Antifungal Drugs
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LO1509
Ministerstvo Školství, Mládeže a Tělovýchovy
19-10907S
Grantová Agentura České Republiky
PubMed
32178468
PubMed Central
PMC7143493
DOI
10.3390/metabo10030106
PII: metabo10030106
Knihovny.cz E-zdroje
- Klíčová slova
- amphotericin B, antifungal drugs, echinocandins, flucytosine, invasive fungal infections, resistance, siderophores, triazoles,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
We reviewed the licensed antifungal drugs and summarized their mechanisms of action, pharmacological profiles, and susceptibility to specific fungi. Approved antimycotics inhibit 1,3-β-d-glucan synthase, lanosterol 14-α-demethylase, protein, and deoxyribonucleic acid biosynthesis, or sequestrate ergosterol. Their most severe side effects are hepatotoxicity, nephrotoxicity, and myelotoxicity. Whereas triazoles exhibit the most significant drug-drug interactions, echinocandins exhibit almost none. The antifungal resistance may be developed across most pathogens and includes drug target overexpression, efflux pump activation, and amino acid substitution. The experimental antifungal drugs in clinical trials are also reviewed. Siderophores in the Trojan horse approach or the application of siderophore biosynthesis enzyme inhibitors represent the most promising emerging antifungal therapies.
Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Pianalto K., Alspaugh J.A. New Horizons in Antifungal Therapy. J. Fungi. 2016;2:26. doi: 10.3390/jof2040026. PubMed DOI PMC
Hidden Crisis: How 150 People Die Every Hour from Fungal Infection While the World Turns a Blind Eye. [(accessed on 3 March 2020)]; Available online: https://www.gaffi.org/wp-content/uploads/GAFFI-Leaflet-June-2016-DWD-hidden-crisis.pdf.
Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. PubMed DOI PMC
Prakash H., Chakrabarti A. Global Epidemiology of Mucormycosis. J. Fungi. 2019;5:26. doi: 10.3390/jof5010026. PubMed DOI PMC
Brown G.D., Denning D.W., Gow N., Levitz S.M., Netea M., White T.C. Hidden Killers: Human Fungal Infections. Sci. Transl. Med. 2012;4:165rv13. doi: 10.1126/scitranslmed.3004404. PubMed DOI
Guarro J., Kantarcioglu A.S., Horré R., Rodríguez-Tudela J.L., Estrella M.C., Berenguer J., De Hoog G.S. Scedosporium apiospermum: Changing clinical spectrum of a therapy-refractory opportunist. Med. Mycol. 2006;44:295–327. doi: 10.1080/13693780600752507. PubMed DOI
Nucci M., Anaissie E. Fusarium Infections in Immunocompromised Patients. Clin. Microbiol. Rev. 2007;20:695–704. doi: 10.1128/CMR.00014-07. PubMed DOI PMC
Carmona E.M., Limper A.H. Overview of Treatment Approaches for Fungal Infections. Clin. Chest Med. 2017;38:393–402. doi: 10.1016/j.ccm.2017.04.003. PubMed DOI
Kumar A., Zarychanski R., Pisipati A., Kumar A., Kethireddy S., Bow E.J. Fungicidal versus fungistatic therapy of invasiveCandidainfection in non-neutropenic adults: A meta-analysis. Mycology. 2018;9:116–128. doi: 10.1080/21501203.2017.1421592. PubMed DOI PMC
Meletiadis J., Antachopoulos C., Stergiopoulou T., Pournaras S., Roilides E., Walsh T.J. Differential Fungicidal Activities of Amphotericin B and Voriconazole against Aspergillus Species Determined by Microbroth Methodology. Antimicrob. Agents Chemother. 2007;51:3329–3337. doi: 10.1128/AAC.00345-07. PubMed DOI PMC
Geißel B., Loiko V., Klugherz I., Zhu Z., Wagener N., Kurzai O., Hondel C.A.M.J.J.V.D., Wagener J. Azole-induced cell wall carbohydrate patches kill Aspergillus fumigatus. Nat. Commun. 2018;9:3098. doi: 10.1038/s41467-018-05497-7. PubMed DOI PMC
Patil A., Majumdar S. Echinocandins in antifungal pharmacotherapy. J. Pharm. Pharmacol. 2017;69:1635–1660. doi: 10.1111/jphp.12780. PubMed DOI
Revie N.M., Iyer K.R., Robbins N., Cowen L. Antifungal drug resistance: Evolution, mechanisms and impact. Curr. Opin. Microbiol. 2018;45:70–76. doi: 10.1016/j.mib.2018.02.005. PubMed DOI PMC
Ten Threats to Global Health in 2019. [(accessed on 3 June 2019)]; Available online: https://www.who.int/emergencies/ten-threats-to-global-health-in-2019.
