Beyond Conventional Antifungals: Combating Resistance Through Novel Therapeutic Pathways
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40143141
PubMed Central
PMC11944814
DOI
10.3390/ph18030364
PII: ph18030364
Knihovny.cz E-zdroje
- Klíčová slova
- MDR, antifungal resistance, future strategies, nanotechnology,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The rising burden of fungal infections presents a significant challenge to global healthcare, particularly with increasing antifungal resistance limiting treatment efficacy. Early detection and timely intervention remain critical, yet fungal pathogens employ diverse mechanisms to evade host immunity and develop resistance, undermining existing therapeutic options. Limited antifungal options and rising resistance necessitate novel treatment strategies. This review provides a comprehensive overview of conventional antifungal agents, their mechanisms of action, and emerging resistance pathways. Furthermore, it highlights recently approved and investigational antifungal compounds while evaluating innovative approaches such as nanotechnology, drug repurposing, and immunotherapy. Addressing antifungal resistance requires a multifaceted strategy that integrates novel therapeutics, enhanced diagnostic tools, and future research efforts to develop sustainable and effective treatment solutions.
3rd Faculty of Medicine Charles University Ruská 87 100 00 Prague Czech Republic
Department of Clinical and Experimental Medicine University of Messina 98125 Messina Italy
Department of Microbiology and Immunology Faculty of Pharmacy Assiut University Assiut 71515 Egypt
Department of Pharmaceutics Faculty of Pharmacy University of Tabuk Tabuk 71491 Saudi Arabia
Hospital Pharmacy Giovanni Paolo 2 Hospital ASL Gallura 07026 Olbia Italy
Zobrazit více v PubMed
Bahram M., Netherway T. Fungi as mediators linking organisms and ecosystems. FEMS Microbiol. Rev. 2022;46:fuab058. doi: 10.1093/femsre/fuab058. PubMed DOI PMC
Pouris J., Kolyva F., Bratakou S., Vogiatzi C.A., Chaniotis D., Beloukas A. The Role of Fungi in Food Production and Processing. Appl. Sci. 2024;14:5046. doi: 10.3390/app14125046. DOI
Case N.T., Berman J., Blehert D.S., Cramer R.A., Cuomo C., Currie C.R., Ene I.V., Fisher M.C., Fritz-Laylin L.K., Gerstein A.C., et al. The future of fungi: Threats and opportunities. G3. 2022;12:jkac224. doi: 10.1093/g3journal/jkac224. PubMed DOI PMC
Khan M.F., Hof C., Niemcová P., Murphy C.D. Recent advances in fungal xenobiotic metabolism: Enzymes and applications. World J. Microbiol. Biotechnol. 2023;39:296. doi: 10.1007/s11274-023-03737-7. PubMed DOI PMC
Khan M.F., Hof C., Niemcova P., Murphy C.D. Chapter Eleven—Biotransformation of fluorinated drugs and xenobiotics by the model fungus Cunninghamella elegans. In: Stockbridge R.B., editor. Methods in Enzymology. Volume 696. Academic Press; Cambridge, MA, USA: 2024. pp. 251–285. PubMed
Thambugala K.M., Daranagama D.A., Tennakoon D.S., Jayatunga D.P.W., Hongsanan S., Xie N. Humans vs. Fungi: An Overview of Fungal Pathogens against Humans. Pathogens. 2024;13:426. doi: 10.3390/pathogens13050426. PubMed DOI PMC
Centers for Disease Control and Prevention (CDC) Types of Fungal Diseases. [(accessed on 1 January 2024)]; Available online: https://www.cdc.gov/fungal/diseases/index.html.
McCormick T.S., Ghannoum M. Time to Think Antifungal Resistance Increased Antifungal Resistance Exacerbates the Burden of Fungal Infections Including Resistant Dermatomycoses. Pathog. Immun. 2023;8:158–176. doi: 10.20411/pai.v8i2.656. PubMed DOI PMC
Vitiello A., Ferrara F., Boccellino M., Ponzo A., Cimmino C., Comberiati E., Zovi A., Clemente S., Sabbatucci M. Antifungal Drug Resistance: An Emergent Health Threat. Biomedicines. 2023;11:1063. doi: 10.3390/biomedicines11041063. PubMed DOI PMC
Bongomin F., Gago S., Oladele R.O., Denning D.W. Global and Multi-National Prevalence of Fungal Diseases—Estimate Precision. J. Fungi. 2017;3:57. doi: 10.3390/jof3040057. PubMed DOI PMC
Benedict K., Jackson B.R., Chiller T., Beer K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019;68:1791–1797. doi: 10.1093/cid/ciy776. PubMed DOI PMC
Perlroth J., Choi B., Spellberg B. Nosocomial fungal infections: Epidemiology, diagnosis, and treatment. Med. Mycol. 2007;45:321–346. doi: 10.1080/13693780701218689. PubMed DOI
Kovitwanichkanont T., Chong A.H. Superficial fungal infections. Aust. J. Gen. Pr. 2019;48:706–711. doi: 10.31128/AJGP-05-19-4930. PubMed DOI
von Lilienfeld-Toal M., Wagener J., Einsele H., Cornely O.A., Kurzai O. Invasive Fungal Infection. Dtsch. Arztebl. Int. 2019;116:271–278. doi: 10.3238/arztebl.2019.0271. PubMed DOI PMC
Pasqualotto A.C., Quieroz-Telles F. Histoplasmosis dethrones tuberculosis in Latin America. Lancet Infect. Dis. 2018;18:1058–1060. doi: 10.1016/S1473-3099(18)30373-6. PubMed DOI
Casadevall A. Fungal Diseases in the 21st Century: The Near and Far Horizons. Pathog. Immun. 2018;3:183–196. doi: 10.20411/pai.v3i2.249. PubMed DOI PMC
Webb B.J., Ferraro J.P., Rea S., Kaufusi S., Goodman B.E., Spalding J. Epidemiology and Clinical Features of Invasive Fungal Infection in a US Health Care Network. Open Forum Infect. Dis. 2018;5:ofy187. doi: 10.1093/ofid/ofy187. PubMed DOI PMC
Richardson M.D. Changing patterns and trends in systemic fungal infections. J. Antimicrob. Chemother. 2005;56((Suppl. S1)):i5–i11. doi: 10.1093/jac/dki218. PubMed DOI
Singh N. Trends in the epidemiology of opportunistic fungal infections: Predisposing factors and the impact of antimicrobial use practices. Clin. Infect. Dis. 2001;33:1692–1696. doi: 10.1086/323895. PubMed DOI
Rijnders B.J.A., Schauwvlieghe A.F.A.D., Wauters J. Influenza-Associated Pulmonary Aspergillosis: A Local or Global Lethal Combination? Clin. Infect. Dis. 2020;71:1764–1767. doi: 10.1093/cid/ciaa010. PubMed DOI PMC
Lamoth F. Invasive aspergillosis in coronavirus disease 2019: A practical approach for clinicians. Curr. Opin. Infect. Dis. 2022;35:163–169. doi: 10.1097/QCO.0000000000000812. PubMed DOI PMC
Hoenigl M., Seidel D., Carvalho A., Rudramurthy S.M., Arastehfar A., Gangneux J.P., Nasir N., Bonifaz A., Araiza J., Klimko N., et al. The emergence of COVID-19 associated mucormycosis: A review of cases from 18 countries. Lancet Microbe. 2022;3:e543–e552. doi: 10.1016/S2666-5247(21)00237-8. PubMed DOI PMC
Brown G.D., Netea M.G. Exciting developments in the immunology of fungal infections. Cell Host Microbe. 2012;11:422–424. doi: 10.1016/j.chom.2012.04.010. PubMed DOI
Kovács R., Majoros L. Antifungal lock therapy: An eternal promise or an effective alternative therapeutic approach? Lett. Appl. Microbiol. 2022;74:851–862. doi: 10.1111/lam.13653. PubMed DOI PMC
Shields R.K., Nguyen M.H., Press E.G., Clancy C.J. Abdominal candidiasis is a hidden reservoir of echinocandin resistance. Antimicrob. Agents Chemother. 2014;58:7601–7605. doi: 10.1128/AAC.04134-14. PubMed DOI PMC
Bastos R.W., Rossato L., Goldman G.H., Santos D.A. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog. 2021;17:e1010073. doi: 10.1371/journal.ppat.1010073. PubMed DOI PMC
Meis J.F., Chowdhary A., Rhodes J.L., Fisher M.C., Verweij P.E. Clinical implications of globally emerging azole resistance in Aspergillus fumigatus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016;371:20150460. doi: 10.1098/rstb.2015.0460. PubMed DOI PMC
Fuentefria A.M., Pippi B., Dalla Lana D.F., Donato K.K., de Andrade S.F. Antifungals discovery: An insight into new strategies to combat antifungal resistance. Lett. Appl. Microbiol. 2018;66:2–13. doi: 10.1111/lam.12820. PubMed DOI
Hokken M.W., Zwaan B., Melchers W., Verweij P. Facilitators of adaptation and antifungal resistance mechanisms in clinically relevant fungi. Fungal Genet. Biol. 2019;132:103254. doi: 10.1016/j.fgb.2019.103254. PubMed DOI
Hetta H.F., Ramadan Y.N., Al-Kadmy I.M.S., Ellah N.H.A., Shbibe L., Battah B. Nanotechnology-Based Strategies to Combat Multidrug-Resistant Candida auris Infections. Pathogens. 2023;12:1033. doi: 10.3390/pathogens12081033. PubMed DOI PMC
Zotchev S.B. Polyene macrolide antibiotics and their applications in human therapy. Curr. Med. Chem. 2003;10:211–223. doi: 10.2174/0929867033368448. PubMed DOI
Bates D.W., Su L., Yu D.T., Chertow G.M., Seger D.L., Gomes D.R., Dasbach E.J., Platt R. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin. Infect. Dis. 2001;32:686–693. doi: 10.1086/319211. PubMed DOI
Herbrecht R., Denning D.W., Patterson T.F., Bennett J.E., Greene R.E., Oestmann J.W., Kern W.V., Marr K.A., Ribaud P., Lortholary O., et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N. Engl. J. Med. 2002;347:408–415. doi: 10.1056/NEJMoa020191. PubMed DOI
Alexander B.D., Johnson M.D., Pfeiffer C.D., Jiménez-Ortigosa C., Catania J., Booker R., Castanheira M., Messer S.A., Perlin D.S., Pfaller M.A. Increasing echinocandin resistance in Candida glabrata: Clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin. Infect. Dis. 2013;56:1724–1732. doi: 10.1093/cid/cit136. PubMed DOI PMC
Rogers T.R., Verweij P.E., Castanheira M., Dannaoui E., White P.L., Arendrup M.C. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022;77:2053–2073. doi: 10.1093/jac/dkac161. PubMed DOI PMC
