Revealing the nuclearity of iron citrate complexes at biologically relevant conditions
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
K-135607
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
BO/00113/23/8
Bolyai János Research Scolarship, Hungarian Academy of Sciences
PubMed
38110781
PubMed Central
PMC11006783
DOI
10.1007/s10534-023-00562-1
PII: 10.1007/s10534-023-00562-1
Knihovny.cz E-zdroje
- Klíčová slova
- Citrate ligands, EPR, Iron, Iron metabolism, Mössbauer spectroscopy,
- MeSH
- citráty chemie MeSH
- kyselina citronová chemie MeSH
- železité sloučeniny * chemie MeSH
- železo * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- citráty MeSH
- ferric citrate MeSH Prohlížeč
- kyselina citronová MeSH
- železité sloučeniny * MeSH
- železo * MeSH
Citric acid plays an ubiquitous role in the complexation of essential metals like iron and thus it has a key function making them biologically available. For this, iron(III) citrate complexes are considered among the most significant coordinated forms of ferric iron that take place in biochemical processes of all living organisms. Although these systems hold great biological relevance, their coordination chemistry has not been fully elucidated yet. The current study aimed to investigate the speciation of iron(III) citrate using Mössbauer and electron paramagnetic resonance spectroscopies. Our aim was to gain insights into the structure and nuclearity of the complexes depending on the pH and iron to citrate ratio. By applying the frozen solution technique, the results obtained directly reflect the iron speciation present in the aqueous solution. At 1:1 iron:citrate molar ratio, polynuclear species prevailed forming most probably a trinuclear structure. In the case of citrate excess, the coexistence of several monoiron species with different coordination environments was confirmed. The stability of the polynuclear complexes was checked in the presence of organic solvents.
Zobrazit více v PubMed
Akladios FN, Andrew SD, Parkinson CJ. Investigation of the cytotoxic implications of metal chelators against melanoma and approaches to improve the cytotoxicity profiles of metal coordinating agents. Biometals. 2016;29:789–805. doi: 10.1007/s10534-016-9945-1. PubMed DOI
Ariga T, Hazama K, Yanagisawa S, Yoneyama T. Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci Plant Nutr. 2014;60(4):460–469. doi: 10.1080/00380768.2014.922406. DOI
Banerjee S, Paul S, Nguyen LT, Chu BC, Vogel HJ. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics. 2016;8(1):125–133. doi: 10.1039/c5mt00218d. PubMed DOI
Bartolomé J, Filoti G, Kuncser V, et al. Magnetostructural correlations in the tetranuclear series of Fe3LnO2 butterfly core clusters: magnetic and Mössbauer spectroscopic study. Phys Rev B. 2009;80(1):014430. doi: 10.1103/PhysRevB.80.014430. DOI
Bino A, Shweky I, Cohen S, Bauminger ER, Lippard SJ. A novel nonairon(III) citrate complex: a “ferric triple-decker”. Inorg Chem. 1998;37(20):5168–5172. doi: 10.1021/ic9715658. DOI
Bodor A, Bányai I, Tóth I. 1H-and 13C-NMR as tools to study aluminium coordination chemistry—aqueous Al(III)–citrate complexes. Coord Chem Rev. 2002;228(2):175–186. doi: 10.1016/S0010-8545(02)00039-5. DOI
Botebol H, Sutak R, Scheiber IF, et al. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals. 2014;27:75–88. doi: 10.1007/s10534-013-9688-1. PubMed DOI PMC
Braun V, Herrmann C. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol. 2007;189(19):6913–6918. doi: 10.1128/JB.00884-07. PubMed DOI PMC
Brayton CF. Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 1986;76(1):61–90. PubMed
Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull. 2002;25(12):1600–1603. doi: 10.1248/bpb.25.1600. PubMed DOI
Durrett TP, Gassmann W, Rogers EE. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 2007;144(1):197–205. doi: 10.1104/pp.107.097162. PubMed DOI PMC
Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics. 2018;10(6):802–817. doi: 10.1039/c8mt00055g. PubMed DOI PMC
Epstein LM, Cheng HS, Lin CI, Li NC. The Mössbauer spectra of iron (III)-citrate complexesJ. Inorg Nucl Chem. 1970;32(6):2104–2106. doi: 10.1016/0022-1902(70)80622-4. DOI
Evans RW, Rafique R, Zarea A, et al. Nature of non-transferrin-bound iron: studies on iron citrate complexes and thalassemic sera. JBIC J Biol Inorg Chem. 2008;13(1):57–74. doi: 10.1007/s00775-007-0297-8. PubMed DOI