Ahmad S., Bhattacharya D., Kar S., Ranganathan A., Van Kaer L., Das G. Curcumin Nanoparticles Enhance Mycobacterium bovis BCG Vaccine Efficacy by Modulating Host Immune Responses. Infect. Immun. 2019;87:1–33. doi: 10.1128/IAI.00291-19. PubMed DOI PMC
Scriven J.E., Tenforde M.W., Levitz S.M., Jarvis J.N. Modulating host immune responses to fight invasive fungal infections. Curr. Opin. Microbiol. 2017;40:95–103. doi: 10.1016/j.mib.2017.10.018. PubMed DOI PMC
van de Sande W., Vonk A.G. Mycovirus therapy for invasive pulmonary aspergillosis? Med. Mycol. 2019;57:S179–S188. doi: 10.1093/mmy/myy073. PubMed DOI
Nerva L., Chitarra W., Siciliano I., Gaiotti F., Ciuffo M., Forgia M., Varese G.C., Turina M. Mycoviruses mediate mycotoxin regulation in Aspergillus ochraceus. Environ. Microbiol. 2018;21:1957–1968. doi: 10.1111/1462-2920.14436. PubMed DOI
Zotchev S.B. Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 2003;10:211–223. doi: 10.2174/0929867033368448. PubMed DOI
Vermes A., Guchelaar H.-J., Dankert J. Flucytosine: A review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 2000;46:171–179. doi: 10.1093/jac/46.2.171. PubMed DOI
Ping B., Zhu Y., Gao Y., Yue C., Wu B. Second- versus first-generation azoles for antifungal prophylaxis in hematology patients: A systematic review and meta-analysis. Ann. Hematol. 2013;92:831–839. doi: 10.1007/s00277-013-1693-5. PubMed DOI
Livengood S.J., Drew R.H., Perfect J.R. Combination Therapy for Invasive Fungal Infections. Curr. Fungal Infect. Rep. 2020;14:40–49. doi: 10.1007/s12281-020-00369-4. DOI
Mesa-Arango A.C., Scorzoni L., Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012;3:1–10. doi: 10.3389/fmicb.2012.00286. PubMed DOI PMC
Tevyashova A.N., Olsufyeva E., Solovieva S.E., Printsevskaya S.S., Reznikova M.I., Trenin A.S., Galatenko O.A., Treshalin I.D., Pereverzeva E.R., Mirchink E.P., et al. Structure-Antifungal Activity Relationships of Polyene Antibiotics of the Amphotericin B Group. Antimicrob. Agents Chemother. 2013;57:3815–3822. doi: 10.1128/AAC.00270-13. PubMed DOI PMC
Parker W.B. Enzymology of Purine and Pyrimidine Antimetabolites Used in the Treatment of Cancer. Chem. Rev. 2009;109:2880–2893. doi: 10.1021/cr900028p. PubMed DOI PMC
Sagatova A.A., Keniya M.V., Wilson R.K., Monk B.C., Tyndall J. Structural Insights into Binding of the Antifungal Drug Fluconazole to Saccharomyces cerevisiae Lanosterol 14α-Demethylase. Antimicrob. Agents Chemother. 2015;59:4982–4989. doi: 10.1128/AAC.00925-15. PubMed DOI PMC
Liu J., Balasubramanian M.K. 1,3-beta-Glucan synthase: A useful target for antifungal drugs. Curr. Drug Target Infect. Disord. 2001;1:159–169. doi: 10.2174/1568005014606107. PubMed DOI