Vermes A., Guchelaar H.-J., Dankert J. Flucytosine: A review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 2000;46:171–179. doi: 10.1093/jac/46.2.171. PubMed DOI
Houšť J., Spížek J., Havlíček V. Antifungal drugs. Metabolites. 2020;10:106. doi: 10.3390/metabo10030106. PubMed DOI PMC
Cass A., Finkelstein A., Krespi V. The ion permeability induced in thin lipid membranes by the polyene antibiotics nystatin and amphotericin B. J. Gen. Physiol. 1970;56:100–124. doi: 10.1085/jgp.56.1.100. PubMed DOI PMC
Starzyk J., Gruszecki M., Tutaj K., Luchowski R., Szlazak R., Wasko P., Grudzinski W., Czub J., Gruszecki W.I. Self-association of amphotericin B: Spontaneous formation of molecular structures responsible for the toxic side effects of the antibiotic. J. Phys. Chem. B. 2014;118:13821–13832. doi: 10.1021/jp510245n. PubMed DOI
Mesa-Arango A.C., Scorzoni L., Zaragoza O. It only takes one to do many jobs: Amphotericin B as antifungal and immunomodulatory drug. Front. Microbiol. 2012;3:286. doi: 10.3389/fmicb.2012.00286. PubMed DOI PMC
Wang X., Mohammad I.S., Fan L., Zhao Z., Nurunnabi M., Sallam M.A., Wu J., Chen Z., Yin L., He W. Delivery strategies of amphotericin B for invasive fungal infections. Acta Pharm. Sin. B. 2021;11:2585–2604. doi: 10.1016/j.apsb.2021.04.010. PubMed DOI PMC
Sokol-Anderson M.L., Brajtburg J., Medoff G. Amphotericin B-induced oxidative damage and killing of Candida albicans. J. Infect. Dis. 1986;154:76–83. doi: 10.1093/infdis/154.1.76. PubMed DOI
Boukari K., Balme S., Janot J.-M., Picaud F. Towards new insights in the sterol/amphotericin nanochannels formation: A molecular dynamic simulation study. J. Membr. Biol. 2016;249:261–270. doi: 10.1007/s00232-015-9865-y. PubMed DOI
Gray K.C., Palacios D.S., Dailey I., Endo M.M., Uno B.E., Wilcock B.C., Burke M.D. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA. 2012;109:2234–2239. doi: 10.1073/pnas.1117280109. PubMed DOI PMC
Anderson T.M., Clay M.C., Cioffi A.G., Diaz K.A., Hisao G.S., Tuttle M.D., Nieuwkoop A.J., Comellas G., Maryum N., Wang S. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 2014;10:400–406. doi: 10.1038/nchembio.1496. PubMed DOI PMC
Rivnay B., Wakim J., Avery K., Petrochenko P., Myung J.H., Kozak D., Yoon S., Landrau N., Nivorozhkin A. Critical process parameters in manufacturing of liposomal formulations of amphotericin B. Int. J. Pharm. 2019;565:447–457. doi: 10.1016/j.ijpharm.2019.04.052. PubMed DOI
Marcano R.G.d.J.V., Tominaga T.T., Khalil N.M., Pedroso L.S., Mainardes R.M. Chitosan functionalized poly (ε-caprolactone) nanoparticles for amphotericin B delivery. Carbohydr. Polym. 2018;202:345–354. doi: 10.1016/j.carbpol.2018.08.142. PubMed DOI
Tragiannidis A., Gkampeta A., Vousvouki M., Vasileiou E., Groll A.H. Antifungal agents and the kidney: Pharmacokinetics, clinical nephrotoxicity, and interactions. Expert. Opin. Drug Saf. 2021;20:1061–1074. doi: 10.1080/14740338.2021.1922667. PubMed DOI
Aversa F., Busca A., Candoni A., Cesaro S., Girmenia C., Luppi M., Nosari A.M., Pagano L., Romani L., Rossi G. Liposomal amphotericin B (AmBisome®) at beginning of its third decade of clinical use. J. Chemother. 2017;29:131–143. doi: 10.1080/1120009X.2017.1306183. PubMed DOI
Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal formulations in clinical use: An updated review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012. PubMed DOI PMC
Stone N.R., Bicanic T., Salim R., Hope W. Liposomal amphotericin B (AmBisome®): A review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76:485–500. doi: 10.1007/s40265-016-0538-7. PubMed DOI PMC
Adler-Moore J., Proffitt R.T. AmBisome: Liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother. 2002;49:21–30. doi: 10.1093/jac/49.suppl_1.21. PubMed DOI
Walker L., Sood P., Lenardon M.D., Milne G., Olson J., Jensen G., Wolf J., Casadevall A., Adler-Moore J., Gow N.A. The viscoelastic properties of the fungal cell wall allow traffic of AmBisome as intact liposome vesicles. mBio. 2018;9:e02383-17. doi: 10.1128/mBio.02383-17. PubMed DOI PMC
Readio J.D., Bittman R. Equilibrium binding of amphotericin B and its methyl ester and borate complex to sterols. Biochim. Biophys. Acta (BBA)-Biomembr. 1982;685:219–224. doi: 10.1016/0005-2736(82)90103-1. PubMed DOI
Adler-Moore J., Lewis R.E., Brüggemann R.J.M., Rijnders B.J.A., Groll A.H., Walsh T.J. Preclinical Safety, Tolerability, Pharmacokinetics, Pharmacodynamics, and Antifungal Activity of Liposomal Amphotericin B. Clin. Infect. Dis. 2019;68:S244–S259. doi: 10.1093/cid/ciz064. PubMed DOI PMC
Kelemen H., Orgovan G., Szekely-Szentmiklosi B. The pharmaceutical chemistry of azole antifungals. Acta Pharm. Hung. 2016;86:85–98. PubMed
Lindsay J., Teh B.W., Micklethwaite K., Slavin M. Azole antifungals and new targeted therapies for hematological malignancy. Curr. Opin. Infect. Dis. 2019;32:538–545. doi: 10.1097/QCO.0000000000000611. PubMed DOI
Pristov K., Ghannoum M. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019;25:792–798. doi: 10.1016/j.cmi.2019.03.028. PubMed DOI
Abd El-Baky R.M., Sandle T., John J., Abuo-Rahma G.E.-D.A., Hetta H.F. A novel mechanism of action of ketoconazole: Inhibition of the NorA efflux pump system and biofilm formation in multidrug-resistant Staphylococcus aureus. Infect. Drug Resist. 2019;12:1703. doi: 10.2147/IDR.S201124. PubMed DOI PMC
Jangir P., Kalra S., Tanwar S., Bari V.K. Azole resistance in Candida auris: Mechanisms and combinatorial therapy. Apmis. 2023;131:442–462. doi: 10.1111/apm.13336. PubMed DOI
Ledoux M.-P., Guffroy B., Nivoix Y., Simand C., Herbrecht R. Invasive pulmonary aspergillosis. Semin. Respir. Crit. Care Med. 2020;41:080–098. doi: 10.1055/s-0039-3401990. PubMed DOI
Denning D.W. Echinocandin antifungal drugs. Lancet. 2003;362:1142–1151. doi: 10.1016/S0140-6736(03)14472-8. PubMed DOI
Szymański M., Chmielewska S., Czyżewska U., Malinowska M., Tylicki A. Echinocandins—Structure, mechanism of action and use in antifungal therapy. J. Enzym. Inhib. Med. Chem. 2022;37:876–894. doi: 10.1080/14756366.2022.2050224. PubMed DOI PMC
Hoofnagle J.H. Drug-Induced Liver Disease. Elsevier; Amsterdam, The Netherlands: 2013. LiverTox: A website on drug-induced liver injury; pp. 725–732.
Cappelletty D., Eiselstein-McKitrick K. The echinocandins. Pharmacotherapy. 2007;27:369–388. doi: 10.1592/phco.27.3.369. PubMed DOI
Gobernado M., Cantón E. [Anidulafungin] Rev. Esp. Quim. 2008;21:99–114. PubMed
Dowell J.A., Schranz J., Baruch A., Foster G. Safety and Pharmacokinetics of Coadministered Voriconazole and Anidulafungin. J. Clin. Pharmacol. 2005;45:1373–1382. doi: 10.1177/0091270005281234. PubMed DOI
Vazquez J.A. The safety of anidulafungin. Expert. Opin. Drug Saf. 2006;5:751–758. doi: 10.1517/14740338.5.6.751. PubMed DOI
Stover K.R., Farley J.M., Kyle P.B., Cleary J.D. Cardiac toxicity of some echinocandin antifungals. Expert. Opin. Drug Saf. 2014;13:5–14. doi: 10.1517/14740338.2013.829036. PubMed DOI
Stover K.R., Cleary J.D. Cardiac response to centrally administered echinocandin antifungals. J. Pharm. Pharmacol. 2015;67:1279–1283. doi: 10.1111/jphp.12429. PubMed DOI
Vazquez J.A., Sobel J.D. Anidulafungin: A novel echinocandin. Clin. Infect. Dis. 2006;43:215–222. doi: 10.1086/505204. PubMed DOI
Vera-González N., Bailey-Hytholt C.M., Langlois L., de Camargo Ribeiro F., de Souza Santos E.L., Junqueira J.C., Shukla A. Anidulafungin liposome nanoparticles exhibit antifungal activity against planktonic and biofilm Candida albicans. J. Biomed. Mater. Res. Part A. 2020;108:2263–2276. doi: 10.1002/jbm.a.36984. PubMed DOI
Maxfield L., Preuss C.V., Bermudez R. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2022. Terbinafine. PubMed
Bondaryk M., Kurzątkowski W., Staniszewska M. Antifungal agents commonly used in the superficial and mucosal candidiasis treatment: Mode of action and resistance development. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2013;30:293–301. doi: 10.5114/pdia.2013.38358. PubMed DOI PMC
Delma F.Z., Al-Hatmi A.M.S., Brüggemann R.J.M., Melchers W.J.G., de Hoog S., Verweij P.E., Buil J.B. Molecular Mechanisms of 5-Fluorocytosine Resistance in Yeasts and Filamentous Fungi. J. Fungi. 2021;7:909. doi: 10.3390/jof7110909. PubMed DOI PMC
Stott K.E., Loyse A., Jarvis J.N., Alufandika M., Harrison T.S., Mwandumba H.C., Day J.N., Lalloo D.G., Bicanic T., Perfect J.R., et al. Cryptococcal meningoencephalitis: Time for action. Lancet Infect. Dis. 2021;21:e259–e271. doi: 10.1016/S1473-3099(20)30771-4. PubMed DOI
Singulani J.d.L., Galeane M.C., Ramos M.D., Gomes P.C., Dos Santos C.T., De Souza B.M., Palma M.S., Fusco Almeida A.M., Mendes Giannini M.J.S. Antifungal activity, toxicity, and membranolytic action of a mastoparan analog peptide. Front. Cell. Infect. Microbiol. 2019;9:419. doi: 10.3389/fcimb.2019.00419. PubMed DOI PMC
Domínguez J.M., Kelly V.A., Kinsman O.S., Marriott M.S., Gómez de las Heras F., Martín J.J. Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob. Agents Chemother. 1998;42:2274–2278. doi: 10.1128/AAC.42.9.2274. PubMed DOI PMC
Shao Y., Molestak E., Su W., Stankevič M., Tchórzewski M. Sordarin- An anti-fungal antibiotic with a unique modus operandi. Br. J. Pharmacol. 2022;179:1125–1145. doi: 10.1111/bph.15724. PubMed DOI
Olson J.M., Troxell T. StatPearls. StatPearls Publishing LLC.; Treasure Island, FL, USA: 2022. Griseofulvin.