Ganz T, Bino A, Salusky IB. Mechanism of action and clinical attributes of Auryxia®(ferric citrate) Drugs. 2019;79(9):957–968. doi: 10.1007/s40265-019-01125-w. PubMed DOI PMC
Gautier-Luneau I, Merle C, Phanon D, et al. New trends in the chemistry of iron(III) citrate complexes: correlations between X-ray structures and solution species probed by electrospray mass spectrometry and kinetics of iron uptake from citrate by iron chelators. Chem Eur J. 2005;11(7):2207–2219. doi: 10.1002/chem.200401087. PubMed DOI
Gracheva M, Homonnay Z, Singh A, Fodor F, Marosi VB, Solti Á, Kovács K. New aspects of the photodegradation of iron(III) citrate: spectroscopic studies and plant-related factors. Photochem Photobiol Sci. 2022;21(6):983–996. doi: 10.1007/s43630-022-00188-1. PubMed DOI
Grunwald Y, Wigoda N, Sade N, et al. Arabidopsis leaf hydraulic conductance is regulated by xylem sap pH, controlled, in turn, by a P-type H+-ATPase of vascular bundle sheath cells. Plant J. 2021;106(2):301–313. doi: 10.1111/tpj.15235. PubMed DOI
Gupta A, Pratt R, Mishra B. Physicochemical characterization of ferric pyrophosphate citrate. Biometals. 2018;31:1091–1099. doi: 10.1007/s10534-018-0151-1. PubMed DOI PMC
Gusakovskaya IG, Larkina TI, Ponomarev VI, Atovmyan LO. Mössbauer and X-ray structure studies on the phase transition in the Fe(III) dimethysulfoxide complex. J Struct Chem. 1983;23(6):864–869. doi: 10.1007/BF00746535. DOI
Homonnay Z, Szilágyi PÁ, Vértes A, et al. Iron chelates: a challenge to chemists and Mössbauer spectroscopists. Hyperfine Interact. 2008;182:77–86. doi: 10.1007/s10751-008-9713-x. DOI
Kamnev AA, Antonyuk LP, Kulikov LA, et al. Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy. Biometals. 2004;17:457–466. doi: 10.1023/B:BIOM.0000029442.72234.2e. PubMed DOI
Klencsár Z, Köntös Z. EPR analysis of Fe3+ and Mn2+ complexation sites in fulvic acid extracted from lignite. J Phys Chem A. 2018;122:3190–3203. doi: 10.1021/acs.jpca.8b00477. PubMed DOI
Klencsár Z (2019) MossWinn 4.0 i Manual. http://www.mosswinn.hu/downloads/mosswinn.pdf
Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019;133:101–111. doi: 10.1016/j.freeradbiomed.2018.10.413. PubMed DOI
Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants. Free Radic Biol Med. 2019;133:11–20. doi: 10.1016/j.freeradbiomed.2018.10.439. PubMed DOI
Lázár K, Lázár I, Sáfrán G, Szilágyi A. Iron oxyhydroxide aerogels and xerogels by hydrolysis of FeCl3∙6H2O in organic media: early stages. Croat Chem Acta. 2015;88(4):413–419. doi: 10.5562/cca2749. DOI
Long GJ, Robinson WT, Tappmeyer WP, Bridges DL. The magnetic, electronic, and Mössbauer spectral properties of several trinuclear iron(III) carboxylate complexes. J Chem Soc Dalton Trans. 1973;6:573–579. doi: 10.1039/DT9730000573. DOI
Matzapetakis M, Raptopoulou CP, Tsohos A, et al. Synthesis, spectroscopic and structural characterization of the first mononuclear, water soluble iron—citrate complex, (NH4)5Fe(C6H4O7)2⋅2H2O. J Am Chem Soc. 1998;120(50):13266–13267. doi: 10.1021/ja9807035. DOI
McGavin DG, Tennant WC. Analysis and computer simulation of high-spin Fe3+ powder EPR spectra with giso approximately 30/7. J Magn Reson. 1985;62:357–369. doi: 10.1016/0022-2364(85)90205-7. DOI
Merkel DG, Tanczikó F, Sajti S, et al. Modification of local order in FePd films by low energy He+ irradiation. J Appl Phys. 2008;104(1):013901. doi: 10.1063/1.2938027. DOI
Mørup S, Knudsen JE, Nielsen MK, Trumpy G. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts. J Chem Phys. 1976;65:536–543. doi: 10.1063/1.433133. DOI
Mørup S, Sontheimer F, Ritter G, Zimmermann R. Mössbauer effect studies of spin-spin relaxation in single crystals of Fe(NO3)3⋅9H2O at 4.2 K. J Phys Chem Solids. 1978;39(2):123–128. doi: 10.1016/0022-3697(78)90210-X. DOI
Müller B, Kovács K, Pham HD, et al. Chloroplasts preferentially take up ferric–citrate over iron–nicotianamine complexes in Brassica napus. Planta. 2019;249(3):751–763. doi: 10.1007/s00425-018-3037-0. PubMed DOI
Nakajima H, Okazawa A, Kubuki S, et al. Determination of iron species, including biomineralized jarosite, in the iron-hyperaccumulator moss Scopelophila ligulata by Mössbauer, X-ray diffraction, and elemental analyses. Biometals. 2019;32:171–184. doi: 10.1007/s10534-019-00169-5. PubMed DOI
Oosterhuis WT. Biochemistry. Berlin: Springer; 1974. The electronic state of iron in some natural iron compounds: determination by Mössbauer and ESR spectroscopy; pp. 59–101.