Yao J., Liu H., Zhou T., Chen H., Miao Z., Sheng C., Zhang W. Total synthesis and structure–activity relationships of new echinocandin-like antifungal cyclolipohexapeptides. Eur. J. Med. Chem. 2012;50:196–208. doi: 10.1016/j.ejmech.2012.01.054. PubMed DOI
Hamill R.J. Amphotericin B Formulations: A Comparative Review of Efficacy and Toxicity. Drugs. 2013;73:919–934. doi: 10.1007/s40265-013-0069-4. PubMed DOI
Momparler R.L. Optimization of cytarabine (ARA-C) therapy for acute myeloid leukemia. Exp. Hematol. Oncol. 2013;2:20. doi: 10.1186/2162-3619-2-20. PubMed DOI PMC
Nett J.E., Andes D.R. Antifungal Agents. Infect. Dis. Clin. North Am. 2016;30:51–83. doi: 10.1016/j.idc.2015.10.012. PubMed DOI
Debruyne D., Ryckelynck J.-P. Clinical Pharmacokinetics of Fluconazole. Clin. Pharmacokinet. 1993;24:10–27. doi: 10.2165/00003088-199324010-00002. PubMed DOI
Heykants J., Van Peer A., Van De Velde V., Van Rooy P., Meuldermans W., Lavrijsen K., Woestenborghs R., Van Cutsem J., Cauwenbergh G. The Clinical Pharmacokinetics of Itraconazole: An Overview. Mycoses. 1989;32:67–87. doi: 10.1111/j.1439-0507.1989.tb02296.x. PubMed DOI
Salavert M., Jarque I., Zaragoza R., Gobernado M. Voriconazole in the management of nosocomial invasive fungal infections. Ther. Clin. Risk Manag. 2006;2:129–157. PubMed PMC
Li Y., Theuretzbacher U., Clancy C.J., Nguyen M.H., Derendorf H., Derendorf H. Pharmacokinetic/Pharmacodynamic Profile of Posaconazole. Clin. Pharmacokinet. 2010;49:379–396. doi: 10.2165/11319340-000000000-00000. PubMed DOI
Rybak J.M., Marx K.R., Nishimoto A.T., Rogers P.D. Isavuconazole: Pharmacology, Pharmacodynamics, and Current Clinical Experience with a New Triazole Antifungal Agent. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2015;35:1037–1051. doi: 10.1002/phar.1652. PubMed DOI
Kofla G., Ruhnke M. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis—review of the literature. Eur. J. Med Res. 2011;16:159–166. doi: 10.1186/2047-783X-16-4-159. PubMed DOI PMC
Bellmann R., Smuszkiewicz P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection. 2017;45:737–779. doi: 10.1007/s15010-017-1042-z. PubMed DOI PMC
ERAXIS Product Monograph Anidulafungin for Injection 100 mg/vial. [(accessed on 28 February 2020)]; Available online: https://www.pfizer.ca/sites/default/files/201710/ERAXIS_PM_E_176889_14Oct2014.pdf.
CANDIDAS Product Monograph Caspofungin for Injection 50 mg/vial, 70 mg/vial. [(accessed on 28 February 2020)]; Available online: https://www.merck.ca/static/pdf/CANCIDAS-PM_E.pdf.
Mycamine Product Monograph Micafungin Sodium for Injection 50 mg and 100 mg/vial. [(accessed on 28 February 2020)]; Available online: https://pdf.hres.ca/dpd_pm/00024563.PDF.