Odom A.R. The triphenylethylenes, a novel class of antifungals. mBio. 2014;5:e01126-14. doi: 10.1128/mBio.01126-14. PubMed DOI PMC
Ben-Ami R., Kontoyiannis D.P. Resistance to Antifungal Drugs. Infect. Dis. Clin. N. Am. 2021;35:279–311. doi: 10.1016/j.idc.2021.03.003. PubMed DOI
Parente-Rocha J.A., Bailão A.M., Amaral A.C., Taborda C.P., Paccez J.D., Borges C.L., Pereira M. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi. Mediat. Inflamm. 2017;2017:9870679. doi: 10.1155/2017/9870679. PubMed DOI PMC
Beekman C.N., Ene I.V. Short-term evolution strategies for host adaptation and drug escape in human fungal pathogens. PLoS Pathog. 2020;16:e1008519. doi: 10.1371/journal.ppat.1008519. PubMed DOI PMC
Lockhart S.R., Etienne K.A., Vallabhaneni S., Farooqi J., Chowdhary A., Govender N.P., Colombo A.L., Calvo B., Cuomo C.A., Desjardins C.A., et al. Simultaneous Emergence of Multidrug-Resistant Candida auris on 3 Continents Confirmed by Whole-Genome Sequencing and Epidemiological Analyses. Clin. Infect. Dis. 2016;64:134–140. doi: 10.1093/cid/ciw691. PubMed DOI PMC
CDC Candida auris. [(accessed on 1 March 2024)]; Available online: https://www.cdc.gov/candida-auris/index.html.
Vallabhaneni S., Baggs J., Tsay S., Srinivasan A.R., Jernigan J.A., Jackson B.R. Trends in antifungal use in US hospitals, 2006–2012. J. Antimicrob. Chemother. 2018;73:2867–2875. doi: 10.1093/jac/dky270. PubMed DOI
Perfect J.R., Dismukes W.E., Dromer F., Goldman D.L., Graybill J.R., Hamill R.J., Harrison T.S., Larsen R.A., Lortholary O., Nguyen M.H., et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin. Infect. Dis. 2010;50:291–322. doi: 10.1086/649858. PubMed DOI PMC
Pappas P.G., Kauffman C.A., Andes D.R., Clancy C.J., Marr K.A., Ostrosky-Zeichner L., Reboli A.C., Schuster M.G., Vazquez J.A., Walsh T.J., et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015;62:e1–e50. doi: 10.1093/cid/civ933. PubMed DOI PMC
Ullmann A.J., Aguado J.M., Arikan-Akdagli S., Denning D.W., Groll A.H., Lagrou K., Lass-Flörl C., Lewis R.E., Munoz P., Verweij P.E. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018;24:e1–e38. doi: 10.1016/j.cmi.2018.01.002. PubMed DOI
Lionakis M.S., Lewis R.E., Kontoyiannis D.P. Breakthrough invasive mold infections in the hematology patient: Current concepts and future directions. Clin. Infect. Dis. 2018;67:1621–1630. doi: 10.1093/cid/ciy473. PubMed DOI PMC
Marichal P., Koymans L., Willemsens S., Bellens D., Verhasselt P., Luyten W., Borgers M., Ramaekers F.C.S., Odds F.C., Vanden Bossche H. Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Pt 10Microbiology. 1999;145:2701–2713. doi: 10.1099/00221287-145-10-2701. PubMed DOI
Flowers S.A., Colón B., Whaley S.G., Schuler M.A., Rogers P.D. Contribution of clinically derived mutations in ERG11 to azole resistance in Candida albicans. Antimicrob. Agents Chemother. 2015;59:450–460. doi: 10.1128/AAC.03470-14. PubMed DOI PMC
Morschhäuser J., Barker K.S., Liu T.T., Bla B.W.J., Homayouni R., Rogers P.D. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog. 2007;3:e164. doi: 10.1371/journal.ppat.0030164. PubMed DOI PMC
Coste A.T., Karababa M., Ischer F., Bille J., Sanglard D. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot. Cell. 2004;3:1639–1652. doi: 10.1128/EC.3.6.1639-1652.2004. PubMed DOI PMC
Pfaller M.A., Diekema D.J., Turnidge J.D., Castanheira M., Jones R.N. Twenty Years of the SENTRY Antifungal Surveillance Program: Results for Candida Species From 1997-2016. Open Forum Infect. Dis. 2019;6:S79–s94. doi: 10.1093/ofid/ofy358. PubMed DOI PMC
Pais P., Califórnia R., Galocha M., Viana R., Ola M., Cavalheiro M., Takahashi-Nakaguchi A., Chibana H., Butler G., Teixeira M.C. Candida glabrata Transcription Factor Rpn4 Mediates Fluconazole Resistance through Regulation of Ergosterol Biosynthesis and Plasma Membrane Permeability. Antimicrob. Agents Chemother. 2020;64:e00554-20. doi: 10.1128/AAC.00554-20. PubMed DOI PMC
Galocha M., Viana R., Pais P., Silva-Dias A., Cavalheiro M., Miranda I.M., Van Ende M., Souza C.S., Costa C., Branco J., et al. Genomic evolution towards azole resistance in Candida glabrata clinical isolates unveils the importance of CgHxt4/6/7 in azole accumulation. Commun. Biol. 2022;5:1118. doi: 10.1038/s42003-022-04087-0. PubMed DOI PMC
Ramage G., Rajendran R., Sherry L., Williams C. Fungal biofilm resistance. Int. J. Microbiol. 2012;2012:528521. doi: 10.1155/2012/528521. PubMed DOI PMC
Khalil M.A., Ahmed F.A., Elkhateeb A.F., Mahmoud E.E., Ahmed M.I., Ahmed R.I., Hosni A., Alghamdi S., Kabrah A., Dablool A.S. Virulence characteristics of biofilm-forming Acinetobacter baumannii in clinical isolates using a Galleria mellonella Model. Microorganisms. 2021;9:2365. doi: 10.3390/microorganisms9112365. PubMed DOI PMC
Nett J.E., Crawford K., Marchillo K., Andes D.R. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob. Agents Chemother. 2010;54:3505–3508. doi: 10.1128/AAC.00227-10. PubMed DOI PMC
Segal B.H. Aspergillosis. N. Engl. J. Med. 2009;360:1870–1884. doi: 10.1056/NEJMra0808853. PubMed DOI
Lamoth F., Chung S.J., Damonti L., Alexander B.D. Changing epidemiology of invasive mold infections in patients receiving azole prophylaxis. Clin. Infect. Dis. 2017;64:1619–1621. doi: 10.1093/cid/cix130. PubMed DOI
Warrilow A.G., Melo N., Martel C.M., Parker J.E., Nes W.D., Kelly S.L., Kelly D.E. Expression, purification, and characterization of Aspergillus fumigatus sterol 14-alpha demethylase (CYP51) isoenzymes A and B. Antimicrob. Agents Chemother. 2010;54:4225–4234. doi: 10.1128/AAC.00316-10. PubMed DOI PMC
Snelders E., van der Lee H.A., Kuijpers J., Rijs A.J., Varga J., Samson R.A., Mellado E., Donders A.R., Melchers W.J., Verweij P.E. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med. 2008;5:e219. doi: 10.1371/journal.pmed.0050219. PubMed DOI PMC
Moore L.C., Brenneman T.B., Waliullah S., Bock C.H., Ali M.E. Multiple Mutations and Overexpression in the CYP51A and B Genes Lead to Decreased Sensitivity of Venturia effusa to Tebuconazole. Curr. Issues Mol. Biol. 2022;44:670–685. doi: 10.3390/cimb44020047. PubMed DOI PMC
Perlin D.S., Rautemaa-Richardson R., Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017;17:e383–e392. doi: 10.1016/S1473-3099(17)30316-X. PubMed DOI
Alastruey-Izquierdo A., Alcazar-Fuoli L., Cuenca-Estrella M. Antifungal susceptibility profile of cryptic species of Aspergillus. Mycopathologia. 2014;178:427–433. doi: 10.1007/s11046-014-9775-z. PubMed DOI
Xiong Q., Hassan S.A., Wilson W.K., Han X.Y., May G.S., Tarrand J.J., Matsuda S.P. Cholesterol import by Aspergillus fumigatus and its influence on antifungal potency of sterol biosynthesis inhibitors. Antimicrob. Agents Chemother. 2005;49:518–524. doi: 10.1128/AAC.49.2.518-524.2005. PubMed DOI PMC
Gold J.A.W., Seagle E.E., Nadle J., Barter D.M., Czaja C.A., Johnston H., Farley M.M., Thomas S., Harrison L.H., Fischer J., et al. Treatment Practices for Adults with Candidemia at 9 Active Surveillance Sites-United States, 2017–2018. Clin. Infect. Dis. 2021;73:1609–1616. doi: 10.1093/cid/ciab512. PubMed DOI PMC
Perlin D.S. Echinocandin Resistance in Candida. Clin. Infect. Dis. 2015;61((Suppl. S6)):S612–S617. doi: 10.1093/cid/civ791. PubMed DOI PMC
Pfaller M.A., Castanheira M., Lockhart S.R., Ahlquist A.M., Messer S.A., Jones R.N. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J. Clin. Microbiol. 2012;50:1199–1203. doi: 10.1128/JCM.06112-11. PubMed DOI PMC
Beyda N.D., John J., Kilic A., Alam M.J., Lasco T.M., Garey K.W. FKS mutant Candida glabrata: Risk factors and outcomes in patients with candidemia. Clin. Infect. Dis. 2014;59:819–825. doi: 10.1093/cid/ciu407. PubMed DOI
Farmakiotis D., Tarrand J.J., Kontoyiannis D.P. Drug-resistant Candida glabrata infection in cancer patients. Emerg. Infect. Dis. 2014;20:1833–1840. doi: 10.3201/eid2011.140685. PubMed DOI PMC
Dudiuk C., Macedo D., Leonardelli F., Theill L., Cabeza M.S., Gamarra S., Garcia-Effron G. Molecular Confirmation of the Relationship between Candida guilliermondii Fks1p Naturally Occurring Amino Acid Substitutions and Its Intrinsic Reduced Echinocandin Susceptibility. Antimicrob. Agents Chemother. 2017;61:e02644-16. doi: 10.1128/AAC.02644-16. PubMed DOI PMC
Garcia-Effron G., Katiyar S.K., Park S., Edlind T.D., Perlin D.S. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 2008;52:2305–2312. doi: 10.1128/AAC.00262-08. PubMed DOI PMC
Desnos-Ollivier M., Bretagne S., Raoux D., Hoinard D., Dromer F., Dannaoui E. Mutations in the fks1 gene in Candida albicans, C. tropicalis, and C. krusei correlate with elevated caspofungin MICs uncovered in AM3 medium using the method of the European Committee on Antibiotic Susceptibility Testing. Antimicrob. Agents Chemother. 2008;52:3092–3098. doi: 10.1128/AAC.00088-08. PubMed DOI PMC
Costa-de-Oliveira S., Marcos Miranda I., Silva R.M., Pinto E.S.A., Rocha R., Amorim A., Gonçalves Rodrigues A., Pina-Vaz C. FKS2 mutations associated with decreased echinocandin susceptibility of Candida glabrata following anidulafungin therapy. Antimicrob. Agents Chemother. 2011;55:1312–1314. doi: 10.1128/AAC.00589-10. PubMed DOI PMC
Wiederhold N.P. Antifungal resistance: Current trends and future strategies to combat. Infect. Drug Resist. 2017;10:249–259. doi: 10.2147/IDR.S124918. PubMed DOI PMC
