Large-scale genome-wide association study of 398,238 women unveils seven novel loci associated with high-grade serous epithelial ovarian cancer risk

. 2024 Mar 04 ; () : . [epub] 20240304

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38496424

Grantová podpora
R01 CA074850 NCI NIH HHS - United States
P50 CA105009 NCI NIH HHS - United States
P30 CA076292 NCI NIH HHS - United States
P50 CA116201 NCI NIH HHS - United States
R01 CA126841 NCI NIH HHS - United States
N02CP11019 NCI NIH HHS - United States
U10 CA180868 NCI NIH HHS - United States
U01 CA069417 NCI NIH HHS - United States
R03 CA130065 NCI NIH HHS - United States
R01 CA140323 NCI NIH HHS - United States
UM1 CA164973 NCI NIH HHS - United States
N01 CN025403 NCI NIH HHS - United States
R01 CA260132 NCI NIH HHS - United States
R01 CA176785 NCI NIH HHS - United States
N01 PC067010 NCI NIH HHS - United States
P50 CA159981 NCI NIH HHS - United States
P30 CA016056 NCI NIH HHS - United States
R01 CA087538 NCI NIH HHS - United States
R01 CA142996 NCI NIH HHS - United States
R00 CA256519 NCI NIH HHS - United States
RC4 CA153828 NCI NIH HHS - United States
P50 CA125183 NCI NIH HHS - United States
P01 CA087969 NCI NIH HHS - United States
R01 CA067262 NCI NIH HHS - United States
R01 CA106414 NCI NIH HHS - United States
P30 CA072720 NCI NIH HHS - United States
R01 CA095023 NCI NIH HHS - United States
P30 CA168524 NCI NIH HHS - United States
U01 CA161032 NCI NIH HHS - United States
UM1 CA176726 NCI NIH HHS - United States
K05 CA154337 NCI NIH HHS - United States
R37 CA070867 NCI NIH HHS - United States
R03 CA113148 NCI NIH HHS - United States
R01 CA058598 NCI NIH HHS - United States
K22 CA138563 NCI NIH HHS - United States
R01 CA058860 NCI NIH HHS - United States
R01 CA080742 NCI NIH HHS - United States
S10 RR025141 NCRR NIH HHS - United States
U10 CA027469 NCI NIH HHS - United States
R01 CA063678 NCI NIH HHS - United States
UL1 TR000124 NCATS NIH HHS - United States
K07 CA080668 NCI NIH HHS - United States
U01 CA116167 NCI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
23382 Cancer Research UK - United Kingdom
R01 CA214545 NCI NIH HHS - United States
R01 CA128978 NCI NIH HHS - United States
P30 CA014089 NCI NIH HHS - United States
U19 CA148537 NCI NIH HHS - United States
P30 CA051008 NCI NIH HHS - United States
R01 CA116167 NCI NIH HHS - United States
R01 CA083918 NCI NIH HHS - United States
R01 CA063464 NCI NIH HHS - United States
R03 CA115195 NCI NIH HHS - United States
U10 CA037517 NCI NIH HHS - United States
P20 GM130423 NIGMS NIH HHS - United States
UM1 CA186107 NCI NIH HHS - United States
R25 CA112486 NCI NIH HHS - United States
R01 CA054419 NCI NIH HHS - United States
R01 CA122443 NCI NIH HHS - United States
P30 CA015083 NCI NIH HHS - United States
N02CP65504 NCI NIH HHS - United States
R01 CA076016 NCI NIH HHS - United States
R01 CA054281 NCI NIH HHS - United States
U01 CA063464 NCI NIH HHS - United States
P30 CA016520 NCI NIH HHS - United States
R01 CA160669 NCI NIH HHS - United States
U01 CA058860 NCI NIH HHS - United States
R01 CA248288 NCI NIH HHS - United States
U01 CA164920 NCI NIH HHS - United States
R35 CA253187 NCI NIH HHS - United States
U19 CA148112 NCI NIH HHS - United States
R01 CA149429 NCI NIH HHS - United States
P01 CA017054 NCI NIH HHS - United States
Z01 ES044005 Intramural NIH HHS - United States
R01 CA142081 NCI NIH HHS - United States
U19 CA148065 NCI NIH HHS - United States
Wellcome Trust - United Kingdom
R01 CA049449 NCI NIH HHS - United States
R01 CA063682 NCI NIH HHS - United States
P30 CA062203 NCI NIH HHS - United States
Z01 ES049033 Intramural NIH HHS - United States
R01 CA192393 NCI NIH HHS - United States
K07 CA095666 NCI NIH HHS - United States
U10 CA180888 NCI NIH HHS - United States
R01 CA112523 NCI NIH HHS - United States
U10 CA180822 NCI NIH HHS - United States
U01 CA164973 NCI NIH HHS - United States
R37 CA054281 NCI NIH HHS - United States
P50 CA136393 NCI NIH HHS - United States

BACKGROUND: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). METHODS: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. RESULTS: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). CONCLUSIONS: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.