Bersani I., Piersigilli F., Goffredo B.M., Santisi A., Cairoli S., Ronchetti M.P., Auriti C. Antifungal Drugs for Invasive Candida Infections (ICI) in Neonates: Future Perspectives. Front. Pediatr. 2019;7:375. doi: 10.3389/fped.2019.00375. PubMed DOI PMC
Warris A., Lehrnbecher T., Roilides E., Castagnola E., Bruggemann R.J., Groll A.H. ESCMID-ECMM guideline: Diagnosis and management of invasive aspergillosis in neonates and children. Clin. Microbiol. Infect. 2019;25:1096–1113. doi: 10.1016/j.cmi.2019.05.019. PubMed DOI
Cornely O.A., Bassetti M., Calandra T., Garbino J., Kullberg B., Lortholary O., Meersseman W., Akova M., Arendrup M.C., Arikan-Akdagli S., et al. ESCMID This guideline was presented in part at ECCMID 2011. European Society for Clinical Microbiology and Infectious Diseases. guideline for the diagnosis and management of Candida diseases 2012: Non-neutropenic adult patients. Clin. Microbiol. Infect. 2012;18:19–37. doi: 10.1111/1469-0691.12039. PubMed DOI
Ullmann A., Aguado J., Arikan-Akdagli S., Denning D., Groll A., Lagrou K., Lass-Flörl C., Lewis R., Munoz P., Verweij P.E., et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018;24:e1–e38. doi: 10.1016/j.cmi.2018.01.002. PubMed DOI
Pilmis B., Jullien V., Sobel J., Lecuit M., Lortholary O., Charlier C. Antifungal drugs during pregnancy: An updated review. J. Antimicrob. Chemother. 2014;70:14–22. doi: 10.1093/jac/dku355. PubMed DOI
Payne K.D., Hall R. Dosing of Antifungal Agents in Obese People. Expert Rev. Anti Infect. Ther. 2015;14:257–267. doi: 10.1586/14787210.2016.1128822. PubMed DOI
Lestner J., Smith P.B., Cohen-Wolkowiez M., Benjamin D.K., Hope W. Antifungal agents and therapy for infants and children with invasive fungal infections: A pharmacological perspective. Br. J. Clin. Pharmacol. 2012;75:1381–1395. doi: 10.1111/bcp.12025. PubMed DOI PMC
EUCAST. [(accessed on 24 January 2020)]; Available online: http://www.eucast.org/
CLSI. [(accessed on 24 January 2020)]; Available online: https://clsi.org/
Alastruey-Izquierdo A., Melhem M., Bonfietti L.X., Rodriguez-Tudela J.L. Susceptibility test for fungi: Clinical and laboratorial correlations in medical mycology. Rev. Inst. Med. Trop. São Paulo. 2015;57:57–64. doi: 10.1590/S0036-46652015000700011. PubMed DOI PMC
New Definitions of S, I and R from 2019. [(accessed on 23 January 2020)]; Available online: http://www.eucast.org/newsiandr/
Kahlmeter G., Giske C.G., Kirn T.J., Sharp S.E. Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J. Clin. Microbiol. 2019;57:e01129-19. doi: 10.1128/JCM.01129-19. PubMed DOI PMC
Sanguinetti M., Posteraro B. Susceptibility Testing of Fungi to Antifungal Drugs. J. Fungi. 2018;4:110. doi: 10.3390/jof4030110. PubMed DOI PMC
Breakpoint Tables for Interpretation of MICs for Antifungal Agents, Version 10.0. [(accessed on 28 February 2020)]; Available online: http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/
Tortorano A.M., Rautemaa-Richardson R., Roilides E., Van Diepeningen A., Caira M., Muñoz P., Johnson E., Meletiadis J., Pana Z.-D., Lackner M., et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin. Microbiol. Infect. 2014;20:27–46. doi: 10.1111/1469-0691.12465. PubMed DOI
Sanguinetti M., Posteraro B., Lass-Flörl C. Antifungal drug resistance amongCandidaspecies: Mechanisms and clinical impact. Mycoses. 2015;58:2–13. doi: 10.1111/myc.12330. PubMed DOI