Pierre JL, Gautier-Luneau I. Iron and citric acid: a fuzzy chemistry of ubiquitous biological relevance. Biometals. 2000;13(1):91–96. doi: 10.1023/A:1009225701332. PubMed DOI
Procházka V, Novák P, Vrba V, Stejskal A, Dudka M. Autotuning procedure for energy modulation in Mössbauer spectroscopy. Nucl Instrum Methods Phys Res B. 2020;483:55–62. doi: 10.1016/j.nimb.2020.08.015. DOI
Rajniak J, Giehl RF, Chang E, Murgia I, von Wirén N, Sattely ES. Biosynthesis of redox-active metabolites as a general strategy for iron acquisition in plants. Nat Chem Biol. 2018;14(5):442–450. doi: 10.1038/s41589-018-0019-2. PubMed DOI PMC
Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol. 2010;51(1):91–102. doi: 10.1093/pcp/pcp170. PubMed DOI
Ruby SL, Tseng PK, Cheng HS, Li NC. Concentration dependence of tin(IV) isomer shifts in ice. Chem Phys Lett. 1968;2(1):39–41. doi: 10.1016/0009-2614(68)80142-3. DOI
Rumbold BD, Wilson GVH. Mössbauer effect studies of some trimeric iron compounds. J Phys Chem Solids. 1973;34(11):1887–1891. doi: 10.1016/S0022-3697(73)80110-6. DOI
Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. J Exp Bot. 2022;73(6):1717–1734. doi: 10.1093/jxb/erac030. PubMed DOI PMC
Sharma VK, Szilágyi PÁ, Homonnay Z, Kuzmann E, Vértes A. Mössbauer investigation of peroxo species in the iron(III)–EDTA–H2O2 system. Eur J Inorg Chem. 2005;2005:4393–4400. doi: 10.1002/ejic.200500299. DOI
Shweky I, Bino A, Goldberg DP, Lippard SJ. Syntheses, structures, and magnetic properties of two dinuclear iron(III) citrate complexes. Inorg Chem. 1994;33(23):5161–5162. doi: 10.1021/ic00101a001. DOI
Silva AM, Kong X, Parkin MC, Cammack R, Hider RC. Iron(III) citrate speciation in aqueous solution. Dalton Trans. 2009;40:8616–8625. doi: 10.1039/B910970F. PubMed DOI
Silva AMN, Kong X, Hider RC. Determination of the pKa value of the hydroxyl group in the α-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. Biometals. 2009;22:771–778. doi: 10.1007/s10534-009-9224-5. PubMed DOI
Singh A, Pankaczi F, May Z et al. submitted to Plant and soil
Solano-Peralta A, Saucedo-Vázquez JP, Escudero R, et al. Magnetic and high-frequency EPR studies of an octahedral Fe(III) compound with unusual zero-field splitting parameters. Dalton Trans. 2009;9:1668–1674. doi: 10.1039/B814225D. PubMed DOI
Takano M. Mössbauer study on the magnetism of trinuclear complex salts. J Phys Soc Japan. 1972;33(5):1312–1317. doi: 10.1143/JPSJ.33.1312. DOI
Terzano R, Mimmo T, Vekemans B, et al. Iron (Fe) speciation in xylem sap by XANES at a high brilliant synchrotron X-ray source: opportunities and limitations. Anal Bioanal Chem. 2013;405(16):5411–5419. doi: 10.1007/s00216-013-6959-1. PubMed DOI
Tsai HH, Rodríguez-Celma J, Lan P, Wu YC, Vélez-Bermúdez IC, Schmidt W. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 2018;177(1):194–207. doi: 10.1104/pp.18.00178. PubMed DOI PMC
Vértes A, Nagy DL. Mössbauer spectroscopy of frozen solutions, Akad. Budapest: Kiadó; 1990.
Vértes A, Parak F. A study of the relationship between the spin relaxation and certain chemical properties of paramagnetic iron(III) salt solutions by Mössbauer spectroscopy. Dalton Trans. 1972;19:2062–2068. doi: 10.1039/DT9720002062. DOI
West CP, Morales AC, Ryan J, et al. Molecular investigation of the multi-phase photochemistry of Fe(III)–citrate in aqueous solution. Environ Sci. 2023;25:190–213. doi: 10.1039/D1EM00503K. PubMed DOI
Wrobleski JT, Brown DB. Physical and chemical properties of squarate complexes. II. Mössbauer spectroscopy and magnetic susceptibility studies of several dimeric and trimeric iron(III) complexes containing the squarate dianion. Inorg Chim Acta. 1979;35:109–118. doi: 10.1016/S0020-1693(00)93426-1. DOI
Xu ZR, Cai ML, