Lipidization as a tool toward peptide therapeutics
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38010881
PubMed Central
PMC10987053
DOI
10.1080/10717544.2023.2284685
Knihovny.cz E-zdroje
- Klíčová slova
- Peptide therapeutics, lipidization, structure modification, therapeutic lipopeptides,
- MeSH
- lipidy * chemie MeSH
- peptidy * chemie terapeutické užití MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- lipidy * MeSH
- peptidy * MeSH
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Zobrazit více v PubMed
Abbott NJ, Patabendige AAK, Dolman DEM, et al. (2010). Structure and function of the blood–brain barrier. Neurobiol Dis 37:1–16. doi: 10.1016/j.nbd.2009.07.030. PubMed DOI
Ahmadpour S, Hosseinimehr SJ. (2018). PASylation as a powerful technology for improving the pharmacokinetic properties of biopharmaceuticals. Curr Drug Deliv 15:331–41. doi: 10.2174/1567201814666171120122352. PubMed DOI
Ahrens VM, Bellmann-Sickert K, Beck-Sickinger AG. (2012). Peptides and peptide conjugates: therapeutics on the upward path. Future Med Chem 4:1567–86. doi: 10.4155/fmc.12.76. PubMed DOI
Alhassan AM, Abdullahi MI, Uba A, Umar A. (2014). Prenylation of aromatic secondary metabolites: a new frontier for development of novel drugs. Trop J Pharm Res 13:307–14. doi: 10.4314/tjpr.v13i2.22. DOI
Anderson PM, Tomaras M, Mcconnell K. (2010). Mifamurtide in osteosarcoma–a practical review. Drugs Today (Barc) 46:327–37. doi: 10.1358/dot.2010.46.5.1500076. PubMed DOI
Astrup A, Rössner S, VAN Gaal L, et al. (2009). Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374:1606–16. doi: 10.1016/S0140-6736(09)61375-1. PubMed DOI
Athanasiadou KI, Paschou SA, Stamatopoulos T, et al. (2022). Safety and efficacy of insulin detemir versus NPH in the treatment of diabetes during pregnancy: systematic review and meta-analysis of randomized controlled trials. Diabetes Res Clin Pract 190:110020. doi: 10.1016/j.diabres.2022.110020. PubMed DOI
Bando H, Iwatsuki N, Ogawa T, Sakamoto K. (2022). Investigation for daily profile of blood glucose by the administration of canagliflozin and xultophy (Ideglira). Int J Endocrinol Diabetes 5:129.
Battelino T, Rasmussen MH, DE Schepper J, GROUP, T. N.-S, et al. (2017). Somapacitan, a once-weekly reversible albumin-binding GH derivative, in children with GH deficiency: a randomized dose-escalation trial. Clin Endocrinol (Oxf) 87:350–8. & doi: 10.1111/cen.13409. PubMed DOI
Bednarek MA, Feighner SD, Pong SS, et al. (2000). Structure-function studies on the new growth hormone-releasing peptide, ghrelin: minimal sequence of ghrelin necessary for activation of growth hormone secretagogue receptor 1a. J Med Chem 43:4370–6. doi: 10.1021/jm0001727. PubMed DOI
Bennett CL, Spiegel DM, Macdougall IC, et al. (2012). A review of safety, efficacy, and utilization of erythropoietin, darbepoetin, and peginesatide for patients with cancer or chronic kidney disease: a report from the Southern Network on Adverse Reactions (SONAR). Seminars in thrombosis and hemostasis, 2012. Semin Thromb Hemost 38:783–96. doi: 10.1055/s-0032-1328884. PubMed DOI PMC
Bergmann NC, Davies MJ, Lingvay I, Knop FK. (2023). Semaglutide for the treatment of overweight and obesity: a review. Diabetes Obes Metab 25:18–35. doi: 10.1111/dom.14863. PubMed DOI PMC
Binder U, Skerra A. (2017). PASylation®: a versatile technology to extend drug delivery. Curr Opin Colloid Interf Sci 31:10–7. doi: 10.1016/j.cocis.2017.06.004. DOI
Biron E, Chatterjee J, Ovadia O, et al. (2008). Improving oral bioavailability of peptides by multiple N-methylation: somatostatin analogues. Angew Chem Int Ed Engl 47:2595–9. doi: 10.1002/anie.200705797. PubMed DOI
Bolze F, Morath V, Bast A, et al. (2016). Long-acting PASylated leptin ameliorates obesity by promoting satiety and preventing hypometabolism in leptin-deficient Lepob/ob mice. Endocrinology 157:233–44. doi: 10.1210/en.2015-1519. PubMed DOI
Botti G, Dalpiaz A, Pavan B. (2021). Targeting systems to the brain obtained by merging prodrugs, nanoparticles, and nasal administration. Pharmaceutics 13:1144. doi: 10.3390/pharmaceutics13081144. PubMed DOI PMC
Carmona G, Rodriguez A, Juarez D, et al. (2013). Improved protease stability of the antimicrobial peptide Pin2 substituted with D-amino acids. Protein J 32:456–66. doi: 10.1007/s10930-013-9505-2. PubMed DOI
Cohen DJ, Loertscher R, Rubin MF, et al. (1984). Cyclosporine: a new immunosuppressive agent for organ transplantation. Ann Intern Med 101:667–82. doi: 10.7326/0003-4819-101-5-667. PubMed DOI
Creanga A, Glenn TD, Mann RK, et al. (2012). Scube/You activity mediates release of dually lipid-modified Hedgehog signal in soluble form. Genes Dev 26:1312–25. doi: 10.1101/gad.191866.112. PubMed DOI PMC
DE Prins A, VAN Eeckhaut A, Smolders I, et al. (2020). Neuromedin U: an overview on peptidomimetic ligands and structural analogs. Curr Med Chem 27:6744–68. doi: 10.2174/0929867326666190916143028. PubMed DOI
Drucker DJ, Dritselis A, Kirkpatrick P. (2010). Liraglutide. Nat Rev Drug Discov 9:267–8. doi: 10.1038/nrd3148. PubMed DOI
DRUGBANK. (2019). Polymyxin B [Online]. DrugBank. Available at: https://go.drugbank.com/drugs/DB00781 [accessed].