Morio F., Jensen R.H., Le Pape P., Arendrup M.C. Molecular basis of antifungal drug resistance in yeasts. Int. J. Antimicrob. Agents. 2017;50:599–606. doi: 10.1016/j.ijantimicag.2017.05.012. PubMed DOI
Beardsley J., Halliday C.L., Chen S.C.-A., Sorrell T. Responding to the emergence of antifungal drug resistance: Perspectives from the bench and the bedside. Futur. Microbiol. 2018;13:1175–1191. doi: 10.2217/fmb-2018-0059. PubMed DOI PMC
Verweij P.E., Chowdhary A., Melchers W.J.G., Meis J.F. Azole Resistance in Aspergillus fumigatus: Can We Retain the Clinical Use of Mold-Active Antifungal Azoles? Clin. Infect. Dis. 2015;62:362–368. doi: 10.1093/cid/civ885. PubMed DOI PMC
Berger S., El Chazli Y., Babu A.F., Coste A. Azole Resistance in Aspergillus fumigatus: A Consequence of Antifungal Use in Agriculture? Front. Microbiol. 2017;8:1024–1030. doi: 10.3389/fmicb.2017.01024. PubMed DOI PMC
Cutler J.E., Corti M., Lambert P., Ferris M., Xin H. Horizontal Transmission of Candida albicans and Evidence of a Vaccine Response in Mice Colonized with the Fungus. PLoS ONE. 2011;6:22030. doi: 10.1371/journal.pone.0022030. PubMed DOI PMC
Bliss J.M., Basavegowda K.P., Watson W.J., Sheikh A.U., Ryan R.M. Vertical and Horizontal Transmission of Candida albicans in Very Low Birth Weight Infants Using DNA Fingerprinting Techniques. Pediatr. Infect. Dis. J. 2008;27:231–235. doi: 10.1097/INF.0b013e31815bb69d. PubMed DOI
White T.C., Marr K.A., Bowden R.A. Clinical, Cellular, and Molecular Factors That Contribute to Antifungal Drug Resistance. Clin. Microbiol. Rev. 1998;11:382–402. doi: 10.1128/CMR.11.2.382. PubMed DOI PMC
Sanglard D. Emerging Threats in Antifungal-Resistant Fungal Pathogens. Front. Med. 2016;3:165. doi: 10.3389/fmed.2016.00011. PubMed DOI PMC
Bhattacharya S., Esquivel B.D., White T.C. Overexpression or Deletion of Ergosterol Biosynthesis Genes Alters Doubling Time, Response to Stress Agents, and Drug Susceptibility inSaccharomyces cerevisiae. mBio. 2018;9:e01291-18. doi: 10.1128/mBio.01291-18. PubMed DOI PMC
Hull C.M., Bader O., Parker J., Weig M., Gross U., Warrilow A., Kelly D.E., Kelly S.L. Two Clinical Isolates of Candida glabrata Exhibiting Reduced Sensitivity to Amphotericin B Both Harbor Mutations in ERG2. Antimicrob. Agents Chemother. 2012;56:6417–6421. doi: 10.1128/AAC.01145-12. PubMed DOI PMC
Mesa-Arango A.C., Rueda C., Román E., Quintin J., Terrón M.C., Luque D., Netea M.G., Pla J., Zaragoza O. Cell Wall Changes in Amphotericin B-Resistant Strains from Candida tropicalis and Relationship with the Immune Responses Elicited by the Host. Antimicrob. Agents Chemother. 2016;60:2326–2335. doi: 10.1128/AAC.02681-15. PubMed DOI PMC
Posch W., Blatzer M., Wilflingseder D., Lass-Floerl C. Aspergillus terreus: Novel lessons learned on amphotericin B resistance. Med. Mycol. 2018;56:S73–S82. doi: 10.1093/mmy/myx119. PubMed DOI
Costa C., Ponte A., Pais P., Santos R., Cavalheiro M., Yaguchi T., Chibana H., Teixeira M.C. New Mechanisms of Flucytosine Resistance in C. glabrata Unveiled by a Chemogenomics Analysis in S. cerevisiae. PLoS ONE. 2015;10:e0135110. doi: 10.1371/journal.pone.0135110. PubMed DOI PMC
Gsaller F., Furukawa T., Carr P.D., Rash B., Jöchl C., Bertuzzi M., Bignell E., Bromley M.J. Mechanistic Basis of pH-Dependent 5-Flucytosine Resistance inAspergillus fumigatus. Antimicrob. Agents Chemother. 2018;62:e02593-17. doi: 10.1128/AAC.02593-17. PubMed DOI PMC
Cowen L., Sanglard D., Howard S.J., Rogers P.D., Perlin D. Mechanisms of Antifungal Drug Resistance. Cold Spring Harb. Perspect. Med. 2014;5:a019752. doi: 10.1101/cshperspect.a019752. PubMed DOI PMC