Adult Cancer Program Lowy Cancer Research Centre University of NSW Sydney Sydney New South Wales Australia

Aix Marseille Université INSERM IRD SESSTIM Marseille France

AnaNeo Therapeutics New York NY USA

Assuta Medical Center Tel Aviv Israel

Basser Center for BRCA Abramson Cancer Center University of Pennsylvania Philadelphia PA USA

BMC Faculty of Medicine University of Iceland Reykjavik Iceland

British Columbia's Ovarian Cancer Research Program BC Cancer Vancouver General Hospital and University of British Columbia Vancouver BC Canada

Cancer Epidemiology Division Cancer Council Victoria East Melbourne Victoria Australia

Cancer Epidemiology Division Cancer Council Victoria Melbourne Victoria Australia

Cancer Genetics and Prevention Program University of California San Francisco San Francisco CA USA

Cancer Genetics Group IPO Porto Research Center Porto Comprehensive Cancer Center Porto Portugal

Cancer Genetics Laboratory Peter MacCallum Cancer Centre Melbourne Victoria Australia

Cancer Prevention and Control Program Rutgers Cancer Institute of New Jersey New Brunswick NJ USA

Cancer Registry of Norway Norwegian Institute of Public Health Oslo Norway

Cancer Research Institute Ghent Ghent Belgium

Cancer Research UK Cambridge Institute University of Cambridge Cambridge UK

Carmel Medical Center Haifa Israel

Center for Bioinformatics and Functional Genomics Cedars Sinai Medical Center Los Angeles CA USA

Center for Clinical Cancer Genetics The University of Chicago Chicago IL USA

Center for Familial Breast and Ovarian Cancer Faculty of Medicine and University Hospital Cologne University of Cologne Cologne Germany

Center for Genomic Medicine Rigshospitalet Copenhagen University Hospital Copenhagen Denmark

Center for Integrated Oncology Faculty of Medicine and University Hospital Cologne University of Cologne Cologne Germany

Center for Medical Genetics NorthShore University HealthSystem Evanston IL USA

Centre for Cancer Biomarkers CCBIO Department of Clinical Science University of Bergen Bergen Norway

Centre for Cancer Genetic Epidemiology Department of Oncology University of Cambridge Cambridge UK

Centre for Cancer Genetic Epidemiology Department of Public Health and Primary Care University of Cambridge Cambridge UK

Centre for Cancer Research The Westmead Institute for Medical Research Sydney New South Wales Australia

Centre for Epidemiology and Biostatistics Melbourne School of Population and Global Health University of Melbourne Melbourne Victoria Australia

Centre for Medical Genetics Ghent University Gent Belgium

Centro de Investigación en Red de Enfermedades Raras Madrid Spain

Chronic Disease Epidemiology Yale School of Medicine New Haven CT USA

City of Hope Clinical Cancer Genetics Community Research Network Duarte CA USA

Clinical Cancer Epidemiology Institute of Cancer Research London UK

Clinical Cancer Genomics City of Hope Duarte CA USA

Clinical Cancer Research Center Aalborg University Hospital Aalborg Denmark

Clinical Genetics Guy's and St Thomas' NHS Foundation Trust London UK

Clinical Genetics Research Lab Department of Cancer Biology and Genetics Memorial Sloan Kettering Cancer Center New York NY USA

Clinical Genetics Service Department of Medicine Memorial Sloan Kettering Cancer Center New York NY USA

Clinical Genome Center Department of Clinical Research University of Southern Denmark Odense Denmark

David Geffen School of Medicine Department of Obstetrics and Gynecology University of California at Los Angeles Los Angeles CA USA

Département d'Anticipation et de Suivi des Cancers Oncogénétique Clinique Institut Paoli Calmettes Marseille France

Département de Biopathologie Centre François Baclesse Caen France

Department of Basic Sciences Shaukat Khanum Memorial Cancer Hospital and Research Centre Lahore Pakistan

Department of Biomedical Data Science Stanford University School of Medicine Stanford CA USA

Department of Biomolecular Medicine University of Ghent Ghent Belgium

Department of Breast Medical Oncology University of Texas MD Anderson Cancer Center Houston TX USA

Department of Cancer Biology and Genetics The Ohio State University Columbus OH USA

Department of Cancer Epidemiology and Genetics Masaryk Memorial Cancer Institute Brno Czech Republic

Department of Cancer Epidemiology Moffitt Cancer Center Tampa FL USA

Department of Clinical Genetics Fox Chase Cancer Center Philadelphia PA USA

Department of Clinical Genetics Helsinki University Hospital University of Helsinki Helsinki Finland

Department of Clinical Genetics Maastricht University Medical Center Maastricht The Netherlands

Department of Clinical Genetics Odense University Hospital Odense Denmark

Department of Clinical Genetics Rigshospitalet Copenhagen University Hospital Copenhagen Denmark

Department of Clinical Medicine Aalborg University Aalborg Denmark

Department of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark

Department of Clinical Pathology Melbourne Medical School University of Melbourne Parkville Victoria Australia

Department of Computational Biomedicine Cedars Sinai Medical Center Los Angeles CA USA

Department of Epidemiology and Population Sciences Stanford University School of Medicine Stanford University Stanford CA USA

Department of Epidemiology Colorado School of Public Health University of Colorado Aurora CO USA

Department of Epidemiology Genetic Epidemiology Research Institute University of California Irvine Irvine CA USA

Department of Epidemiology Harvard T H Chan School of Public Health Boston MA USA

Department of Epidemiology University of Michigan School of Public Health Ann Arbor MI USA

Department of Epidemiology University of Texas MD Anderson Cancer Center Houston TX USA

Department of Epidemiology University of Washington Seattle WA USA

Department of Experimental and Clinical Biomedical Sciences 'Mario Serio' Medical Genetics Unit University of Florence Florence Italy

Department of Genetics and Computational Biology QIMR Berghofer Medical Research Institute Brisbane Queensland Australia

Department of Genetics and Genomic Sciences Icahn School of Medicine at Mount Sinai New York NY USA

Department of Genetics and Pathology Pomeranian Medical University Szczecin Poland

Department of Gynaecological Oncology Westmead Hospital Sydney New South Wales Australia

Department of Gynecologic Oncology Duke University Hospital Durham NC USA

Department of Gynecology and Gynecologic Oncology Kliniken Essen Mitte Essen Germany