e Silva A.P., Miranda I.M., Branco J., Oliveira P., Faria-Ramos I., Silva R.M., Rodrigues A.G., Costa-de-Oliveira S. FKS1 mutation associated with decreased echinocandin susceptibility of Aspergillus fumigatus following anidulafungin exposure. Sci. Rep. 2020;10:11976. doi: 10.1038/s41598-020-68706-8. PubMed DOI PMC
Jiménez-Ortigosa C., Moore C., Denning D.W., Perlin D.S. Emergence of echinocandin resistance due to a point mutation in the fks1 gene of Aspergillus fumigatus in a patient with chronic pulmonary aspergillosis. Antimicrob. Agents Chemother. 2017;61:e01277-17. doi: 10.1128/AAC.01277-17. PubMed DOI PMC
Rocha E.M.F., Garcia-Effron G., Park S., Perlin D.S. A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob. Agents Chemother. 2007;51:4174–4176. doi: 10.1128/AAC.00917-07. PubMed DOI PMC
Gardiner R., Souteropoulos P., Park S., Perlin D. Characterization of Aspergillus fumigatus mutants with reduced susceptibility to caspofungin. Med. Mycol. 2005;43:S299–S305. doi: 10.1080/13693780400029023. PubMed DOI
Arendrup M.C., Perkhofer S., Howard S.J., Garcia-Effron G., Vishukumar A., Perlin D., Lass-Flörl C. Establishing in vitro-in vivo correlations for Aspergillus fumigatus: The challenge of azoles versus echinocandins. Antimicrob. Agents Chemother. 2008;52:3504–3511. doi: 10.1128/AAC.00190-08. PubMed DOI PMC
Castanheira M., Woosley L.N., Diekema D.J., Messer S.A., Jones R.N., Pfaller M.A. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob. Agents Chemother. 2010;54:2655–2659. doi: 10.1128/AAC.01711-09. PubMed DOI PMC
Garcia-Effron G., Lee S., Park S., Cleary J.D., Perlin D.S. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta-D-glucan synthase: Implication for the existing susceptibility breakpoint. Antimicrob. Agents Chemother. 2009;53:3690–3699. doi: 10.1128/AAC.00443-09. PubMed DOI PMC
Garcia-Effron G., Chua D.J., Tomada J.R., DiPersio J., Perlin D.S., Ghannoum M., Bonilla H. Novel FKS mutations associated with echinocandin resistance in Candida species. Antimicrob. Agents Chemother. 2010;54:2225–2227. doi: 10.1128/AAC.00998-09. PubMed DOI PMC
Katiyar S., Pfaller M., Edlind T. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob. Agents Chemother. 2006;50:2892–2894. doi: 10.1128/AAC.00349-06. PubMed DOI PMC
Thompson G.R., 3rd, Wiederhold N.P., Vallor A.C., Villareal N.C., Lewis J.S., 2nd, Patterson T.F. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob. Agents Chemother. 2008;52:3783–3785. doi: 10.1128/AAC.00473-08. PubMed DOI PMC
Gomes M.Z., Lewis R.E., Kontoyiannis D.P. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin. Microbiol. Rev. 2011;24:411–445. doi: 10.1128/cmr.00056-10. PubMed DOI PMC
Ellis D. Amphotericin B: Spectrum and resistance. J. Antimicrob. Chemother. 2002;49((Suppl. S1)):7–10. doi: 10.1093/jac/49.suppl_1.7. PubMed DOI
Hull C.M., Bader O., Parker J.E., Weig M., Gross U., Warrilow A.G., Kelly D.E., Kelly S.L. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob. Agents Chemother. 2012;56:6417–6421. doi: 10.1128/AAC.01145-12. PubMed DOI PMC
Sanglard D., Ischer F., Parkinson T., Falconer D., Bille J. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob. Agents Chemother. 2003;47:2404–2412. doi: 10.1128/AAC.47.8.2404-2412.2003. PubMed DOI PMC
Martel C.M., Parker J.E., Bader O., Weig M., Gross U., Warrilow A.G., Kelly D.E., Kelly S.L. A clinical isolate of Candida albicans with mutations in ERG11 (encoding sterol 14alpha-demethylase) and ERG5 (encoding C22 desaturase) is cross resistant to azoles and amphotericin B. Antimicrob. Agents Chemother. 2010;54:3578–3583. doi: 10.1128/AAC.00303-10. PubMed DOI PMC
Ballo M.K.S., Rtimi S., Kiwi J., Pulgarin C., Entenza J.M., Bizzini A. Fungicidal activity of copper-sputtered flexible surfaces under dark and actinic light against azole-resistant Candida albicans and Candida glabrata. J. Photochem Photobiol B. 2017;174:229–234. doi: 10.1016/j.jphotobiol.2017.07.030. PubMed DOI
Spengler G., Gajdács M., Donadu M.G., Usai M., Marchetti M., Ferrari M., Mazzarello V., Zanetti S., Nagy F., Kovács R. Evaluation of the Antimicrobial and Antivirulent Potential of Essential Oils Isolated from Juniperus oxycedrus L. ssp. macrocarpa Aerial Parts. Microorganisms. 2022;10:758. doi: 10.3390/microorganisms10040758. PubMed DOI PMC
Donadu M.G., Peralta-Ruiz Y., Usai D., Maggio F., Molina-Hernandez J.B., Rizzo D., Bussu F., Rubino S., Zanetti S., Paparella A., et al. Colombian Essential Oil of Ruta graveolens against Nosocomial Antifungal Resistant Candida Strains. J. Fungi. 2021;7:383. doi: 10.3390/jof7050383. PubMed DOI PMC
Bua A., Usai D., Donadu M.G., Delgado Ospina J., Paparella A., Chaves-Lopez C., Serio A., Rossi C., Zanetti S., Molicotti P. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms. Nat. Prod. Res. 2018;32:2869–2871. doi: 10.1080/14786419.2017.1385014. PubMed DOI
Rtimi S., Pulgarin C., Sanjines R., Kiwi J. Innovative semi-transparent nanocomposite films presenting photo-switchable behavior and leading to a reduction of the risk of infection under sunlight. RSC Adv. 2013;3:16345–16348. doi: 10.1039/c3ra42762e. DOI
Pinna A., Donadu M.G., Usai D., Dore S., Boscia F., Zanetti S. In Vitro Antimicrobial Activity of a New Ophthalmic Solution Containing Hexamidine Diisethionate 0.05% (Keratosept) Cornea. 2020;39:1415–1418. doi: 10.1097/ICO.0000000000002375. PubMed DOI
Pinna A., Donadu M.G., Usai D., Dore S., D’Amico-Ricci G., Boscia F., Zanetti S. In vitro antimicrobial activity of a new ophthalmic solution containing povidone-iodine 0.6% (IODIM®) Acta Ophthalmol. 2020;98:e178–e180. doi: 10.1111/aos.14243. PubMed DOI
Donadu M.G., Usai D., Marchetti M., Usai M., Mazzarello V., Molicotti P., Montesu M.A., Delogu G., Zanetti S. Antifungal activity of oils macerates of North Sardinia plants against Candida species isolated from clinical patients with candidiasis. Nat. Prod. Res. 2020;34:3280–3284. doi: 10.1080/14786419.2018.1557175. PubMed DOI
Juliano C., Cossu M., Pigozzi P., Rassu G., Giunchedi P. Preparation, in vitro characterization and preliminary in vivo evaluation of buccal polymeric films containing chlorhexidine. AAPS PharmSciTech. 2008;9:1153–1158. doi: 10.1208/s12249-008-9153-6. PubMed DOI PMC
Forsberg K., Woodworth K., Walters M., Berkow E.L., Jackson B., Chiller T., Vallabhaneni S. Candida auris: The recent emergence of a multidrug-resistant fungal pathogen. Med. Mycol. 2018;57:1–12. doi: 10.1093/mmy/myy054. PubMed DOI
Gupta A.K., Foley K.A., Versteeg S.G. New Antifungal Agents and New Formulations Against Dermatophytes. Mycopathologia. 2017;182:127–141. doi: 10.1007/s11046-016-0045-0. PubMed DOI
Koga H., Nanjoh Y., Makimura K., Tsuboi R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med. Mycol. 2009;47:640–647. doi: 10.1080/13693780802541518. PubMed DOI
McCormack P.L. Isavuconazonium: First Global Approval. Drugs. 2015;75:817–822. doi: 10.1007/s40265-015-0398-6. PubMed DOI
Kovanda L.L., Maher R., Hope W.W. Isavuconazonium sulfate: A new agent for the treatment of invasive aspergillosis and invasive mucormycosis. Expert Rev. Clin. Pharmacol. 2016;9:887–897. doi: 10.1080/17512433.2016.1185361. PubMed DOI
Rauseo A.M., Coler-Reilly A., Larson L., Spec A. Hope on the Horizon: Novel Fungal Treatments in Development. Open Forum Infect Dis. 2020;7:ofaa016. doi: 10.1093/ofid/ofaa016. PubMed DOI PMC
Wang L., Zhang M., Guo J., Guo W., Zhong N., Shen H., Cai J., Zhu Z., Wu W. In vitro activities of the tetrazole VT-1161 compared with itraconazole and fluconazole against Cryptococcus and non-albicans Candida species. Mycologia. 2021;113:918–925. doi: 10.1080/00275514.2021.1913949. PubMed DOI
Brand S.R., Sobel J.D., Nyirjesy P., Ghannoum M.A., Schotzinger R.J., Degenhardt T.P. A Randomized Phase 2 Study of VT-1161 for the Treatment of Acute Vulvovaginal Candidiasis. Clin. Infect. Dis. 2021;73:e1518–e1524. doi: 10.1093/cid/ciaa1204. PubMed DOI PMC
Schell W.A., Jones A.M., Garvey E.P., Hoekstra W.J., Schotzinger R.J., Alexander B.D. Fungal CYP51 Inhibitors VT-1161 and VT-1129 Exhibit Strong In Vitro Activity against Candida glabrata and C. krusei Isolates Clinically Resistant to Azole and Echinocandin Antifungal Compounds. Antimicrob. Agents Chemother. 2017;61:e01817-16. doi: 10.1128/AAC.01817-16. PubMed DOI PMC
Wiederhold N.P., Najvar L.K., Garvey E.P., Brand S.R., Xu X., Ottinger E.A., Alimardanov A., Cradock J., Behnke M., Hoekstra W.J., et al. The Fungal Cyp51 Inhibitor VT-1129 Is Efficacious in an Experimental Model of Cryptococcal Meningitis. Antimicrob. Agents Chemother. 2018;62:e01071-18. doi: 10.1128/AAC.01071-18. PubMed DOI PMC
Wiederhold N.P., Lockhart S.R., Najvar L.K., Berkow E.L., Jaramillo R., Olivo M., Garvey E.P., Yates C.M., Schotzinger R.J., Catano G., et al. The Fungal Cyp51-Specific Inhibitor VT-1598 Demonstrates In Vitro and In Vivo Activity against Candida auris. Antimicrob. Agents Chemother. 2019;63:e02233-18. doi: 10.1128/AAC.02233-18. PubMed DOI PMC
Garvey E.P., Sharp A.D., Warn P.A., Yates C.M., Atari M., Thomas S., Schotzinger R.J. The novel fungal CYP51 inhibitor VT-1598 displays classic dose-dependent antifungal activity in murine models of invasive aspergillosis. Med. Mycol. 2020;58:505–513. doi: 10.1093/mmy/myz092. PubMed DOI
Garvey E.P., Sharp A.D., Warn P.A., Yates C.M., Schotzinger R.J. The novel fungal CYP51 inhibitor VT-1598 is efficacious alone and in combination with liposomal amphotericin B in a murine model of Cryptococcal meningitis. J. Antimicrob. Chemother. 2018;73:2815–2822. doi: 10.1093/jac/dky242. PubMed DOI