Rodrigues C.F., Rodrigues M.E., Henriques M. Susceptibility of Candida glabrata biofilms to echinocandins: Alterations in the matrix composition. Biofouling. 2018;34:569–578. doi: 10.1080/08927014.2018.1472244. PubMed DOI
Perlin D. Echinocandin Resistance in Candida. Clin. Infect. Dis. 2015;61:S612–S617. doi: 10.1093/cid/civ791. PubMed DOI PMC
Al-Hatmi A.M.S., Normand A.-C., Ranque S., Piarroux R., De Hoog G.S., Meletiadis J., Meis J.F. Comparative Evaluation of Etest, EUCAST, and CLSI Methods for Amphotericin B, Voriconazole, and Posaconazole against Clinically Relevant Fusarium Species. Antimicrob. Agents Chemother. 2016;61:e01671-16. doi: 10.1128/AAC.01671-16. PubMed DOI PMC
Al-Hatmi A.M., Meis J.F., De Hoog G.S. Fusarium: Molecular Diversity and Intrinsic Drug Resistance. PLOS Pathog. 2016;12:e1005464. doi: 10.1371/journal.ppat.1005464. PubMed DOI PMC
Johnson M.E., Katiyar S.K., Edlind T.D. New Fks Hot Spot for Acquired Echinocandin Resistance in Saccharomyces cerevisiae and Its Contribution to Intrinsic Resistance of Scedosporium Species. Antimicrob. Agents Chemother. 2011;55:3774–3781. doi: 10.1128/AAC.01811-10. PubMed DOI PMC
Caramalho R., Tyndall J.D.A., Monk B.C., Larentis T., Lass-Flörl C., Lackner M. Intrinsic short-tailed azole resistance in mucormycetes is due to an evolutionary conserved aminoacid substitution of the lanosterol 14α-demethylase. Sci. Rep. 2017;7:15898. doi: 10.1038/s41598-017-16123-9. PubMed DOI PMC
Schell W.A., Jones A.M., Garvey E.P., Hoekstra W.J., Schotzinger R.J., Alexander B.D. Fungal CYP51 Inhibitors VT-1161 and VT-1129 Exhibit Strong In Vitro Activity against Candida glabrata and C. krusei Isolates Clinically Resistant to Azole and Echinocandin Antifungal Compounds. Antimicrob. Agents Chemother. 2017;61:e01817-16. doi: 10.1128/AAC.01817-16. PubMed DOI PMC
Database of Privately and Publicly Funded Clinical Studies. [(accessed on 2 March 2020)]; Available online: https://clinicaltrials.gov/ct2/home.
VT-1161 and VT-1598 Pipeline. [(accessed on 2 March 2020)]; Available online: https://www.mycovia.com/pipeline.
Colley T., Sharma C., Alanio A., Kimura G., Daly L., Nakaoki T., Nishimoto Y., Bretagne S., Kizawa Y., Strong P., et al. Anti-fungal activity of a novel triazole, PC1244, against emerging azole-resistant Aspergillus fumigatus and other species of Aspergillus. J. Antimicrob. Chemother. 2019;74:2950–2958. doi: 10.1093/jac/dkz302. PubMed DOI PMC
Rauseo A.M., Coler-Reilly A., Larson L., Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect. Dis. 2020;7:1–19. doi: 10.1093/ofid/ofaa016. PubMed DOI PMC
Wiederhold N.P. The antifungal arsenal: Alternative drugs and future targets. Int. J. Antimicrob. Agents. 2017;51:333–339. doi: 10.1016/j.ijantimicag.2017.09.002. PubMed DOI
Gintjee T.J., Donnelley M.A., Thompson G.R. Aspiring Antifungals: Review of Current Antifungal Pipeline Developments. J. Fungi. 2020;6:28. doi: 10.3390/jof6010028. PubMed DOI PMC
Nicola A.M., Albuquerque P., Paes H.C., Fernandes L., Costa F.F., Kioshima E.S., Abadio A.K.R., Bocca A.L., Felipe M.S. Antifungal drugs: New insights in research & development. Pharmacol. Ther. 2019;195:21–38. PubMed
Perfect J.R. The antifungal pipeline: A reality check. Nat. Rev. Drug Discov. 2017;16:603–616. doi: 10.1038/nrd.2017.46. PubMed DOI PMC
Alkhazraji S., Gebremariam T., Alqarihi A., Gu Y., Mamouei Z., Singh S., Wiederhold N.P., Shaw K.J., Ibrahim A.S. Fosmanogepix (APX001) Is Effective in the Treatment of Immunocompromised Mice Infected with Invasive Pulmonary Scedosporiosis or Disseminated Fusariosis. Antimicrob. Agents Chemother. 2020;64:1–12. doi: 10.1128/AAC.01735-19. PubMed DOI PMC
Van Daele R., Spriet I., Wauters J., Maertens J., Mercier T., Van Hecke S., Brüggemann R. Antifungal drugs: What brings the future? Med. Mycol. 2019;57:S328–S343. doi: 10.1093/mmy/myz012. PubMed DOI
Su H., Han L., Huang X. Potential targets for the development of new antifungal drugs. J. Antibiot. 2018;71:978–991. doi: 10.1038/s41429-018-0100-9. PubMed DOI
Haranahalli K., Lazzarini C., Sun Y., Zambito J., Pathiranage S., McCarthy J.B., Mallamo J.P., Del Poeta M., Ojima I. SAR Studies on Aromatic Acylhydrazone-Based Inhibitors of Fungal Sphingolipid Synthesis as Next-Generation Antifungal Agents. J. Med. Chem. 2019;62:8249–8273. doi: 10.1021/acs.jmedchem.9b01004. PubMed DOI PMC
Lazzarini C., Haranahalli K., Rieger R., Ananthula H.K., Desai P.B., Ashbaugh A., Linke M.J., Cushion M.T., Ruzsicska B., Haley J., et al. Acylhydrazones as Antifungal Agents Targeting the Synthesis of Fungal Sphingolipids. Antimicrob. Agents Chemother. 2018;62:e00156-18. doi: 10.1128/AAC.00156-18. PubMed DOI PMC
Ribeiro M., Simões M. Advances in the antimicrobial and therapeutic potential of siderophores. Environ. Chem. Lett. 2019;17:1485–1494. doi: 10.1007/s10311-019-00887-9. DOI
Lamb A.L. Breaking a pathogen’s iron will: Inhibiting siderophore production as an antimicrobial strategy. Biochim. Biophys. Acta Proteins Proteom. 2015;1854:1054–1070. doi: 10.1016/j.bbapap.2015.05.001. PubMed DOI PMC
Del Campo J.S.M., Vogelaar N., Tolani K., Kizjakina K., Harich K., Sobrado P. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth. ACS Chem. Boil. 2016;11:3035–3042. doi: 10.1021/acschembio.6b00666. PubMed DOI
Leblanc C., Prudhomme T., Tabouret G., Ray A., Burbaud S., Cabantous S., Mourey L., Guilhot C., Chalut C. 4′-Phosphopantetheinyl Transferase PptT, a New Drug Target Required for Mycobacterium tuberculosis Growth and Persistence In Vivo. PLOS Pathog. 2012;8:e1003097. doi: 10.1371/journal.ppat.1003097. PubMed DOI PMC
Foley T.L., Young B.S., Burkart M.D. Phosphopantetheinyl transferase inhibition and secondary metabolism. FEBS J. 2009;276:7134–7145. doi: 10.1111/j.1742-4658.2009.07425.x. PubMed DOI
Golonka R., Vijay-Kumar M., Vijay-Kumar M. The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. J. Innate Immun. 2019;11:249–262. doi: 10.1159/000494627. PubMed DOI PMC
Mammen M.P., Armas D., Hughes F.H., Hopkins A.M., Fisher C.L., Resch P.A., Rusalov D., Sullivan S.M., Smith L.R. First-in-Human Phase 1 Study To Assess Safety, Tolerability, and Pharmacokinetics of a Novel Antifungal Drug, VL-2397, in Healthy Adults. Antimicrob. Agents Chemother. 2019;63:1–41. doi: 10.1128/AAC.00969-19. PubMed DOI PMC
Petrik M., Zhai C., Haas H., Decristoforo C. Siderophores for molecular imaging applications. Clin. Transl. Imaging. 2016;5:15–27. doi: 10.1007/s40336-016-0211-x. PubMed DOI PMC
Luptáková D., Pluháček T., Petrik M., Novak J., Palyzová A., Sokolová L., Škríba A., Šedivá B., Lemr K., Havlicek V. Non-invasive and invasive diagnoses of aspergillosis in a rat model by mass spectrometry. Sci. Rep. 2017;7:16523. doi: 10.1038/s41598-017-16648-z. PubMed DOI PMC
Beyond Conventional Antifungals: Combating Resistance Through Novel Therapeutic Pathways
Rhizoferrin Glycosylation in Rhizopus microsporus