Department of Health Science and Policy Icahn School of Medicine at Mount Sinai New York NY USA

Department of Human and Medical Genetics Faculty of Medicine Vilnius University Vilnius Lithuania

Department of Internal Medicine Division of Human Genetics The Ohio State University Columbus OH USA

Department of Internal Medicine Division of Medical Oncology University of Kansas Medical Center Westwood KS USA

Department of Internal Medicine Huntsman Cancer Institute University of Utah Health Salt Lake City UT USA

Department of Laboratory Genetics Portuguese Oncology Institute of Porto Porto Comprehensive Cancer Center Porto Portugal

Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN USA

Department of Medical Genetics National Institute for Health Research Cambridge Biomedical Research Centre University of Cambridge Cambridge UK

Department of Medical Oncology Family Cancer Clinic Erasmus MC Cancer Institute Rotterdam The Netherlands

Department of Medical Oncology University Hospital of Vall d'Hebron Barcelona Spain

Department of Medicine Huntsman Cancer Institute University of Utah Health Salt Lake City UT USA

Department of Medicine Stanford University School of Medicine Stanford University Stanford CA USA

Department of Molecular Genetics National Institute of Oncology Budapest Hungary

Department of Molecular Genetics University of Toronto Toronto ON Canada

Department of Molecular Medicine Faculty of Medicine Université Laval Québec City QC Canada

Department of Molecular Oncology BC Cancer Research Centre Vancouver BC Canada

Department of Obstetrics and Gynecology Brigham and Women's Hospital Boston MA USA

Department of Obstetrics and Gynecology Haukeland University Hospital Bergen Norway

Department of Obstetrics and Gynecology Providence Medical Center Medford OR USA

Department of Obstetrics and Gynecology University of British Columbia Vancouver BC Canada

Department of Obstetrics and Gynecology Vanderbilt University Medical Center Nashville TN USA

Department of Obstetrics Gynecology and Reproductive Biology Harvard Medical School Boston MA USA

Department of Oncology Biobank National Institute of Oncology Budapest Hungary

Department of Oncology Institute of Clinical Sciences Sahlgrenska Academy University of Gothenburg Gothenburg Sweden

Department of Oncology Mayo Clinic Rochester MN USA

Department of Pathology and Laboratory Medicine Institute of Oncology and Maria Sklodowska Curie Cancer Center Warsaw Poland

Department of Pathology and Laboratory Medicine University of British Columbia Vancouver BC Canada

Department of Pathology and Laboratory Medicine University of Kansas Medical Center Kansas City KS USA

Department of Pathology and Molecular Immunology School of Medicine and Biomedical Sciences University of Porto Porto Portugal

Department of Pathology Landspitali the National University Hospital of Iceland Reykjavik Iceland

Department of Population and Public Health Sciences Keck School of Medicine University of Southern California Los Angeles CA USA

Department of Population and Public Health Sciences University of Southern California Los Angeles CA USA

Department of Population Sciences Beckman Research Institute of City of Hope Duarte CA USA

Department of Preventive Medicine Keck School of Medicine University of Southern California Norris Comprehensive Cancer Center Los Angeles CA USA

Department of Public Health Sciences University of Virginia Charlottesville VA USA

Department of Quantitative Health Sciences Mayo Clinic College of Medicine Rochester MN USA

Department of Radiation Oncology Hannover Medical School Hannover Germany

Department of Tumor Growth Biology N N Petrov Institute of Oncology St Petersburg Russia

Dept of OB GYN and Comprehensive Cancer Center Medical University of Vienna Vienna Austria

Division of Cancer and Ovarian Cancer Action Research Centre Department Surgery and Cancer Imperial College London London UK

Division of Cancer Epidemiology and Genetics National Cancer Institute Bethesda MD USA

Division of Cancer Epidemiology German Cancer Research Center Heidelberg Germany

Division of Cancer Prevention and Genetics IEO European Institute of Oncology IRCCS Milan Italy

Division of Gynecologic Oncology Department of Obstetrics and Gynecology Women's Cancer Program at the Samuel Oschin Cancer Institute Cedars Sinai Medical Center Los Angeles CA USA

Division of Gynecologic Oncology Department of Obstetrics Gynecology and Reproductive Sciences University of Pittsburgh School of Medicine Pittsburgh PA USA

Division of Gynecologic Oncology University Hospital Leuven Leuven Belgium

Epidemiology Branch National Institute of Environmental Health Sciences NIH Rockville MD USA

Escola de Doutoramento Internacional Universidade de Santiago Santiago de Compostela Spain

Faculty of Medicine and Health The University of Sydney Sydney New South Wales Australia

Familial Cancer Clinical Unit Human Cancer Genetics Programme Madrid Spain

Family Cancer Clinic The Netherlands Cancer Institute Antoni van Leeuwenhoek hospital Amsterdam The Netherlands

Fundación Pública Galega de Medicina Xenómica Santiago de Compostela Spain

Genetics Department Institut Curie Paris France

Genome Diagnostics Program IFOM the FIRC Institute of Molecular Oncology Milan Italy

Genomic Medicine Division of Evolution and Genomic Sciences The University of Manchester Manchester Academic Health Science Centre Manchester Universities Foundation Trust St Mary's Hospital Manchester UK

Genomic Medicine North West Genomics hub Manchester Academic Health Science Centre Manchester Universities Foundation Trust St Mary's Hospital Manchester UK

Genomics Center Centre Hospitalier Universitaire de Québec Université Laval Research Center Québec City QC Canada

Gynaecology Research Unit Hannover Medical School Hannover Germany

Health Informatics Institute Morsani College of Medicine University of South Florida Tampa FL USA