Wiederhold N.P. Review of T-2307, an Investigational Agent That Causes Collapse of Fungal Mitochondrial Membrane Potential. J. Fungi. 2021;7:130. doi: 10.3390/jof7020130. PubMed DOI PMC
Yamashita K., Miyazaki T., Fukuda Y., Mitsuyama J., Saijo T., Shimamura S., Yamamoto K., Imamura Y., Izumikawa K., Yanagihara K., et al. The Novel Arylamidine T-2307 Selectively Disrupts Yeast Mitochondrial Function by Inhibiting Respiratory Chain Complexes. Antimicrob. Agents Chemother. 2019;63:e00374-19. doi: 10.1128/AAC.00374-19. PubMed DOI PMC
Wiederhold N.P., Najvar L.K., Jaramillo R., Olivo M., Patterson H., Connell A., Fukuda Y., Mitsuyama J., Catano G., Patterson T.F. The Novel Arylamidine T-2307 Demonstrates In Vitro and In Vivo Activity against Candida auris. Antimicrob. Agents Chemother. 2020;64:e02198-19. doi: 10.1128/AAC.02198-19. PubMed DOI PMC
Wiederhold N.P., Najvar L.K., Fothergill A.W., Bocanegra R., Olivo M., McCarthy D.I., Fukuda Y., Mitsuyama J., Patterson T.F. The novel arylamidine T-2307 demonstrates in vitro and in vivo activity against echinocandin-resistant Candida glabrata. J. Antimicrob. Chemother. 2016;71:692–695. doi: 10.1093/jac/dkv398. PubMed DOI PMC
Abe M., Nakamura S., Kinjo Y., Masuyama Y., Mitsuyama J., Kaku M., Miyazaki Y. Efficacy of T-2307, a novel arylamidine, against ocular complications of disseminated candidiasis in mice. J. Antimicrob. Chemother. 2019;74:1327–1332. doi: 10.1093/jac/dkz020. PubMed DOI
Nishikawa H., Fukuda Y., Mitsuyama J., Tashiro M., Tanaka A., Takazono T., Saijo T., Yamamoto K., Nakamura S., Imamura Y., et al. In vitro and in vivo antifungal activities of T-2307, a novel arylamidine, against Cryptococcus gattii: An emerging fungal pathogen. J. Antimicrob. Chemother. 2017;72:1709–1713. doi: 10.1093/jac/dkx020. PubMed DOI PMC
Shields R.K., Kline E.G., Healey K.R., Kordalewska M., Perlin D.S., Nguyen M.H., Clancy C.J. Spontaneous mutational frequency and FKS mutation rates vary by echinocandin agent against Candida glabrata. Antimicrob. Agents Chemother. 2019;63:e01692-18. doi: 10.1128/AAC.01692-18. PubMed DOI PMC
Zimbeck A.J., Iqbal N., Ahlquist A.M., Farley M.M., Harrison L.H., Chiller T., Lockhart S.R. FKS mutations and elevated echinocandin MIC values among Candida glabrata isolates from US population-based surveillance. Antimicrob. Agents Chemother. 2010;54:5042–5047. doi: 10.1128/AAC.00836-10. PubMed DOI PMC
Garcia-Effron G. Rezafungin-Mechanisms of Action, Susceptibility and Resistance: Similarities and Differences with the Other Echinocandins. J. Fungi. 2020;6:262. doi: 10.3390/jof6040262. PubMed DOI PMC
Ong V., Hough G., Schlosser M., Bartizal K., Balkovec J.M., James K.D., Krishnan B.R. Preclinical evaluation of the stability, safety, and efficacy of CD101, a novel echinocandin. Antimicrob. Agents Chemother. 2016;60:6872–6879. doi: 10.1128/AAC.00701-16. PubMed DOI PMC
Thompson G.R., Soriano A., Honore P.M., Bassetti M., Cornely O.A., Kollef M., Kullberg B.J., Pullman J., Hites M., Fortun J., et al. Efficacy and safety of rezafungin and caspofungin in candidaemia and invasive candidiasis: Pooled data from two prospective randomised controlled trials. Lancet Infect. Dis. 2024;24:319–328. PubMed
Ong V., James K.D., Smith S., Krishnan B.R. Pharmacokinetics of the novel echinocandin CD101 in multiple animal species. Antimicrob. Agents Chemother. 2017;61:e01626-16. doi: 10.1128/AAC.01626-16. PubMed DOI PMC
Mazur P., Morin N., Baginsky W., El-Sherbeini M., Clemas J.A., Nielsen J.B., Foor F. Differential expression and function of two homologous subunits of yeast 1, 3-beta-D-glucan synthase. Mol. Cell. Biol. 1995;15:5671–5681. doi: 10.1128/MCB.15.10.5671. PubMed DOI PMC
Wiederhold N.P., Locke J.B., Daruwala P., Bartizal K. Rezafungin (CD101) demonstrates potent in vitro activity against Aspergillus, including azole-resistant Aspergillus fumigatus isolates and cryptic species. J. Antimicrob. Chemother. 2018;73:3063–3067. doi: 10.1093/jac/dky280. PubMed DOI
Latgé J.-P., Beauvais A., Chamilos G. The cell wall of the human fungal pathogen Aspergillus fumigatus: Biosynthesis, organization, immune response, and virulence. Annu. Rev. Microbiol. 2017;71:99–116. doi: 10.1146/annurev-micro-030117-020406. PubMed DOI
Jiménez-Ortigosa C., Perez W.B., Angulo D., Borroto-Esoda K., Perlin D.S. De Novo Acquisition of Resistance to SCY-078 in Candida glabrata Involves FKS Mutations That both Overlap and Are Distinct from Those Conferring Echinocandin Resistance. Antimicrob. Agents Chemother. 2017;61:e00833-17. doi: 10.1128/AAC.00833-17. PubMed DOI PMC
Schwebke J.R., Sobel R., Gersten J.K., Sussman S.A., Lederman S.N., Jacobs M.A., Chappell B.T., Weinstein D.L., Moffett A.H., Azie N.E., et al. Ibrexafungerp Versus Placebo for Vulvovaginal Candidiasis Treatment: A Phase 3, Randomized, Controlled Superiority Trial (VANISH 303) Clin. Infect. Dis. 2022;74:1979–1985. doi: 10.1093/cid/ciab750. PubMed DOI PMC
Sobel R., Nyirjesy P., Ghannoum M.A., Delchev D.A., Azie N.E., Angulo D., Harriott I.A., Borroto-Esoda K., Sobel J.D. Efficacy and safety of oral ibrexafungerp for the treatment of acute vulvovaginal candidiasis: A global phase 3, randomised, placebo-controlled superiority study (VANISH 306) BJOG. 2022;129:412–420. doi: 10.1111/1471-0528.16972. PubMed DOI PMC
Nyirjesy P., Schwebke J.R., Angulo D.A., Harriott I.A., Azie N.E., Sobel J.D. Phase 2 Randomized Study of Oral Ibrexafungerp Versus Fluconazole in Vulvovaginal Candidiasis. Clin. Infect. Dis. 2022;74:2129–2135. doi: 10.1093/cid/ciab841. PubMed DOI PMC
Goje O., Sobel R., Nyirjesy P., Goldstein S.R., Spitzer M., Faught B., Larson S., King T., Azie N.E., Angulo D., et al. Oral Ibrexafungerp for Vulvovaginal Candidiasis Treatment: An Analysis of VANISH 303 and VANISH 306. J. Women’s Health. 2022;32:178–186. doi: 10.1089/jwh.2022.0132. PubMed DOI PMC
Wu Y., Zhang M., Yang Y., Ding X., Yang P., Huang K., Hu X., Zhang M., Liu X., Yu H. Structures and mechanism of chitin synthase and its inhibition by antifungal drug Nikkomycin Z. Cell Discov. 2022;8:129. doi: 10.1038/s41421-022-00495-y. PubMed DOI PMC
Sass G., Larwood D.J., Martinez M., Chatterjee P., Xavier M.O., Stevens D.A. Nikkomycin Z against Disseminated Coccidioidomycosis in a Murine Model of Sustained-Release Dosing. Antimicrob. Agents Chemother. 2021;65:e0028521. doi: 10.1128/AAC.00285-21. PubMed DOI PMC
Bentz M.L., Nunnally N., Lockhart S.R., Sexton D.J., Berkow E.L. Antifungal activity of nikkomycin Z against Candida auris. J. Antimicrob. Chemother. 2021;76:1495–1497. doi: 10.1093/jac/dkab052. PubMed DOI
Kovács R., Nagy F., Tóth Z., Bozó A., Balázs B., Majoros L. Synergistic effect of nikkomycin Z with caspofungin and micafungin against Candida albicans and Candida parapsilosis biofilms. Lett. Appl. Microbiol. 2019;69:271–278. doi: 10.1111/lam.13204. PubMed DOI
Nakamura I., Ohsumi K., Takeda S., Katsumata K., Matsumoto S., Akamatsu S., Mitori H., Nakai T. ASP2397 is a novel natural compound that exhibits rapid and potent fungicidal activity against Aspergillus species through a specific transporter. Antimicrob. Agents Chemother. 2019;63:e02689-18. doi: 10.1128/AAC.02689-18. PubMed DOI PMC
Nakamura I., Yoshimura S., Masaki T., Takase S., Ohsumi K., Hashimoto M., Furukawa S., Fujie A. ASP2397: A novel antifungal agent produced by Acremonium persicinum MF-347833. J Antibiot. 2017;70:45–51. doi: 10.1038/ja.2016.107. PubMed DOI
Ikai K., Takesako K., Shiomi K., Moriguchi M., Umeda Y., Yamamoto J., Kato I., Naganawa H. Structure of aureobasidin A. J. Antibiot. 1991;44:925–933. doi: 10.7164/antibiotics.44.925. PubMed DOI
Takesako K., Kuroda H., Inoue T., Haruna F., Yoshikawa Y., Kato I., Uchida K., Hiratani T., Yamaguchi H. Biological properties of aureobasidin A, a cyclic depsipeptide antifungal antibiotic. J. Antibiot. 1993;46:1414–1420. doi: 10.7164/antibiotics.46.1414. PubMed DOI
De Cremer K., Staes I., Delattin N., Cammue B.P., Thevissen K., De Brucker K. Combinatorial drug approaches to tackle Candida albicans biofilms. Expert. Rev. Anti Infect. Ther. 2015;13:973–984. doi: 10.1586/14787210.2015.1056162. PubMed DOI
Fioriti S., Brescini L., Pallotta F., Canovari B., Morroni G., Barchiesi F. Antifungal Combinations against Candida Species: From Bench to Bedside. J. Fungi. 2022;8:1077. doi: 10.3390/jof8101077. PubMed DOI PMC
Vitale R.G. Role of Antifungal Combinations in Difficult to Treat Candida Infections. J. Fungi. 2021;7:731. doi: 10.3390/jof7090731. PubMed DOI PMC
Spitzer M., Robbins N., Wright G.D. Combinatorial strategies for combating invasive fungal infections. Virulence. 2017;8:169–185. doi: 10.1080/21505594.2016.1196300. PubMed DOI PMC
Kim J.H., Cheng L.W., Chan K.L., Tam C.C., Mahoney N., Friedman M., Shilman M.M., Land K.M. Antifungal Drug Repurposing. Antibiotics. 2020;9:812. doi: 10.3390/antibiotics9110812. PubMed DOI PMC
Das R., Kotra K., Singh P., Loh B., Leptihn S., Bajpai U. Alternative Treatment Strategies for Secondary Bacterial and Fungal Infections Associated with COVID-19. Infect. Dis. Ther. 2022;11:53–78. doi: 10.1007/s40121-021-00559-8. PubMed DOI PMC
Wiederhold N.P., Patterson T.F., Srinivasan A., Chaturvedi A.K., Fothergill A.W., Wormley F.L., Ramasubramanian A.K., Lopez-Ribot J.L. Repurposing auranofin as an antifungal: In vitro activity against a variety of medically important fungi. Virulence. 2017;8:138–142. doi: 10.1080/21505594.2016.1196301. PubMed DOI PMC
Butts A., Martin J.A., DiDone L., Bradley E.K., Mutz M., Krysan D.J. Structure-activity relationships for the antifungal activity of selective estrogen receptor antagonists related to tamoxifen. PLoS ONE. 2015;10:e0125927. doi: 10.1371/journal.pone.0125927. PubMed DOI PMC
Sun W., Park Y.D., Sugui J.A., Fothergill A., Southall N., Shinn P., McKew J.C., Kwon-Chung K.J., Zheng W., Williamson P.R. Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens. PLoS ONE. 2013;8:e70506. doi: 10.1371/journal.pone.0070506. PubMed DOI PMC
Truong M., Monahan L.G., Carter D.A., Charles I.G. Repurposing drugs to fast-track therapeutic agents for the treatment of cryptococcosis. PeerJ. 2018;6:e4761. doi: 10.7717/peerj.4761. PubMed DOI PMC
Ribeiro N.Q., Costa M.C., Magalhães T.F.F., Carneiro H.C.S., Oliveira L.V., Fontes A.C.L., Santos J.R.A., Ferreira G.F., Araujo G.R.S., Alves V., et al. Atorvastatin as a promising anticryptococcal agent. Int. J. Antimicrob. Agents. 2017;49:695–702. doi: 10.1016/j.ijantimicag.2017.04.005. PubMed DOI
Scriven J.E., Tenforde M.W., Levitz S.M., Jarvis J.N. Modulating host immune responses to fight invasive fungal infections. Curr. Opin. Microbiol. 2017;40:95–103. doi: 10.1016/j.mib.2017.10.018. PubMed DOI PMC
Sam Q.H., Yew W.S., Seneviratne C.J., Chang M.W., Chai L.Y.A. Immunomodulation as Therapy for Fungal Infection: Are We Closer? Front. Microbiol. 2018;9:1612. doi: 10.3389/fmicb.2018.01612. PubMed DOI PMC
WHO. FAO Guidelines for the Evaluation of Probiotics in Food. [(accessed on 26 February 2025)]. Available online: http://www.fao.org/food/food-safety-quality/a-z-index/probiotics/en/
Hasslöf P., Hedberg M., Twetman S., Stecksén-Blicks C. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli--an in vitro study. BMC Oral. Health. 2010;10:18. doi: 10.1186/1472-6831-10-18. PubMed DOI PMC
Ujaoney S., Chandra J., Faddoul F., Chane M., Wang J., Taifour L., Mamtani M.R., Thakre T.P., Kulkarni H., Mukherjee P., et al. In vitro effect of over-the-counter probiotics on the ability of Candida albicans to form biofilm on denture strips. J. Dent. Hyg. 2014;88:183–189. PubMed
Matsubara V.H., Wang Y., Bandara H., Mayer M.P.A., Samaranayake L.P. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl. Microbiol. Biotechnol. 2016;100:6415–6426. doi: 10.1007/s00253-016-7527-3. PubMed DOI
Amara A.A., Shibl A. Role of Probiotics in health improvement, infection control and disease treatment and management. Saudi Pharm. J. 2015;23:107–114. doi: 10.1016/j.jsps.2013.07.001. PubMed DOI PMC
Kunyeit L., Kurrey N.K., Anu-Appaiah K.A., Rao R.P. Probiotic Yeasts Inhibit Virulence of Non-albicans Candida Species. mBio. 2019;10:e02307-19. doi: 10.1128/mBio.02307-19. PubMed DOI PMC
Bhatt A.P., Redinbo M.R., Bultman S.J. The role of the microbiome in cancer development and therapy. CA Cancer J. Clin. 2017;67:326–344. doi: 10.3322/caac.21398. PubMed DOI PMC
Ashraf R., Shah N.P. Immune system stimulation by probiotic microorganisms. Crit. Rev. Food Sci. Nutr. 2014;54:938–956. doi: 10.1080/10408398.2011.619671. PubMed DOI
Wu Y., Hu S., Wu C., Gu F., Yang Y. Probiotics: Potential Novel Therapeutics Against Fungal Infections. Front. Cell Infect. Microbiol. 2021;11:793419. doi: 10.3389/fcimb.2021.793419. PubMed DOI PMC
Cavalheiro M., Teixeira M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018;5:28. doi: 10.3389/fmed.2018.00028. PubMed DOI PMC
Mermel L.A., Allon M., Bouza E., Craven D.E., Flynn P., O’Grady N.P., Raad I.I., Rijnders B.J., Sherertz R.J., Warren D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009;49:1–45. doi: 10.1086/599376. PubMed DOI PMC
O’Grady N.P., Alexander M., Burns L.A., Dellinger E.P., Garland J., Heard S.O., Lipsett P.A., Masur H., Mermel L.A., Pearson M.L., et al. Guidelines for the prevention of intravascular catheter-related infections. Am. J. Infect. Control. 2011;39:S1–S34. doi: 10.1016/j.ajic.2011.01.003. PubMed DOI
Reitzel R.A., Rosenblatt J., Hirsh-Ginsberg C., Murray K., Chaftari A.M., Hachem R., Raad I. In Vitro Assessment of the Antimicrobial Efficacy of Optimized Nitroglycerin-Citrate-Ethanol as a Nonantibiotic, Antimicrobial Catheter Lock Solution for Prevention of Central Line-Associated Bloodstream Infections. Antimicrob. Agents Chemother. 2016;60:5175–5181. doi: 10.1128/AAC.00254-16. PubMed DOI PMC
Alonso B., Pérez-Granda M.J., Rodríguez-Huerta A., Rodríguez C., Bouza E., Guembe M. The optimal ethanol lock therapy regimen for treatment of biofilm-associated catheter infections: An in-vitro study. J. Hosp. Infect. 2018;100:e187–e195. doi: 10.1016/j.jhin.2018.04.007. PubMed DOI
Balestrino D., Souweine B., Charbonnel N., Lautrette A., Aumeran C., Traoré O., Forestier C. Eradication of microorganisms embedded in biofilm by an ethanol-based catheter lock solution. Nephrol. Dial. Transpl. 2009;24:3204–3209. doi: 10.1093/ndt/gfp187. PubMed DOI
Li X., Yu B., Li H., Liu Z., Fu X., Jiao P., Wang L. Drug Clues for the Treatment of Fungal Catheter-Related Bloodstream Infection with Antifungal Lock Therapy. Drug Des. Devel Ther. 2025;19:683–701. doi: 10.2147/DDDT.S501664. PubMed DOI PMC
Gudiol C., Nicolae S., Royo-Cebrecos C., Aguilar-Guisado M., Montero I., Martín-Gandul C., Perayre M., Berbel D., Encuentra M., Arnan M., et al. Administration of taurolidine-citrate lock solution for prevention of central venous catheter infection in adult neutropenic haematological patients: A randomised, double-blinded, placebo-controlled trial (TAURCAT) Trials. 2018;19:264. doi: 10.1186/s13063-018-2647-y. PubMed DOI PMC
van den Bosch C.H., Jeremiasse B., van der Bruggen J.T., Frakking F.N.J., Loeffen Y.G.T., van de Ven C.P., van der Steeg A.F.W., Fiocco M.F., van de Wetering M.D., Wijnen M.H.W.A. The efficacy of taurolidine containing lock solutions for the prevention of central-venous-catheter-related bloodstream infections: A systematic review and meta-analysis. J. Hosp. Infect. 2022;123:143–155. doi: 10.1016/j.jhin.2021.10.022. PubMed DOI
Öncü S. In vitro effectiveness of antifungal lock solutions on catheters infected with Candida species. J. Infect. Chemother. 2011;17:634–639. doi: 10.1007/s10156-011-0224-3. PubMed DOI
Chan A.K.Y., Tsang Y.C., Chu C.H., Tsang C.S.P. Aspirin as an Antifungal-Lock Agent in Inhibition of Candidal Biofilm Formation in Surgical Catheters. Infect. Drug Resist. 2021;14:1427–1433. doi: 10.2147/IDR.S308262. PubMed DOI PMC
Gálvez-Iriqui A.C., Plascencia-Jatomea M., Bautista-Baños S. Lysozymes: Characteristics, mechanism of action and technological applications on the control of pathogenic microorganisms. Rev. Mex. J. Phytopathol. 2020;38:360–383. doi: 10.18781/R.MEX.FIT.2005-6. DOI
Ibrahim H.R., Imazato K., Ono H. Human lysozyme possesses novel antimicrobial peptides within its N-terminal domain that target bacterial respiration. J. Agric. Food Chem. 2011;59:10336–10345. doi: 10.1021/jf2020396. PubMed DOI
Hall A.J., Morroll S., Tighe P., Götz F., Falcone F.H. Human chitotriosidase is expressed in the eye and lacrimal gland and has an antimicrobial spectrum different from lysozyme. Microbes Infect. 2008;10:69–78. doi: 10.1016/j.micinf.2007.10.007. PubMed DOI
Cho W.S., Kim T.H., Lee H.M., Lee S.H., Lee S.H., Yoo J.H., Kim Y.S., Lee S.H. Increased expression of acidic mammalian chitinase and chitotriosidase in the nasal mucosa of patients with allergic rhinitis. Laryngoscope. 2010;120:870–875. doi: 10.1002/lary.20863. PubMed DOI
Samaranayake Y.H., Samaranayake L.P., Wu P.C., So M. The antifungal effect of lactoferrin and lysozyme on Candida krusei and Candida albicans. Apmis. 1997;105:875–883. doi: 10.1111/j.1699-0463.1997.tb05097.x. PubMed DOI
Fernandes K.E., Carter D.A. The Antifungal Activity of Lactoferrin and Its Derived Peptides: Mechanisms of Action and Synergy with Drugs against Fungal Pathogens. Front. Microbiol. 2017;8:2. doi: 10.3389/fmicb.2017.00002. PubMed DOI PMC
Takakura N., Wakabayashi H., Ishibashi H., Teraguchi S., Tamura Y., Yamaguchi H., Abe S. Oral lactoferrin treatment of experimental oral candidiasis in mice. Antimicrob. Agents Chemother. 2003;47:2619–2623. doi: 10.1128/AAC.47.8.2619-2623.2003. PubMed DOI PMC
Adeyemi O.S., Arowolo A.T., Hetta H.F., Al-Rejaie S., Rotimi D., Batiha G.E.-S. Apoferritin and Apoferritin-Capped Metal Nanoparticles Inhibit Arginine Kinase of Trypanosoma brucei. Molecules. 2020;25:3432. doi: 10.3390/molecules25153432. PubMed DOI PMC
Tomee J.F., Hiemstra P.S., Heinzel-Wieland R., Kauffman H.F. Antileukoprotease: An endogenous protein in the innate mucosal defense against fungi. J. Infect. Dis. 1997;176:740–747. doi: 10.1086/514098. PubMed DOI
Melo M.N., Ferre R., Castanho M.A. Antimicrobial peptides: Linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol. 2009;7:245–250. doi: 10.1038/nrmicro2095. PubMed DOI
Jia F., Wang J., Peng J., Zhao P., Kong Z., Wang K., Yan W., Wang R. The in vitro, in vivo antifungal activity and the action mode of Jelleine-I against Candida species. Amino Acids. 2018;50:229–239. doi: 10.1007/s00726-017-2507-1. PubMed DOI
Wagener J., Schneider J.J., Baxmann S., Kalbacher H., Borelli C., Nuding S., Küchler R., Wehkamp J., Kaeser M.D., Mailänder-Sanchez D., et al. A peptide derived from the highly conserved protein GAPDH is involved in tissue protection by different antifungal strategies and epithelial immunomodulation. J. Investig. Dermatol. 2013;133:144–153. doi: 10.1038/jid.2012.254. PubMed DOI PMC
Selsted M.E., Ouellette A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 2005;6:551–557. doi: 10.1038/ni1206. PubMed DOI