DRUGS.COM. (2022). DDAVP Prescribing Information [Online]. Drugs.com. Available at: https://www.drugs.com/pro/ddavp.html#s-34090-1 [accessed 2008].
Eliaschewitz FG, Canani LH. (2021). Advances in GLP-1 treatment: focus on oral semaglutide. Diabetol Metab Syndr 13:99. doi: 10.1186/s13098-021-00713-9. PubMed DOI PMC
Erak M, Bellmann-Sickert K, Els-Heindl S, Beck-Sickinger AG. (2018). Peptide chemistry toolbox–transforming natural peptides into peptide therapeutics. Bioorg Med Chem 26:2759–65. doi: 10.1016/j.bmc.2018.01.012. PubMed DOI
Falutz J, Mamputu J-C, Potvin D, et al. (2010). Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab 95:4291–304. doi: 10.1210/jc.2010-0490. PubMed DOI
FDA. (2003). Cubicin (Daptomycin) Injection [Online]. FDA. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-572_Cubicin.cfm [accessed Sept 2003].
FDA. (2020). FDA approves weekly therapy for adults growth hormone deficiency [Online]. FDA. Available at: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-weekly-therapy-adult-growth-hormone-deficiency [accessed 09/01 2020].
FDA. (2021). FDA Approves New Drug Treatment for Chronic Weight Management, First SInce 2014 [Online]. FDA. Available at: https://www.fda.gov/news-events/press-announcements/fda-approves-new-drug-treatment-chronic-weight-management-first-2014 [Accessed 06/04/2021 2021].
Frampton JE. (2010). Mifamurtide: a review of its use in the treatment of osteosarcoma. Paediatr Drugs 12:141–53. doi: 10.2165/11204910-000000000-00000. PubMed DOI
Frías JP, Davies MJ, Rosenstock J, et al. (2021). Tirzepatide versus semaglutide once weekly in patients with type 2 diabetes. N Engl J Med 385:503–15. doi: 10.1056/NEJMoa2107519. PubMed DOI
Garrahy A, Thompson CJ. (2020). Management of central diabetes insipidus. Best Pract Res Clin Endocrinol Metab 34:101385. doi: 10.1016/j.beem.2020.101385. PubMed DOI
Garst EH, DAS T, Hang HC. (2021). Chemical approaches for investigating site-specific protein S-fatty acylation. Curr Opin Chem Biol 65:109–17. doi: 10.1016/j.cbpa.2021.06.004. PubMed DOI PMC
Gazdik M, O’Neill MT, Lopaticki S, et al. (2015). The effect of N-methylation on transition state mimetic inhibitors of the Plasmodium protease, plasmepsin V. Med Chem Commun 6:437–43. doi: 10.1039/C4MD00409D. DOI
Gilon C, Halle D, Chorev M, et al. (1991). Backbone cyclization: a new method for conferring conformational constraint on peptides. Biopolymers: Original Res Biomol 31:745–50. doi: 10.1002/bip.360310619. PubMed DOI
Goodwin D, Simerska P, Toth I. (2012). Peptides as therapeutics with enhanced bioactivity. Curr Med Chem 19:4451–61. doi: 10.2174/092986712803251548. PubMed DOI
Green BR, White KL, Mcdougle DR, et al. (2010). Introduction of lipidization–cationization motifs affords systemically bioavailable neuropeptide Y and neurotensin analogs with anticonvulsant activities. J Pept Sci 16:486–95. doi: 10.1002/psc.1266. PubMed DOI
Grunfeld C, Dritselis A, Kirkpatrick P. (2011). Tesamorelin. Nat Rev Drug Discov 10:95–6. doi: 10.1038/nrd3362. PubMed DOI
Hanna CC, Kriegesmann J, Dowman LJ, et al. (2022). Chemical synthesis and semisynthesis of lipidated proteins. Angew Chem Int Ed Engl 61:e202111266. doi: 10.1002/anie.202111266. PubMed DOI PMC
Hannoush RN, Sun J. (2010). The chemical toolbox for monitoring protein fatty acylation and prenylation. Nat Chem Biol 6:498–506. doi: 10.1038/nchembio.388. PubMed DOI
Harris JM, Chess RB. (2003). Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2:214–21. doi: 10.1038/nrd1033. PubMed DOI
Harris JM, Martin NE, Modi M. (2001). Pegylation. Clin Pharmacokinet 40:539–51. doi: 10.2165/00003088-200140070-00005. PubMed DOI
Havelund S, Plum A, Ribel U, et al. (2004). The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin. Pharm Res 21:1498–504. doi: 10.1023/b:pham.0000036926.54824.37. PubMed DOI
Heidary M, Khosravi AD, Khoshnood S, et al. (2017). Daptomycin. J Antimicrob Chemother 73:1–11. doi: 10.1093/jac/dkx349. PubMed DOI
Henikoff S, Henikoff JG. (1992). Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA 89:10915–9. doi: 10.1073/pnas.89.22.10915. PubMed DOI PMC
Hermansen K, Davies M. (2007). Does insulin detemir have a role in reducing risk of insulin-associated weight gain? Diabetes Obes Metab 9:209–17. doi: 10.1111/j.1463-1326.2006.00665.x. PubMed DOI
Hermanson T, Bennett CL, Macdougall IC. (2016). Peginesatide for the treatment of anemia due to chronic kidney disease–an unfulfilled promise. Expert Opin Drug Saf 15:1421–6. doi: 10.1080/14740338.2016.1218467. PubMed DOI PMC
Holubová M, Blechová M, Kákonová A, et al. (2018). In vitro and in vivo characterization of novel stable peptidic ghrelin analogs: beneficial effects in the settings of lipopolysaccharide-induced anorexia in mice. J Pharmacol Exp Ther 366:422–32. doi: 10.1124/jpet.118.249086. PubMed DOI
Holubová M, Hrubá L, Popelová A, et al. (2019). Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 144:377–87. doi: 10.1016/j.neuropharm.2018.11.002. PubMed DOI
Home P, Kurtzhals P. (2006). Insulin detemir: from concept to clinical experience. Expert Opin Pharmacother 7:325–43. doi: 10.1517/14656566.7.3.325. PubMed DOI
Hutchinson JA, Burholt S, Hamley IW, et al. (2018). The effect of lipidation on the self-assembly of the gut-derived peptide hormone PYY3–36. Bioconjug Chem 29:2296–308. doi: 10.1021/acs.bioconjchem.8b00286. PubMed DOI
Chatterjee J, Gilon C, Hoffman A, Kessler H. (2008). N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res 41:1331–42. doi: 10.1021/ar8000603. PubMed DOI
Chatterjee J, Rechenmacher F, Kessler H. (2013). N-methylation of peptides and proteins: an important element for modulating biological functions. Angew Chem Int Ed Engl 52:254–69. doi: 10.1002/anie.201205674. PubMed DOI
Chatterjee S, Mayor S. (2001). The GPI-anchor and protein sorting. Cell Mol Life Sci 58:1969–87. doi: 10.1007/PL00000831. PubMed DOI PMC
Checco JW, Zhang G, Yuan W-D, et al. (2018). Molecular and physiological characterization of a receptor for D-amino acid-containing neuropeptides. ACS Chem Biol 13:1343–52. doi: 10.1021/acschembio.8b00167. PubMed DOI PMC
Chen S, Gfeller D, Buth SA, et al. (2013). Improving binding affinity and stability of peptide ligands by substituting glycines with d-amino acids. Chembiochem 14:1316–22. doi: 10.1002/cbic.201300228. PubMed DOI
Christou GA, Katsiki N, Blundell J, et al. (2019). Semaglutide as a promising antiobesity drug. Obes Rev 20:805–15. doi: 10.1111/obr.12839. PubMed DOI
Iepsen EW, Torekov SS, Holst JJ. (2015). Liraglutide for type 2 diabetes and obesity: a 2015 update. Expert Rev Cardiovasc Ther 13:753–67. doi: 10.1586/14779072.2015.1054810. PubMed DOI
Ichimura Y, Kirisako T, Takao T, et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408:488–92. doi: 10.1038/35044114. PubMed DOI
Ikezawa H. (2002). Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25:409–17. doi: 10.1248/bpb.25.409. PubMed DOI
Ingallinella P, Bianchi E, Ladwa NA, et al. (2009). Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci USA 106:5801–6. doi: 10.1073/pnas.0901007106. PubMed DOI PMC
Jain A, Jain A, Gulbake A, et al. (2013). Peptide and protein delivery using new drug delivery systems. Critical Rev™ Therapeutic Drug Carrier Sys 30:293–329. PubMed
Janzen KM, Steuber TD, Nisly SA. (2016). GLP-1 agonists in type 1 diabetes mellitus. Ann Pharmacother 50:656–65. doi: 10.1177/1060028016651279. PubMed DOI
Jarosinski MA, Dhayalan B, Chen YS, et al. (2021). Structural principles of insulin formulation and analog design: a century of innovation. Mol Metab 52:101325. doi: 10.1016/j.molmet.2021.101325. PubMed DOI PMC
Jayaprakash NG, Surolia A. (2017). Role of glycosylation in nucleating protein folding and stability. Biochem J 474:2333–47. doi: 10.1042/BCJ20170111. PubMed DOI
Jevševar S, Kunstelj M, Porekar VG. (2010). PEGylation of therapeutic proteins. Biotechnol J 5:113–28. doi: 10.1002/biot.200900218. PubMed DOI
Johannsson G, Gordon MB, Højby Rasmussen M, et al. (2020). Once-weekly somapacitan is effective and well tolerated in adults with GH deficiency: a randomized phase 3 trial. J Clin Endocrinol Metab 105:e1358-76–e1376. doi: 10.1210/clinem/dgaa049. PubMed DOI PMC
Kadir RA, Lee CA, Sabin CA, et al. (2002). DDAVP nasal spray for treatment of menorrhagia in women with inherited bleeding disorders: a randomized placebo-controlled crossover study. Haemophilia 8:787–93. doi: 10.1046/j.1365-2516.2002.00678.x. PubMed DOI
Kalra S. (2013). Insulin degludec: a significant advancement in ultralong-acting basal insulin. Diabetes Ther 4:167–73. doi: 10.1007/s13300-013-0047-6. PubMed DOI PMC
Kalra S, Sahay R. (2020). A review on semaglutide: an oral glucagon-like peptide 1 receptor agonist in management of type 2 diabetes mellitus. Diabetes Ther 11:1965–82. doi: 10.1007/s13300-020-00894-y. PubMed DOI PMC
Karagiannis T, Avgerinos I, Liakos A, et al. (2022). Management of type 2 diabetes with the dual GIP/GLP-1 receptor agonist tirzepatide: a systematic review and meta-analysis. Diabetologia 65:1251–61. doi: 10.1007/s00125-022-05715-4. PubMed DOI PMC
Karanth L, Barua A, Kanagasabai S, Nair NS. (2019). Desmopressin acetate (DDAVP) for preventing and treating acute bleeds during pregnancy in women with congenital bleeding disorders. Cochrane Database Syst Rev 2:Cd009824. doi: 10.1002/14651858.CD009824.pub4. PubMed DOI PMC
Keating GM. (2013). Insulin degludec and insulin degludec/insulin aspart: a review of their use in the management of diabetes mellitus. Drugs 73:575–93. doi: 10.1007/s40265-013-0051-1. PubMed DOI
Knudsen L. (2010). Liraglutide: the therapeutic promise from animal models. Int J Clin Pract Suppl 64:4–11. doi: 10.1111/j.1742-1241.2010.02499.x. PubMed DOI
Knudsen LB, Nielsen PF, Huusfeldt PO, et al. (2000). Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem 43:1664–9. doi: 10.1021/jm9909645. PubMed DOI
Kojima M, Hosoda H, Date Y, et al. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402:656–60. doi: 10.1038/45230. PubMed DOI
Kořínková L, Holubová M, Neprašová B, et al. (2020). Synergistic effect of leptin and lipidized PrRP on metabolic pathways in ob/ob mice. J Mol Endocrinol 64:77–90. doi: 10.1530/JME-19-0188. PubMed DOI
Kowalczyk R, Harris PW, Williams GM, et al. (2017). Peptide lipidation–a synthetic strategy to afford peptide based therapeutics. Peptides and peptide-based biomaterials and their biomedical applications, 185–227. PubMed PMC
Kuneš J, Pražienková V, Popelová A, et al. (2016). Prolactin-releasing peptide: a new tool for obesity treatment. J Endocrinol 230:R51–8. doi: 10.1530/JOE-16-0046. PubMed DOI
LA Manna S, DI Natale C, Florio D, Marasco D. (2018). Peptides as therapeutic agents for inflammatory-related diseases. Int J Mol Sci 19:2714. doi: 10.3390/ijms19092714. PubMed DOI PMC
Lee WP, Lippe BM, LA Franchi SH, Kaplan SA. (1976). Vasopressin analog DDAVP in the treatment of diabetes insipidus. Am J Dis Child 130:166–9. doi: 10.1001/archpedi.1976.02120030056010. PubMed DOI
Linderoth L, Kofoed J, Kodra JT, et al. (2021). GLP-1 receptor agonists for the treatment of type 2 diabetes and obesity. Successful Drug Discovery, 87–110.
Lu J, Xu H, Xia J, et al. (2020). D-and unnatural amino acid substituted antimicrobial peptides with improved proteolytic resistance and their proteolytic degradation characteristics. Front Microbiol 11:563030. doi: 10.3389/fmicb.2020.563030. PubMed DOI PMC
Mahalakshmi R, Balaram P, et al. (2006). The use of D-amino acids in peptide design. In: Konno R., eds. D-amino acids: a new frontier in amino acid and protein research (1st edn). Hauppauge: Nova Science Publisher, 415–30.
Mahlapuu M, Björn C, Ekblom J. (2020). Antimicrobial peptides as therapeutic agents: opportunities and challenges. Crit Rev Biotechnol 40:978–92. doi: 10.1080/07388551.2020.1796576. PubMed DOI
Maletínská L, Maixnerová J, Matyšková R, et al. (2008). Synergistic effect of CART (cocaine- and amphetamine-regulated transcript) peptide and cholecystokinin on food intake regulation in lean mice. BMC Neurosci 9:101. doi: 10.1186/1471-2202-9-101. PubMed DOI PMC
Maletínská L, Nagelová V, Tichá A, et al. (2015). Novel lipidized analogs of prolactin-releasing peptide have prolonged half-lives and exert anti-obesity effects after peripheral administration. Int J Obes (Lond) 39:986–93. doi: 10.1038/ijo.2015.28. PubMed DOI
Maletínská L, Pýchová M, Holubová M, et al. (2012). Characterization of new stable ghrelin analogs with prolonged orexigenic potency. J Pharmacol Exp Ther 340:781–6. doi: 10.1124/jpet.111.185371. PubMed DOI
Markussen J, Havelund S, Kurtzhals P, et al. (1996). Soluble, fatty acid acylated insulins bind to albumin and show protracted action in pigs. Diabetologia 39:281–8. doi: 10.1007/BF00418343. PubMed DOI
Marso SP, Mcguire DK, Zinman B, et al. (2017). Efficacy and safety of degludec versus glargine in type 2 diabetes. N Engl J Med 377:723–32. doi: 10.1056/NEJMoa1615692. PubMed DOI PMC
Mateo MG, Gutiérrez MDM, Domingo P. (2011). Tesamorelin for the treatment of excess abdominal fat in HIV-1-infected patients with lipodystrophy. Expert Rev Endocrinol Metab 6:21–30. doi: 10.1586/eem.10.83. PubMed DOI
Mayor S, Riezman H. (2004). Sorting GPI-anchored proteins. Nat Rev Mol Cell Biol 5:110–20. doi: 10.1038/nrm1309. PubMed DOI
Mazarguil H, Gouardères C, Tafani J-AM, et al. (2001). Structure-activity relationships of neuropeptide FF: role of C-terminal regions. Peptides 22:1471–8. doi: 10.1016/s0196-9781(01)00468-5. PubMed DOI
Mcclements DJ. (2015). Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci 219:27–53. doi: 10.1016/j.cis.2015.02.002. PubMed DOI
Mehta A, Marso SP, Neeland I. (2017). Liraglutide for weight management: a critical review of the evidence. Obes Sci Pract 3:3–14. doi: 10.1002/osp4.84. PubMed DOI PMC
Mejuch T, Waldmann H. (2016). Synthesis of lipidated proteins. Bioconjug Chem 27:1771–83. doi: 10.1021/acs.bioconjchem.6b00261. PubMed DOI
Menacho-Melgar R, Decker JS, Hennigan JN, Lynch MD. (2019). A review of lipidation in the development of advanced protein and peptide therapeutics. J Control Release 295:1–12. doi: 10.1016/j.jconrel.2018.12.032. PubMed DOI PMC
Meyers PA. (2009). Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther 9:1035–49. doi: 10.1586/era.09.69. PubMed DOI
Mikulášková B, Maletínská L, Zicha J, Kuneš J. (2016). The role of food intake regulating peptides in cardiovascular regulation. Mol Cell Endocrinol 436:78–92. doi: 10.1016/j.mce.2016.07.021. PubMed DOI
Mitchell JB, Smith J. (2003). D-amino acid residues in peptides and proteins. Proteins Struct Funct Bioinf 50:563–71. doi: 10.1002/prot.10320. PubMed DOI
Moffatt JH, Harper M, Boyce JD. (2019). Mechanisms of polymyxin resistance. Polymyxin antibiotics: From laboratory bench to bedside, 55–71. PubMed
Moharir A, Peck SH, Budden T, Lee SY. (2013). The role of N-glycosylation in folding, trafficking, and functionality of lysosomal protein CLN5. PLoS One 8:e74299. doi: 10.1371/journal.pone.0074299. PubMed DOI PMC
Molhoek EM, VAN Dijk A, Veldhuizen EJ, et al. (2011). Improved proteolytic stability of chicken cathelicidin-2 derived peptides by D-amino acid substitutions and cyclization. Peptides 32:875–80. doi: 10.1016/j.peptides.2011.02.017. PubMed DOI
Moll G, Kuipers A, DE Vries L, et al. (2009). A biological stabilization technology for peptide drugs: enzymatic introduction of thioether-bridges. Drug Discovery Today: Technol 6:e13–e18. doi: 10.1016/j.ddtec.2009.03.001. PubMed DOI
Morozov VG, Khavinson VK. (1997). Natural and synthetic thymic peptides as therapeutics for immune dysfunction. Int J Immunopharmacol 19:501–5. doi: 10.1016/s0192-0561(97)00058-1. PubMed DOI
Morrow T, Felcone LH. (2004). Defining the difference: what makes biologics unique. Biotechnol Healthc 1:24–9. PubMed PMC
Müller TD, Nogueiras R, Andermann ML, et al. (2015). Ghrelin. Mol Metab 4:437–60. doi: 10.1016/j.molmet.2015.03.005. PubMed DOI PMC
Ng SYA, Wilding JPH. (2014). Liraglutide in the treatment of obesity. Expert Opin Biol Ther 14:1215–24. doi: 10.1517/14712598.2014.925870. PubMed DOI
NOVONORDISK. (2020). FDA approves Saxenda® for the treatment of obesity in adolescents aged. 12–7. [Online]. Novo Nordisk. Available at: https://www.novonordisk-us.com/media/news-archive/news-details.html?id=39225
Ohtsubo K, Marth JD. (2006). Glycosylation in cellular mechanisms of health and disease. Cell 126:855–67. doi: 10.1016/j.cell.2006.08.019. PubMed DOI
Pardridge WM. (1992). Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol 71:3–10. doi: 10.1111/j.1600-0773.1992.tb00512.x. PubMed DOI
Pavan B, Dalpiaz A. (2011). Prodrugs and endogenous transporters: are they suitable tools for drug targeting into the central nervous system? Curr Pharm Des 17:3560–76. doi: 10.2174/138161211798194486. PubMed DOI
Peng T, Thinon E, Hang HC. (2016). Proteomic analysis of fatty-acylated proteins. Curr Opin Chem Biol 30:77–86. doi: 10.1016/j.cbpa.2015.11.008. PubMed DOI PMC
Popelová A, Kákonová A, Hrubá L, et al. (2018). Potential neuroprotective and anti-apoptotic properties of a long-lasting stable analog of ghrelin: an in vitro study using SH-SY5Y cells. Physiol Res 67:339–46. doi: 10.33549/physiolres.933761. PubMed DOI
Pražienková V, Holubová M, Pelantová H, et al. (2017). Impact of novel palmitoylated prolactin-releasing peptide analogs on metabolic changes in mice with diet-induced obesity. PLoS One 12:e0183449. doi: 10.1371/journal.pone.0183449. PubMed DOI PMC
Pražienková V, Popelová A, Kuneš J, Maletínská L. (2019). Prolactin-releasing peptide: physiological and pharmacological properties. Int J Mol Sci 20:5297. doi: 10.3390/ijms20215297. PubMed DOI PMC
Purkayastha A, Kang TJ. (2019). Stabilization of proteins by covalent cyclization. Biotechnol Bioproc E 24:702–12. doi: 10.1007/s12257-019-0363-4. DOI
Qvit N, Rubin SJ, Urban TJ, et al. (2017). Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 22:454–62. doi: 10.1016/j.drudis.2016.11.003. PubMed DOI PMC
Räder AF, Reichart F, Weinmüller M, Kessler H. (2018). Improving oral bioavailability of cyclic peptides by N-methylation. Bioorg Med Chem 26:2766–73. doi: 10.1016/j.bmc.2017.08.031. PubMed DOI
Reily C, Stewart TJ, Renfrow MB, Novak J. (2019). Glycosylation in health and disease. Nat Rev Nephrol 15:346–66. doi: 10.1038/s41581-019-0129-4. PubMed DOI PMC
Resh MD. (2016). Fatty acylation of proteins: the long and the short of it. Prog Lipid Res 63:120–31. doi: 10.1016/j.plipres.2016.05.002. PubMed DOI PMC
Roberts MJ, Bentley MD, Harris JM. (2002). Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev 54:459–76. doi: 10.1016/s0169-409x(02)00022-4. PubMed DOI
Rodbard HW, Buse JB, Woo V, et al. (2016). Benefits of combination of insulin degludec and liraglutide are independent of baseline glycated haemoglobin level and duration of type 2 diabetes. Diabetes Obes Metab 18:40–8. doi: 10.1111/dom.12574. PubMed DOI PMC
Santos JHPM, Torres-Obreque KM, Meneguetti GP, et al. (2018). Protein PEGylation for the design of biobetters: from reaction to purification processes. Braz J Pharm Sci 54:e01009. doi: 10.1590/s2175-97902018000001009. DOI
Sävendahl L, Battelino T, Brod M, et al. (2020). Once-weekly somapacitan vs daily GH in children with GH deficiency: results from a randomized phase 2 trial. J Clin Endocrinol Metab 105:e1847–e1861. doi: 10.1210/clinem/dgz310. PubMed DOI PMC
Sharma A, Kumar A, Abdel Monaim SA, et al. (2018). N-methylation in amino acids and peptides: scope and limitations. Biopolymers 109:e23110. doi: 10.1002/bip.23110. PubMed DOI
Scheen A, Mathieu C. (2018). Basal insulin degludec-liraglutide fixed ratio combination (Xultophy®). Rev Med Liege 73:526–32. PubMed
Scheen AJ. (2020). Oral semaglutide in Japanese versus non-Japanese patients with type 2 diabetes. Lancet Diabetes Endocrinol 8:350–2. doi: 10.1016/S2213-8587(20)30079-6. PubMed DOI
Sinclair AM, Elliott S. (2005). Glycoengineering: the effect of glycosylation on the properties of therapeutic proteins. J Pharm Sci 94:1626–35. doi: 10.1002/jps.20319. PubMed DOI
Solá RJ, Griebenow K. (2010). Glycosylation of therapeutic proteins. BioDrugs 24:9–21. doi: 10.2165/11530550-000000000-00000. PubMed DOI PMC
Spiro RG. (2002). Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56R. doi: 10.1093/glycob/12.4.43r. PubMed DOI
Stanley TL, Fourman LT, Feldpausch MN, et al. (2019). Effects of tesamorelin on non-alcoholic fatty liver disease in HIV: a randomised, double-blind, multicentre trial. Lancet HIV 6:e821–e830. doi: 10.1016/S2352-3018(19)30338-8. PubMed DOI PMC
Steensgaard DB, Schluckebier G, Strauss HM, et al. (2013). Ligand-controlled assembly of hexamers, dihexamers, and linear multihexamer structures by the engineered acylated insulin degludec. Biochemistry 52:295–309. doi: 10.1021/bi3008609. PubMed DOI
Steyn L. (2022). Xultophy. SA Pharmaceutical J 89:36–9.
Syed YY. (2022). Tirzepatide: first approval. Drugs 82:1213–20. doi: 10.1007/s40265-022-01746-8. PubMed DOI
Tan TM-M. (2023). Co-agonist therapeutics come of age for obesity. Nat Rev Endocrinol 19:66–7. doi: 10.1038/s41574-022-00788-y. PubMed DOI
Taylor SD, Palmer M. (2016). The action mechanism of daptomycin. Bioorg Med Chem 24:6253–68. doi: 10.1016/j.bmc.2016.05.052. PubMed DOI
Tedesco D, Haragsim L. (2012). Cyclosporine: a review. J Transplant 2012:230386–7. doi: 10.1155/2012/230386. PubMed DOI PMC
Tornesello AL, Tagliamonte M, Tornesello ML, et al. (2020). Nanoparticles to improve the efficacy of peptide-based cancer vaccines. Cancers (Basel) 12:1049. doi: 10.3390/cancers12041049. PubMed DOI PMC
Toutain P-L, Bousquet MA. (2004). Bioavailability and its assessment. J Vet Pharmacol Ther 27:455–66. doi: 10.1111/j.1365-2885.2004.00604.x. PubMed DOI
Tran H, Aihara E, Mohammed FA, et al. (2023). In vivo mechanism of action of sodium caprate for improving the intestinal absorption of a GLP1/GIP coagonist peptide. Mol Pharm 20:929–41. doi: 10.1021/acs.molpharmaceut.2c00443. PubMed DOI
Traynor K. (2015). Insulin degludec products approved for diabetes. Am J Health Syst Pharm 72:1834. doi: 10.2146/news150070. PubMed DOI
Trier S, Linderoth L, Bjerregaard S, et al. (2015). Acylation of salmon calcitonin modulates in vitro intestinal peptide flux through membrane permeability enhancement. Eur J Pharm Biopharm 96:329–337. doi: 10.1016/j.ejpb.2015.09.001. PubMed DOI
Vávra I, Machová A, Holecek V, et al. (1968). Effect of a synthetic analogue of vasopressin in animals and in patients with diabetes insipidus. Lancet 1:948–952. doi: 10.1016/s0140-6736(68)90904-5. PubMed DOI
Veronese FM. (2001). Peptide and protein PEGylation: a review of problems and solutions. Biomaterials 22:405–417. doi: 10.1016/s0142-9612(00)00193-9. PubMed DOI
Veronese FM, Mero A. (2008). The impact of PEGylation on biological therapies. BioDrugs 22:315–329. doi: 10.2165/00063030-200822050-00004. PubMed DOI
Veronese FM, Pasut G. (2005). PEGylation, successful approach to drug delivery. Drug Discov Today 10:1451–1458. doi: 10.1016/S1359-6446(05)03575-0. PubMed DOI
Walsh CT, Garneau-Tsodikova S, Gatto GJ. Jr (2005). Protein posttranslational modifications: the chemistry of proteome diversifications. Angew Chem Int Ed Engl 44:7342–7372. doi: 10.1002/anie.200501023. PubMed DOI
Wang J, Chow D, Heiati H, Shen W-C. (2003). Reversible lipidization for the oral delivery of salmon calcitonin. J Control Release 88:369–380. doi: 10.1016/s0168-3659(03)00008-7. PubMed DOI
Wang J, Wu D, Shen W-C. (2002). Structure-activity relationship of reversibly lipidized peptides: studies of fatty acid-desmopressin conjugates. Pharm Res 19:609–614. doi: 10.1023/a:1015397811161. PubMed DOI
Wang M, Casey PJ. (2016). Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol 17:110–122. doi: 10.1038/nrm.2015.11. PubMed DOI
Ward BP, Ottaway NL, Perez-Tilve D, et al. (2013). Peptide lipidation stabilizes structure to enhance biological function. Mol Metab 2:468–479. doi: 10.1016/j.molmet.2013.08.008. PubMed DOI PMC
Werle M, Bernkop-Schnürch A. (2006). Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids 30:351–67. doi: 10.1007/s00726-005-0289-3. PubMed DOI
Xu M, Kontinen VK, Panula P, Kalso E. (1999). Effects of (1DMe)NPYF, a synthetic neuropeptide FF analogue, in different pain models. Peptides 20:1071–1077. doi: 10.1016/s0196-9781(99)00100-x. PubMed DOI
Yadav D, Dewangan HK. (2021). PEGYLATION: an important approach for novel drug delivery system. J Biomater Sci Polym Ed 32:266–280. doi: 10.1080/09205063.2020.1825304. PubMed DOI
Yadav SC, Kumari A, Yadav R. (2011). Development of peptide and protein nanotherapeutics by nanoencapsulation and nanobioconjugation. Peptides 32:173–187. doi: 10.1016/j.peptides.2010.10.003. PubMed DOI
Zavascki AP, Goldani LZ, Li J, Nation RL. (2007). Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. J Antimicrob Chemother 60:1206–1215. doi: 10.1093/jac/dkm357. PubMed DOI
Zemenova J, Sykora D, Adamkova H, et al. (2017). Novel approach to determine ghrelin analogs by liquid chromatography with mass spectrometry using a monolithic column. J Sep Sci 40:1032–1039. doi: 10.1002/jssc.201601141. PubMed DOI
Zemenová J, Sýkora D, Freislebenová A, Maletínská L. (2017). LC–MS/MS analysis of lipidized analogs of prolactin-releasing peptide utilizing a monolithic column and simple sample preparation. Bioanalysis 9:1319–1328. doi: 10.4155/bio-2017-0125. PubMed DOI
Zhang FL, Casey PJ. (1996). Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269. doi: 10.1146/annurev.bi.65.070196.001325. PubMed DOI
Zhang L, Bulaj G. (2012). Converting peptides into drug leads by lipidation. Curr Med Chem 19:1602–1618. doi: 10.2174/092986712799945003. PubMed DOI
Zhang L, Lee HK, Pruess TH, et al. (2009). Synthesis and applications of polyamine amino acid residues: improving the bioactivity of an analgesic neuropeptide, neurotensin. J Med Chem 52:1514–7. doi: 10.1021/jm801481y. PubMed DOI PMC
Zhang Q, Li S, Wu W, et al. (2023). PASylation improves pharmacokinetic of liposomes and attenuates anti-PEG IgM production: an alternative to PEGylation. Nanomedicine 47:102622. doi: 10.1016/j.nano.2022.102622. PubMed DOI
Zhang R-Y, Thapa P, Espiritu MJ, et al. (2018). From nature to creation: going around in circles, the art of peptide cyclization. Bioorg Med Chem 26:1135–1150. doi: 10.1016/j.bmc.2017.11.017. PubMed DOI
Zhang Y, Liu, J, Yao J, Ji, et al. (2014). Obesity: pathophysiology and intervention. Nutrients 6:5153–5183. doi: 10.3390/nu6115153. PubMed DOI PMC
Zhu S, Guo Z. (2017). Chemical synthesis of GPI glycan–peptide conjugates by traceless Staudinger ligation. Org Lett 19:3063–3066. doi: 10.1021/acs.orglett.7b01132. PubMed DOI PMC
Zvonova EA, Ershov AV, Ershova OA, et al. (2017). PASylation technology improves recombinant interferon-β1b solubility, stability, and biological activity. Appl Microbiol Biotechnol 101:1975–1987. doi: 10.1007/s00253-016-7944-3. PubMed DOI