Hematology Oncology and Transfusion Medicine Center Oncogenetics Unit Vilnius University Hospital Santaros Clinics Vilnius Lithuania

Hereditary Cancer Genetics Group Vall d'Hebron Institute of Oncology Barcelona Spain

Hereditary Cancer Program IDIBELL Catalan Institute of Oncology Barcelona Spain

Hereditary Cancer Program Kaiser Permanente Northern California San Francisco CA USA

Human Genotyping Unit CeGen Spanish National Cancer Research Centre Madrid Spain

Immunology and Molecular Oncology Unit Veneto Institute of Oncology IOV IRCCS Padua Italy

Independent Laboratory of Molecular Biology and Genetic Diagnostics Pomeranian Medical University Szczecin Poland

Inserm U900 Paris France

Institut Curie Paris France

Institute for Medical Informatics Statistics and Epidemiology University of Leipzig Leipzig Germany

Institute of Cancer Sciences University of Glasgow Glasgow UK

Institute of Human Genetics University Hospital Heidelberg Heidelberg Germany

Instituto de Investigación Sanitaria de Santiago de Compostela Complejo Hospitalario Universitario de Santiago SERGAS Santiago de Compostela Spain

Jess and Mildred Fisher Center for Hereditary Cancer and Clinical Genomics Research Georgetown University Washington DC USA

Leuven Cancer Institute University of Leuven Leuven Belgium

Lombardi Comprehensive Cancer Center Georgetown University Washington DC USA

Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto Canada

Magee Womens Hospital University of Pittsburgh School of Medicine Pittsburgh PA USA

Medical Birth Registry of Norway Norwegian Institute of Public Health Norway

Medical Genetics Unit St George's University of London London UK

Mines ParisTech Fontainebleau France

Molecular Diagnostics Aalborg University Hospital Aalborg Denmark

Molecular Diagnostics Laboratory INRASTES National Centre for Scientific Research 'Demokritos' Athens Greece

Molecular Genetics of Breast Cancer German Cancer Research Center Heidelberg Germany

Molecular Oncology Laboratory CIBERONC Hospital Clinico San Carlos IdISSC Madrid Spain

MRC Clinical Trials Unit at UCL Institute of Clinical Trials and Methodology University College London London UK

MRC Integrative Epidemiology Unit University of Bristol Bristol UK

N N Alexandrov Research Institute of Oncology and Medical Radiology Minsk Belarus

National Cancer Institute Clinical Genetics Branch Division of Cancer Epidemiology and Genetics Bethesda MD USA

National Tumour Biology Laboratory National Institute of Oncology Budapest Hungary

Obstetrics and Gynecology Epidemiology Center Brigham and Women's Hospital and Harvard Medical School Boston MA USA

Parkville Familial Cancer Centre Peter MacCallum Cancer Center and the Royal Melbourne Hospital Melbourne Victoria Australia

Population Health Program QIMR Berghofer Medical Research Institute Brisbane Queensland Australia

Precision Medicine School of Clinical Sciences at Monash Health Monash University Clayton Victoria Australia

Princess Margaret Cancer Center Toronto Canada

ProCURE IDIBELL Catalan Institute of Oncology Barcelona Spain

ProCURE IDIBGI Catalan Institute of Oncology Girona Spain

Program in Cancer Genetics Departments of Human Genetics and Oncology McGill University Montréal QC Canada

Program in Epidemiology Division of Public Health Sciences Fred Hutchinson Cancer Center Seattle WA USA

Providence Cancer Center Medford OR USA

PSL Research University Paris France

Radboud Institute for Health Sciences Radboud University Medical Center Nijmegen The Netherlands

Roswell Park Comprehensive Cancer Center Buffalo NY USA

Sackler Faculty of Medicine Tel Aviv University Ramat Aviv Israel

Samuel Oschin Comprehensive Cancer Institute Cancer Prevention and Genetics Program Cedars Sinai Medical Center Los Angeles CA USA

School of Clinical Medicine Faculty of Medicine and Health University of NSW Sydney Sydney New South Wales Australia

Schools of Medicine and Public Health Division of Cancer Prevention and Control Research Jonsson Comprehensive Cancer Centre UCLA Los Angeles CA USA

Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia

SOD Genetica Molecolare University Hospital Pisa Italy

Spanish Network on Rare Diseases Madrid Spain

Stanford Cancer Institute Stanford University School of Medicine Stanford University Stanford CA USA

State Research Institute Centre for Innovative Medicine Vilnius Lithuania

Technion Israel Institute of Technology Haifa Israel

The Association for Promotion of Research in Precision Medicine Haifa Israel

The Daffodil Centre The University of Sydney a joint venture with Cancer Council NSW Sydney New South Wales Australia

The Susanne Levy Gertner Oncogenetics Unit Chaim Sheba Medical Center Ramat Gan Israel

The University of Chicago Pritzker School of Medicine Chicago IL USA

Ufa University of Science and Technology Ufa Russia

Unit of Medical Genetics Department of Medical Oncology and Hematology Fondazione IRCCS Istituto Nazionale dei Tumori di Milano Milan Italy

Unit of Molecular Bases of Genetic Risk and Genetic Testing Department of Research Fondazione IRCCS Istituto Nazionale dei Tumori Milan Italy

Unité INSERM U830 Paris France

Université Paris Cité Paris France

University Medical Center Groningen Department of Genetics University of Groningen Groningen The Netherlands

Veneto Institute of Oncology IOV IRCSS Italy

Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute Cedars Sinai Medical Center Los Angeles CA USA

Womens Cancer Research Center Magee Womens Research Institute and Hillman Cancer Center Pittsburgh PA USA

