591–600. doi: 10.1016/j.jacbts.2018.07.004. PubMed DOI PMC