Krishnakumari V., Rangaraj N., Nagaraj R. Antifungal activities of human beta-defensins HBD-1 to HBD-3 and their C-terminal analogs Phd1 to Phd3. Antimicrob. Agents Chemother. 2009;53:256–260. doi: 10.1128/AAC.00470-08. PubMed DOI PMC
Thevissen K., Kristensen H.H., Thomma B.P., Cammue B.P., François I.E. Therapeutic potential of antifungal plant and insect defensins. Drug Discov. Today. 2007;12:966–971. doi: 10.1016/j.drudis.2007.07.016. PubMed DOI
Schittek B., Hipfel R., Sauer B., Bauer J., Kalbacher H., Stevanovic S., Schirle M., Schroeder K., Blin N., Meier F., et al. Dermcidin: A novel human antibiotic peptide secreted by sweat glands. Nat. Immunol. 2001;2:1133–1137. doi: 10.1038/ni732. PubMed DOI
Arai S., Yoshino T., Fujimura T., Maruyama S., Nakano T., Mukuno A., Sato N., Katsuoka K. Mycostatic effect of recombinant dermcidin against Trichophyton rubrum and reduced dermcidin expression in the sweat of tinea pedis patients. J. Dermatol. 2015;42:70–76. doi: 10.1111/1346-8138.12664. PubMed DOI
van Eijk M., Boerefijn S., Cen L., Rosa M., Morren M.J.H., van der Ent C.K., Kraak B., Dijksterhuis J., Valdes I.D., Haagsman H.P., et al. Cathelicidin-inspired antimicrobial peptides as novel antifungal compounds. Med. Mycol. 2020;58:1073–1084. doi: 10.1093/mmy/myaa014. PubMed DOI PMC
Benincasa M., Scocchi M., Pacor S., Tossi A., Nobili D., Basaglia G., Busetti M., Gennaro R. Fungicidal activity of five cathelicidin peptides against clinically isolated yeasts. J. Antimicrob. Chemother. 2006;58:950–959. doi: 10.1093/jac/dkl382. PubMed DOI
Bezerra L.P., Freitas C.D.T., Silva A.F.B., Amaral J.L., Neto N.A.S., Silva R.G.G., Parra A.L.C., Goldman G.H., Oliveira J.T.A., Mesquita F.P., et al. Synergistic Antifungal Activity of Synthetic Peptides and Antifungal Drugs against Candida albicans and C. parapsilosis Biofilms. Antibiotics. 2022;11:553. doi: 10.3390/antibiotics11050553. PubMed DOI PMC
Aguiar T.K.B., Neto N.A.S., Freitas C.D.T., Silva A.F.B., Bezerra L.P., Malveira E.A., Branco L.A.C., Mesquita F.P., Goldman G.H., Alencar L.M.R., et al. Antifungal Potential of Synthetic Peptides against Cryptococcus neoformans: Mechanism of Action Studies Reveal Synthetic Peptides Induce Membrane-Pore Formation, DNA Degradation, and Apoptosis. Pharmaceutics. 2022;14:1678. doi: 10.3390/pharmaceutics14081678. PubMed DOI PMC
Sharma K., Aaghaz S., Maurya I.K., Rudramurthy S.M., Singh S., Kumar V., Tikoo K., Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem. 2022;127:106002. doi: 10.1016/j.bioorg.2022.106002. PubMed DOI
Abd Ellah N.H., Ahmed E.A., Abd-Ellatief R.B., Ali M.F., Zahran A.M., Hetta H.F. Metoclopramide nanoparticles modulate immune response in a diabetic rat model: Association with regulatory T cells and proinflammatory cytokines. Int. J. Nanomed. 2019;14:2383. doi: 10.2147/IJN.S196842. PubMed DOI PMC
Abd Ellah N.H., Gad S.F., Muhammad K., E Batiha G., Hetta H.F. Nanomedicine as a promising approach for diagnosis, treatment and prophylaxis against COVID-19. Nanomedicine. 2020;15:2085–2102. doi: 10.2217/nnm-2020-0247. PubMed DOI PMC
Abd Ellah N.H., Tawfeek H.M., John J., Hetta H.F. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine. 2019;14:1471–1491. doi: 10.2217/nnm-2018-0348. PubMed DOI
Abdellatif A.A., Tawfeek H.M., Abdelfattah A., Batiha G.E.-S., Hetta H.F. Recent updates in COVID-19 with emphasis on inhalation therapeutics: Nanostructured and targeting systems. J. Drug Deliv. Sci. Technol. 2021;63:102435. doi: 10.1016/j.jddst.2021.102435. PubMed DOI PMC
Abid S.A., Muneer A.A., Al-Kadmy I.M., Sattar A.A., Beshbishy A.M., Batiha G.E.-S., Hetta H.F. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021;273:119117. doi: 10.1016/j.lfs.2021.119117. PubMed DOI PMC
Chaturvedi V.K., Yadav N., Rai N.K., Ellah N.H.A., Bohara R.A., Rehan I.F., Marraiki N., Batiha G.E.-S., Hetta H.F., Singh M. Pleurotus sajor-caju-mediated synthesis of silver and gold nanoparticles active against colon cancer cell lines: A new era of herbonanoceutics. Molecules. 2020;25:3091. doi: 10.3390/molecules25133091. PubMed DOI PMC
Eid A.M., Fouda A., Niedbała G., Hassan S.E.-D., Salem S.S., Abdo A.M., Hetta H.F., Shaheen T.I. Endophytic Streptomyces laurentii mediated green synthesis of Ag-NPs with antibacterial and anticancer properties for developing functional textile fabric properties. Antibiotics. 2020;9:641. doi: 10.3390/antibiotics9100641. PubMed DOI PMC
Hetta H.F., Ramadan Y.N., Al-Harbi A.I., Ahmed E.A., Battah B., Abd Ellah N.H., Zanetti S., Donadu M.G. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines. 2023;11:413. doi: 10.3390/biomedicines11020413. PubMed DOI PMC
Sayad R., Abdelsabour H.A., Farhat S.M., Omer N.G., Ahmed M.M., Elsayh I.K., Ibrahim I.H., Algammal A.M., AL-Kadmy I.M.S., Batiha G.E.-S., et al. Applications of nanotechnology in the fight against coronavirus disease 2019. Rev. Res. Med. Microbiol. 2023;34:153–166. doi: 10.1097/MRM.0000000000000335. DOI
Gupta P., Meher M.K., Tripathi S., Poluri K.M. Nanoformulations for dismantling fungal biofilms: The latest arsenals of antifungal therapy. Mol. Asp. Med. 2024;98:101290. doi: 10.1016/j.mam.2024.101290. PubMed DOI
Izadi A., Paknia F., Roostaee M., Mousavi S.A.A., Barani M. Advancements in nanoparticle-based therapies for multidrug-resistant candidiasis infections: A comprehensive review. Nanotechnology. 2024;35:332001. doi: 10.1088/1361-6528/ad4bed. PubMed DOI
Du W., Gao Y., Liu L., Sai S., Ding C. Striking Back against Fungal Infections: The Utilization of Nanosystems for Antifungal Strategies. Int. J. Mol. Sci. 2021;22:10104. doi: 10.3390/ijms221810104. PubMed DOI PMC
Mathur M., Devi V.K. Potential of novel drug delivery systems in the management of topical candidiasis. J. Drug Target. 2017;25:685–703. doi: 10.1080/1061186X.2017.1331352. PubMed DOI
Abo-Shama U.H., El-Gendy H., Mousa W.S., Hamouda R.A., Yousuf W.E., Hetta H.F., Abdeen E.E. Synergistic and antagonistic effects of metal nanoparticles in combination with antibiotics against some reference strains of pathogenic microorganisms. Infect. Drug Resist. 2020;13:351. doi: 10.2147/IDR.S234425. PubMed DOI PMC
Hetta H.F., Al-Kadmy I., Khazaal S.S., Abbas S., Suhail A., El-Mokhtar M.A., Ellah N.H.A., Ahmed E.A., Abd-Ellatief R.B., El-Masry E.A. Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci. Rep. 2021;11:10751. doi: 10.1038/s41598-021-90208-4. PubMed DOI PMC
Saleh H., Nassar A.M., Noreldin A.E., Samak D., Elshony N., Wasef L., Elewa Y.H., Hassan S.M., Saati A.A., Hetta H.F. Chemo-protective potential of cerium oxide nanoparticles against fipronil-induced oxidative stress, apoptosis, inflammation and reproductive dysfunction in male white albino rats. Molecules. 2020;25:3479. doi: 10.3390/molecules25153479. PubMed DOI PMC
Wani I.A., Ahmad T., Manzoor N. Size and shape dependant antifungal activity of gold nanoparticles: A case study of Candida. Colloids Surf. B Biointerfaces. 2013;101:162–170. doi: 10.1016/j.colsurfb.2012.06.005. PubMed DOI
Shaikh S., Nazam N., Rizvi S.M.D., Ahmad K., Baig M.H., Lee E.J., Choi I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int. J. Mol. Sci. 2019;20:2468. doi: 10.3390/ijms20102468. PubMed DOI PMC
Huang T., Li X., Maier M., O’Brien-Simpson N.M., Heath D.E., O’Connor A.J. Using inorganic nanoparticles to fight fungal infections in the antimicrobial resistant era. Acta Biomater. 2023;158:56–79. doi: 10.1016/j.actbio.2023.01.019. PubMed DOI
Rahimi H., Roudbarmohammadi S., Delavari H.H., Roudbary M. Antifungal effects of indolicidin-conjugated gold nanoparticles against fluconazole-resistant strains of Candida albicans isolated from patients with burn infection. Int. J. Nanomed. 2019;14:5323–5338. doi: 10.2147/IJN.S207527. PubMed DOI PMC
Jebali A., Hajjar F.H., Hekmatimoghaddam S., Kazemi B., De La Fuente J.M., Rashidi M. Triangular gold nanoparticles conjugated with peptide ligands: A new class of inhibitor for Candida albicans secreted aspartyl proteinase. Biochem. Pharmacol. 2014;90:349–355. doi: 10.1016/j.bcp.2014.05.020. PubMed DOI
Selvaraj M., Pandurangan P., Ramasami N., Rajendran S.B., Sangilimuthu S.N., Perumal P. Highly Potential Antifungal Activity of Quantum-Sized Silver Nanoparticles Against Candida albicans. Appl. Biochem. Biotechnol. 2014;173:55–66. doi: 10.1007/s12010-014-0782-9. PubMed DOI
Al Aboody M.S. Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis. Artif. Cells Nanomed. Biotechnol. 2019;47:2107–2113. doi: 10.1080/21691401.2019.1620257. PubMed DOI
Rónavári A., Igaz N., Gopisetty M.K., Szerencsés B., Kovács D., Papp C., Vágvölgyi C., Boros I.M., Kónya Z., Kiricsi M., et al. Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int. J. Nanomed. 2018;13:695–703. doi: 10.2147/IJN.S152010. PubMed DOI PMC
Bharti S., Singh B., Kumar S., Kumar R., Kumar J. Synthesis of bio-stabilized silver nanoparticles using Roccella montagnei, their anticandidal capacities & potential to inhibit the virulence factors in fluconazole-resistant Candida albicans. World J. Microbiol. Biotechnol. 2024;40:158. doi: 10.1007/s11274-024-03928-w. PubMed DOI
Siddiqi K.S., Ur Rahman A., Tajuddin. Husen, A Properties of Zinc Oxide Nanoparticles and Their Activity Against Microbes. Nanoscale Res. Lett. 2018;13:141. doi: 10.1186/s11671-018-2532-3. PubMed DOI PMC
Nazari R. Synergistic antifungal effect of fluconazole combined with ZnO nanoparticles against Candida albicans strains from vaginal candidiasis. Med. Lab. J. 2020;14:26–32.