Zobrazit více v PubMed

Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209–249. DOI: 10.3322/caac.21660. PubMed DOI

Prat J. New insights into ovarian cancer pathology. Ann Oncol 2012;23 Suppl 10:x111–7. DOI: 10.1093/annonc/mds300. PubMed DOI

Peres LC, Cushing-Haugen KL, Kobel M, et al. Invasive Epithelial Ovarian Cancer Survival by Histotype and Disease Stage. J Natl Cancer Inst 2019;111(1):60–68. DOI: 10.1093/jnci/djy071. PubMed DOI PMC

Risch HA, McLaughlin JR, Cole DE, et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J Natl Cancer Inst 2006;98(23):1694–706. DOI: 10.1093/jnci/djj465. PubMed DOI

Risch HA, McLaughlin JR, Cole DE, et al. Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 2001;68(3):700–10. DOI: 10.1086/318787. PubMed DOI PMC

Shaw PA, McLaughlin JR, Zweemer RP, et al. Histopathologic features of genetically determined ovarian cancer. Int J Gynecol Pathol 2002;21(4):407–11. DOI: 10.1097/00004347-200210000-00011. PubMed DOI

Zhang S, Royer R, Li S, et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol Oncol 2011;121(2):353–7. DOI: 10.1016/j.ygyno.2011.01.020. PubMed DOI

Schrader KA, Hurlburt J, Kalloger SE, et al. Germline BRCA1 and BRCA2 mutations in ovarian cancer: utility of a histology-based referral strategy. Obstet Gynecol 2012;120(2 Pt 1):235–40. DOI: 10.1097/AOG.0b013e31825f3576. PubMed DOI

Wang YK, Bashashati A, Anglesio MS, et al. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat Genet 2017;49(6):856–865. DOI: 10.1038/ng.3849. PubMed DOI

Lakhani SR, Manek S, Penault-Llorca F, et al. Pathology of ovarian cancers in BRCA1 and BRCA2 carriers. Clin Cancer Res 2004;10(7):2473–81. DOI: 10.1158/1078-0432.ccr-1029-3. PubMed DOI

O’Mahony DG, Ramus SJ, Southey MC, et al. Ovarian cancer pathology characteristics as predictors of variant pathogenicity in BRCA1 and BRCA2. Br J Cancer 2023;128(12):2283–2294. DOI: 10.1038/s41416-023-02263-5. PubMed DOI PMC

Singh N, McCluggage WG, Gilks CB. High-grade serous carcinoma of tubo-ovarian origin: recent developments. Histopathology 2017;71(3):339–356. DOI: 10.1111/his.13248. PubMed DOI

Kobel M, Kalloger SE, Huntsman DG, et al. Differences in tumor type in low-stage versus high-stage ovarian carcinomas. Int J Gynecol Pathol 2010;29(3):203–11. DOI: 10.1097/PGP.0b013e3181c042b6. PubMed DOI

Song H, Ramus SJ, Tyrer J, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet 2009;41(9):996–1000. DOI: 10.1038/ng.424. PubMed DOI PMC

Bolton KL, Tyrer J, Song H, et al. Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet 2010;42(10):880–4. DOI: 10.1038/ng.666. PubMed DOI PMC

Goode EL, Chenevix-Trench G, Song H, et al. A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat Genet 2010;42(10):874–9. DOI: 10.1038/ng.668. PubMed DOI PMC

Bojesen SE, Pooley KA, Johnatty SE, et al. Multiple independent variants at the TERT locus are associated with telomere length and risks of breast and ovarian cancer. Nat Genet 2013;45(4):371–84, 384e1–2. DOI: 10.1038/ng.2566. PubMed DOI PMC

Permuth-Wey J, Lawrenson K, Shen HC, et al. Identification and molecular characterization of a new ovarian cancer susceptibility locus at 17q21.31. Nat Commun 2013;4:1627. DOI: 10.1038/ncomms2613. PubMed DOI PMC

Pharoah PD, Tsai YY, Ramus SJ, et al. GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat Genet 2013;45(4):362–70, 370e1–2. DOI: 10.1038/ng.2564. PubMed DOI PMC

Shen H, Fridley BL, Song H, et al. Epigenetic analysis leads to identification of HNF1B as a subtype-specific susceptibility gene for ovarian cancer. Nat Commun 2013;4:1628. DOI: 10.1038/ncomms2629. PubMed DOI PMC

Kuchenbaecker KB, Ramus SJ, Tyrer J, et al. Identification of six new susceptibility loci for invasive epithelial ovarian cancer. Nat Genet 2015;47(2):164–71. DOI: 10.1038/ng.3185. PubMed DOI PMC

Phelan CM, Kuchenbaecker KB, Tyrer JP, et al. Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nat Genet 2017;49(5):680–691. DOI: 10.1038/ng.3826. PubMed DOI PMC

Couch FJ, Wang X, McGuffog L, et al. Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk. PLoS Genet 2013;9(3):e1003212. DOI: 10.1371/journal.pgen.1003212. PubMed DOI PMC

Chen K, Ma H, Li L, et al. Genome-wide association study identifies new susceptibility loci for epithelial ovarian cancer in Han Chinese women. Nat Commun 2014;5:4682. DOI: 10.1038/ncomms5682. PubMed DOI

Kelemen LE, Lawrenson K, Tyrer J, et al. Genome-wide significant risk associations for mucinous ovarian carcinoma. Nat Genet 2015;47(8):888–97. DOI: 10.1038/ng.3336. PubMed DOI PMC

Kar SP, Beesley J, Amin Al Olama A, et al. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discov 2016;6(9):1052–67. DOI: 10.1158/2159-8290.CD-15-1227. PubMed DOI PMC

Lawrenson K, Kar S, McCue K, et al. Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus. Nat Commun 2016;7:12675. DOI: 10.1038/ncomms12675. PubMed DOI PMC

Genomes Project Consortium, Auton A, Brooks LD, et al. A global reference for human genetic variation. Nature 2015;526(7571):68–74. DOI: 10.1038/nature15393. PubMed DOI PMC

McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 2016;48(10):1279–83. DOI: 10.1038/ng.3643. PubMed DOI PMC

Taliun D, Harris DN, Kessler MD, et al. Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program. Nature 2021;590(7845):290–299. DOI: 10.1038/s41586-021-03205-y. PubMed DOI PMC

Das S, Forer L, Schonherr S, et al. Next-generation genotype imputation service and methods. Nat Genet 2016;48(10):1284–1287. DOI: 10.1038/ng.3656. PubMed DOI PMC

OCAC. Ovarian Cancer Association Consortium. (https://ocac.ccge.medschl.cam.ac.uk/).

Chenevix-Trench G, Milne RL, Antoniou AC, et al. An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res 2007;9(2):104. DOI: 10.1186/bcr1670. PubMed DOI PMC

CIMBA. Consortium of Investigators of Modifiers of BRCA1 & BRCA2. (https://cimba.ccge.medschl.cam.ac.uk/).

Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 2018;562(7726):203–209. DOI: 10.1038/s41586-018-0579-z. PubMed DOI PMC

Biobank U. UK Biobank. (https://www.ukbiobank.ac.uk/).

Kurki MI, Karjalainen J, Palta P, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023;613(7944):508–518. DOI: 10.1038/s41586-022-05473-8. PubMed DOI PMC

FinnGen. FinnGen. (https://www.finngen.fi/en).

Nagai A, Hirata M, Kamatani Y, et al. Overview of the BioBank Japan Project: Study design and profile. J Epidemiol 2017;27(3S):S2–S8. DOI: 10.1016/j.je.2016.12.005. PubMed DOI PMC

Japan B. BioBank Japan. (https://biobankjp.org/en/).

Consortium UK, Walter K, Min JL, et al. The UK10K project identifies rare variants in health and disease. Nature 2015;526(7571):82–90. DOI: 10.1038/nature14962. PubMed DOI PMC

UK10K. UK10K Project. (https://www.uk10k.org/).

Amos CI, Dennis J, Wang Z, et al. The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers. Cancer Epidemiol Biomarkers Prev 2017;26(1):126–135. DOI: 10.1158/1055-9965.EPI-16-0106. PubMed DOI PMC

Antoniou AC, Sinilnikova OM, Simard J, et al. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 2007;81(6):1186–200. DOI: 10.1086/522611. PubMed DOI PMC

Barnes DR, Lee A, Investigators E, kConFab I, Easton DF, Antoniou AC. Evaluation of association methods for analysing modifiers of disease risk in carriers of high-risk mutations. Genet Epidemiol 2012;36(3):274–91. DOI: 10.1002/gepi.21620. PubMed DOI

Lee A, Mavaddat N, Cunningham A, et al. Enhancing the BOADICEA cancer risk prediction model to incorporate new data on RAD51C, RAD51D, BARD1 updates to tumour pathology and cancer incidence. J Med Genet 2022;59(12):1206–1218. DOI: 10.1136/jmedgenet-2022-108471. PubMed DOI PMC

Antoniou AC, Wang X, Fredericksen ZS, et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population. Nat Genet 2010;42(10):885–92. DOI: 10.1038/ng.669. PubMed DOI PMC

Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26(17):2190–1. DOI: 10.1093/bioinformatics/btq340. PubMed DOI PMC

Yang J, Ferreira T, Morris AP, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet 2012;44(4):369–75, S1–3. DOI: 10.1038/ng.2213. PubMed DOI PMC

Wakefield J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am J Hum Genet 2007;81(2):208–27. DOI: 10.1086/519024. PubMed DOI PMC

Udler MS, Tyrer J, Easton DF. Evaluating the power to discriminate between highly correlated SNPs in genetic association studies. Genet Epidemiol 2010;34(5):463–8. DOI: 10.1002/gepi.20504. PubMed DOI

Dareng EO, Tyrer JP, Barnes DR, et al. Polygenic risk modeling for prediction of epithelial ovarian cancer risk. Eur J Hum Genet 2022;30(3):349–362. DOI: 10.1038/s41431-021-00987-7. PubMed DOI PMC

Tyrer JP, Peng P, DeVries AA, Gayther SA, Jones MR, Pharoah PD. Improving on polygenic scores across complex traits using select and shrink with summary statistics. medRxiv 2022:2022.09.13.22278911. DOI: 10.1101/2022.09.13.22278911. PubMed DOI PMC

Antoniou AC, Beesley J, McGuffog L, et al. Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. Cancer Res 2010;70(23):9742–54. DOI: 10.1158/0008-5472.CAN-10-1907. PubMed DOI PMC

UK CR. Cancer Research UK: Ovarian Cancer incidence by age. (https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/ovarian-cancer/incidence#heading-One).