Manzano M., Vallet-Regí M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020;30:1902634. doi: 10.1002/adfm.201902634. DOI
Montazeri M., Razzaghi-Abyaneh M., Nasrollahi S., Maibach H., Nafisi S. Enhanced topical econazole antifungal efficacy by amine-functionalized silica nanoparticles. Bull. Mater. Sci. 2020;43:13. doi: 10.1007/s12034-019-1974-2. DOI
Mas N., Galiana I., Hurtado S., Mondragón L., Bernardos A., Sancenón F., Marcos M.D., Amorós P., Abril-Utrillas N., Martínez-Máñez R., et al. Enhanced antifungal efficacy of tebuconazole using gated pH-driven mesoporous nanoparticles. Int. J. Nanomed. 2014;9:2597–2606. doi: 10.2147/ijn.s59654. PubMed DOI PMC
Kamaly N., Xiao Z., Valencia P.M., Radovic-Moreno A.F., Farokhzad O.C. Targeted polymeric therapeutic nanoparticles: Design, development and clinical translation. Chem. Soc. Rev. 2012;41:2971–3010. doi: 10.1039/c2cs15344k. PubMed DOI PMC
Abd El-Aziz F.E.-Z.A., Hetta H.F., Abdelhamid B.N., Abd Ellah N.H. Antibacterial and wound-healing potential of PLGA/spidroin nanoparticles: A study on earthworms as a human skin model. Nanomedicine. 2022;17:353–365. doi: 10.2217/nnm-2021-0325. PubMed DOI
Hetta H.F., Ahmed E.A., Hemdan A.G., El-Deek H.E., Abd-Elregal S., Abd Ellah N.H. Modulation of rifampicin-induced hepatotoxicity using poly (lactic-co-glycolic acid) nanoparticles: A study on rat and cell culture models. Nanomedicine. 2020;15:1375–1390. doi: 10.2217/nnm-2020-0001. PubMed DOI
Gondim B.L.C., Castellano L.R.C., de Castro R.D., Machado G., Carlo H.L., Valença A.M.G., de Carvalho F.G. Effect of chitosan nanoparticles on the inhibition of Candida spp. biofilm on denture base surface. Arch. Oral. Biol. 2018;94:99–107. doi: 10.1016/j.archoralbio.2018.07.004. PubMed DOI
Costa A.F., da Silva J.T., Martins J.A., Rocha V.L., de Menezes L.B., Amaral A.C. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans. Braz. J. Microbiol. 2024;55:143–154. doi: 10.1007/s42770-023-01168-y. PubMed DOI PMC
Xu N., Gu J., Zhu Y., Wen H., Ren Q., Chen J. Efficacy of intravenous amphotericin B-polybutylcyanoacrylate nanoparticles against cryptococcal meningitis in mice. Int. J. Nanomed. 2011;6:905–913. doi: 10.2147/IJN.S17503. PubMed DOI PMC
Tang Y., Wu S., Lin J., Cheng L., Zhou J., Xie J., Huang K., Wang X., Yu Y., Chen Z., et al. Nanoparticles Targeted against Cryptococcal Pneumonia by Interactions between Chitosan and Its Peptide Ligand. Nano Lett. 2018;18:6207–6213. doi: 10.1021/acs.nanolett.8b02229. PubMed DOI
Panahi Y., Farshbaf M., Mohammadhosseini M., Mirahadi M., Khalilov R., Saghfi S., Akbarzadeh A. Recent advances on liposomal nanoparticles: Synthesis, characterization and biomedical applications. Artif. Cells Nanomed. Biotechnol. 2017;45:788–799. doi: 10.1080/21691401.2017.1282496. PubMed DOI
Bowden R., Chandrasekar P., White M.H., Li X., Pietrelli L., Gurwith M., van Burik J.A., Laverdiere M., Safrin S., Wingard J.R. A double-blind, randomized, controlled trial of amphotericin B colloidal dispersion versus amphotericin B for treatment of invasive aspergillosis in immunocompromised patients. Clin. Infect. Dis. 2002;35:359–366. doi: 10.1086/341401. PubMed DOI
Olson J.A., Adler-Moore J.P., Jensen G.M., Schwartz J., Dignani M.C., Proffitt R.T. Comparison of the physicochemical, antifungal, and toxic properties of two liposomal amphotericin B products. Antimicrob. Agents Chemother. 2008;52:259–268. doi: 10.1128/AAC.00870-07. PubMed DOI PMC
Spellberg B., Ibrahim A.S., Chin-Hong P.V., Kontoyiannis D.P., Morris M.I., Perfect J.R., Fredricks D., Brass E.P. The Deferasirox–AmBisome Therapy for Mucormycosis (DEFEAT Mucor) study: A randomized, double-blinded, placebo-controlled trial. J. Antimicrob. Chemother. 2012;67:715–722. doi: 10.1093/jac/dkr375. PubMed DOI PMC
Lanternier F., Poiree S., Elie C., Garcia-Hermoso D., Bakouboula P., Sitbon K., Herbrecht R., Wolff M., Ribaud P., Lortholary O. Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin B (L-AMB) for the initial treatment of mucormycosis. J. Antimicrob. Chemother. 2015;70:3116–3123. doi: 10.1093/jac/dkv236. PubMed DOI
Luo G., Gebremariam T., Lee H., French S.W., Wiederhold N.P., Patterson T.F., Filler S.G., Ibrahim A.S. Efficacy of liposomal amphotericin B and posaconazole in intratracheal models of murine mucormycosis. Antimicrob. Agents Chemother. 2013;57:3340–3347. doi: 10.1128/AAC.00313-13. PubMed DOI PMC
Cornely O.A., Maertens J., Bresnik M., Ebrahimi R., Ullmann A.J., Bouza E., Heussel C.P., Lortholary O., Rieger C., Boehme A. Liposomal amphotericin b as initial therapy for invasive mold infection: A randomized trial comparing a high–loading dose regimen with standard dosing (AmBiLoad Trial) Clin. Infect. Dis. 2007;44:1289–1297. doi: 10.1086/514341. PubMed DOI
Francis P., Lee J.W., Hoffman A., Peter J., Francesconi A., Bacher J., Shelhamer J., Pizzo P.A., Walsh T.J. Efficacy of unilamellar liposomal amphotericin B in treatment of pulmonary aspergillosis in persistently granulocytopenic rabbits: The potential role of bronchoalveolar D-mannitol and serum galactomannan as markers of infection. J. Infect. Dis. 1994;169:356–368. doi: 10.1093/infdis/169.2.356. PubMed DOI
Clemons K., Stevens D. The contribution of animal models of aspergillosis to understanding pathogenesis, therapy and virulence. Med. Mycol. 2005;43:S101–S110. doi: 10.1080/13693780500051919. PubMed DOI
Arrieta A.C., Shea K., Dhar V., Cleary J.P., Kukreja S., Morris M., Vargas-Shiraishi O.M., Ashouri N., Singh J. Once-weekly liposomal amphotericin B as Candida prophylaxis in very low birth weight premature infants: A prospective, randomized, open-label, placebo-controlled pilot study. Clin. Ther. 2010;32:265–271. doi: 10.1016/j.clinthera.2010.02.016. PubMed DOI
Juster-Reicher A., Leibovitz E., Linder N., Amitay M., Flidel-Rimon O., Even-Tov S., Mogilner B., Barzilai A. Liposomal amphotericin B (AmBisome) in the treatment of neonatal candidiasis in very low birth weight infants. Infection. 2000;28:223–226. doi: 10.1007/s150100070040. PubMed DOI
Kuse E.-R., Chetchotisakd P., da Cunha C.A., Ruhnke M., Barrios C., Raghunadharao D., Sekhon J.S., Freire A., Ramasubramanian V., Demeyer I. Micafungin versus liposomal amphotericin B for candidaemia and invasive candidosis: A phase III randomised double-blind trial. Lancet. 2007;369:1519–1527. doi: 10.1016/S0140-6736(07)60605-9. PubMed DOI
Groll A.H., Giri N., Petraitis V., Petraitiene R., Candelario M., Bacher J.S., Piscitelli S.C., Walsh T.J. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J. Infect. Dis. 2000;182:274–282. doi: 10.1086/315643. PubMed DOI
Leenders A.C., Reiss P., Portegies P., Clezy K., Hop W.C., Hoy J., Borleffs J.C., Allworth T., Kauffmann R.H., Jones P. Liposomal amphotericin B (AmBisome) compared with amphotericin B both followed by oral fluconazole in the treatment of AIDS-associated Cryptococcal meningitis. Aids. 1997;11:1463–1471. doi: 10.1097/00002030-199712000-00010. PubMed DOI
Johnson P.C., Wheat L.J., Cloud G.A., Goldman M., Lancaster D., Bamberger D.M., Powderly W.G., Hafner R., Kauffman C.A., Dismukes W.E. Safety and efficacy of liposomal amphotericin B compared with conventional amphotericin B for induction therapy of histoplasmosis in patients with AIDS. Ann. Intern. Med. 2002;137:105–109. doi: 10.7326/0003-4819-137-2-200207160-00008. PubMed DOI
Nucci F., Nouer S.A., Capone D., Anaissie E., Nucci M. Fusariosis. Semin. Respir. Crit. Care Med. 2015;36:706–714. doi: 10.1055/s-0035-1562897. PubMed DOI
Paosupap J., Basit A., Sajomsang W., Nalinbejapun S., Sripetthong S., Ovatlarnporn C. Evaluation of the antifungal properties of nanoliposomes containing rhinacanthin-C isolated from the leaves of Rhinacanthus nasutus. World J. Microbiol. Biotechnol. 2024;40:129. doi: 10.1007/s11274-024-03916-0. PubMed DOI