Kuchenbaecker KB, Hopper JL, Barnes DR, et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017;317(23):2402–2416. DOI: 10.1001/jama.2017.7112. PubMed DOI

Huang L, Rosen JD, Sun Q, et al. TOP-LD: A tool to explore linkage disequilibrium with TOPMed whole-genome sequence data. Am J Hum Genet 2022;109(6):1175–1181. DOI: 10.1016/j.ajhg.2022.04.006. PubMed DOI PMC

Xiao R, Boehnke M. Quantifying and correcting for the winner’s curse in genetic association studies. Genet Epidemiol 2009;33(5):453–62. DOI: 10.1002/gepi.20398. PubMed DOI PMC

Zhang H, Ahearn TU, Lecarpentier J, et al. Genome-wide association study identifies 32 novel breast cancer susceptibility loci from overall and subtype-specific analyses. Nat Genet 2020;52(6):572–581. DOI: 10.1038/s41588-020-0609-2. PubMed DOI PMC

Stacey SN, Sulem P, Jonasdottir A, et al. A germline variant in the TP53 polyadenylation signal confers cancer susceptibility. Nat Genet 2011;43(11):1098–103. DOI: 10.1038/ng.926. PubMed DOI PMC

Stacey SN, Sulem P, Gudbjartsson DF, et al. Germline sequence variants in TGM3 and RGS22 confer risk of basal cell carcinoma. Hum Mol Genet 2014;23(11):3045–53. DOI: 10.1093/hmg/ddt671. PubMed DOI PMC

Stacey SN, Helgason H, Gudjonsson SA, et al. New basal cell carcinoma susceptibility loci. Nat Commun 2015;6:6825. DOI: 10.1038/ncomms7825. PubMed DOI PMC

Chahal HS, Wu W, Ransohoff KJ, et al. Genome-wide association study identifies 14 novel risk alleles associated with basal cell carcinoma. Nat Commun 2016;7:12510. DOI: 10.1038/ncomms12510. PubMed DOI PMC

Di Giovannantonio M, Harris BH, Zhang P, et al. Heritable genetic variants in key cancer genes link cancer risk with anthropometric traits. J Med Genet 2021;58(6):392–399. DOI: 10.1136/jmedgenet-2019-106799. PubMed DOI PMC

Melin BS, Barnholtz-Sloan JS, Wrensch MR, et al. Genome-wide association study of glioma subtypes identifies specific differences in genetic susceptibility to glioblastoma and non-glioblastoma tumors. Nat Genet 2017;49(5):789–794. DOI: 10.1038/ng.3823. PubMed DOI PMC

Egan KM, Nabors LB, Olson JJ, et al. Rare TP53 genetic variant associated with glioma risk and outcome. J Med Genet 2012;49(7):420–1. DOI: 10.1136/jmedgenet-2012-100941. PubMed DOI PMC

Enciso-Mora V, Hosking FJ, Di Stefano AL, et al. Low penetrance susceptibility to glioma is caused by the TP53 variant rs78378222. Br J Cancer 2013;108(10):2178–85. DOI: 10.1038/bjc.2013.155. PubMed DOI PMC

Wang Z, Rajaraman P, Melin BS, et al. Further Confirmation of Germline Glioma Risk Variant rs78378222 in TP53 and Its Implication in Tumor Tissues via Integrative Analysis of TCGA Data. Hum Mutat 2015;36(7):684–8. DOI: 10.1002/humu.22799. PubMed DOI PMC

Conti DV, Darst BF, Moss LC, et al. Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nat Genet 2021;53(1):65–75. DOI: 10.1038/s41588-020-00748-0. PubMed DOI PMC

Li Y, Gordon MW, Xu-Monette ZY, et al. Single nucleotide variation in the TP53 3’ untranslated region in diffuse large B-cell lymphoma treated with rituximab-CHOP: a report from the International DLBCL Rituximab-CHOP Consortium Program. Blood 2013;121(22):4529–40. DOI: 10.1182/blood-2012-12-471722. PubMed DOI PMC

Bode AM, Dong Z. Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 2004;4(10):793–805. DOI: 10.1038/nrc1455. PubMed DOI

Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC. TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004(157):247–70. (https://www.ncbi.nlm.nih.gov/pubmed/15055300). PubMed

Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997;88(3):323–31. DOI: 10.1016/s0092-8674(00)81871-1. PubMed DOI

Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408(6810):307–10. DOI: 10.1038/35042675. PubMed DOI

Zhang P, Kitchen-Smith I, Xiong L, et al. Germline and Somatic Genetic Variants in the p53 Pathway Interact to Affect Cancer Risk, Progression, and Drug Response. Cancer Res 2021;81(7):1667–1680. DOI: 10.1158/0008-5472.CAN-20-0177. PubMed DOI PMC

Schildkraut JM, Goode EL, Clyde MA, et al. Single nucleotide polymorphisms in the TP53 region and susceptibility to invasive epithelial ovarian cancer. Cancer Res 2009;69(6):2349–57. DOI: 10.1158/0008-5472.CAN-08-2902. PubMed DOI PMC

GTEx. Genotype-Tissue Expression project. (https://gtexportal.org/home/).

Urbanek M, Legro RS, Driscoll DA, et al. Thirty-seven candidate genes for polycystic ovary syndrome: strongest evidence for linkage is with follistatin. Proc Natl Acad Sci U S A 1999;96(15):8573–8. DOI: 10.1073/pnas.96.15.8573. PubMed DOI PMC

Frandsen CLB, Svendsen PF, Nohr B, et al. Risk of epithelial ovarian tumors among women with polycystic ovary syndrome: A nationwide population-based cohort study. Int J Cancer 2023;153(5):958–968. DOI: 10.1002/ijc.34574. PubMed DOI

Harris HR, Cushing-Haugen KL, Webb PM, et al. Association between genetically predicted polycystic ovary syndrome and ovarian cancer: a Mendelian randomization study. Int J Epidemiol 2019;48(3):822–830. DOI: 10.1093/ije/dyz113. PubMed DOI PMC

Manichaikul A, Peres LC, Wang XQ, et al. Identification of novel epithelial ovarian cancer loci in women of African ancestry. Int J Cancer 2020;146(11):2987–2998. DOI: 10.1002/ijc.32653. PubMed DOI PMC

Lin CH, Vu JP, Yang CY, et al. Glutamate-cysteine ligase catalytic subunit as a therapeutic target in acute myeloid leukemia and solid tumors. Am J Cancer Res 2021;11(6):2911–2927. (https://www.ncbi.nlm.nih.gov/pubmed/34249435). PubMed PMC

Ogiwara H, Takahashi K, Sasaki M, et al. Targeting the Vulnerability of Glutathione Metabolism in ARID1A-Deficient Cancers. Cancer Cell 2019;35(2):177–190 e8. DOI: 10.1016/j.ccell.2018.12.009. PubMed DOI

Wu RC, Wang TL, Shih Ie M. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther 2014;15(6):655–64. DOI: 10.4161/cbt.28411. PubMed DOI PMC

Li W, Lv D, Yao J, et al. A pan-cancer analysis reveals the diagnostic and prognostic role of CDCA2 in low-grade glioma. PLOS ONE 2023;18(9):e0291024. DOI: 10.1371/journal.pone.0291024. PubMed DOI PMC

Veeriah S, Brennan C, Meng S, et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci U S A 2009;106(23):9435–40. DOI: 10.1073/pnas.0900571106. PubMed DOI PMC

Sherry ST, Ward M, Sirotkin K. dbSNP-database for single nucleotide polymorphisms and other classes of minor genetic variation. Genome Res 1999;9(8):677–9. (https://www.ncbi.nlm.nih.gov/pubmed/10447503). PubMed

Rafnar T, Gunnarsson B, Stefansson OA, et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nat Commun 2018;9(1):3636. DOI: 10.1038/s41467-018-05428-6. PubMed DOI PMC

Harris HR, Peres LC, Johnson CE, et al. Racial Differences in the Association of Endometriosis and Uterine Leiomyomas With the Risk of Ovarian Cancer. Obstet Gynecol 2023;141(6):1124–1138. DOI: 10.1097/AOG.0000000000005191. PubMed DOI PMC

Broggini M, Buraggi G, Brenna A, et al. Cell cycle-related phosphatases CDC25A and B expression correlates with survival in ovarian cancer patients. Anticancer Res 2000;20(6C):4835–40. (https://www.ncbi.nlm.nih.gov/pubmed/11205229). PubMed

Schraml P, Bucher C, Bissig H, et al. Cyclin E overexpression and amplification in human tumours. J Pathol 2003;200(3):375–82. DOI: 10.1002/path.1356. PubMed DOI

Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature 2011;474(7353):609–15. DOI: 10.1038/nature10166. PubMed DOI PMC

Goundiam O, Gestraud P, Popova T, et al. Histo-genomic stratification reveals the frequent amplification/overexpression of CCNE1 and BRD4 genes in non-BRCAness high grade ovarian carcinoma. Int J Cancer 2015;137(8):1890–900. DOI: 10.1002/ijc.29568. PubMed DOI

Kang EY, Weir A, Meagher NS, et al. CCNE1 and survival of patients with tubo-ovarian high-grade serous carcinoma: An Ovarian Tumor Tissue Analysis consortium study. Cancer 2023;129(5):697–713. DOI: 10.1002/cncr.34582. PubMed DOI PMC

Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012;490(7418):61–70. DOI: 10.1038/nature11412. PubMed DOI PMC

Curtis C, Shah SP, Chin SF, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012;486(7403):346–52. DOI: 10.1038/nature10983. PubMed DOI PMC

Jiang YZ, Ma D, Suo C, et al. Genomic and Transcriptomic Landscape of Triple-Negative Breast Cancers: Subtypes and Treatment Strategies. Cancer Cell 2019;35(3):428–440 e5. DOI: 10.1016/j.ccell.2019.02.001. PubMed DOI

Jones RM, Mortusewicz O, Afzal I, et al. Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress. Oncogene 2013;32(32):3744–53. DOI: 10.1038/onc.2012.387. PubMed DOI

Gallo D, Young JTF, Fourtounis J, et al. CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Nature 2022;604(7907):749–756. DOI: 10.1038/s41586-022-04638-9. PubMed DOI PMC

Lee A, Yang X, Tyrer J, et al. Comprehensive epithelial tubo-ovarian cancer risk prediction model incorporating genetic and epidemiological risk factors. J Med Genet 2022;59(7):632–643. DOI: 10.1136/jmedgenet-2021-107904. PubMed DOI PMC

Brnich SE, Abou Tayoun AN, Couch FJ, et al. Recommendations for application of the functional evidence PS3/BS3 criterion using the ACMG/AMP sequence variant interpretation framework. Genome Med 2019;12(1):3. DOI: 10.1186/s13073-019-0690-2. PubMed DOI PMC

Staley JR, Blackshaw J, Kamat MA, et al. PhenoScanner: a database of human genotype-phenotype associations. Bioinformatics 2016;32(20):3207–3209. DOI: 10.1093/bioinformatics/btw373. PubMed DOI PMC

Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinformatics 2019;35(22):4851–4853. DOI: 10.1093/bioinformatics/btz469. PubMed DOI PMC

PhenoScanner. PhenoScanner V2: A database of human genotype-phenotype associations. (http://www.phenoscanner.medschl.cam.ac.uk/).

PheWeb. PheWeb. (https://pheweb.org/UKB-TOPMed/).

Vosa U, Claringbould A, Westra HJ, et al. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat Genet 2021;53(9):1300–1310. DOI: 10.1038/s41588-021-00913-z. PubMed DOI PMC

eQTLGen. eQTLGen. (https://www.eqtlgen.org/).

Najít záznam

Citační ukazatele

Nahrávání dat ...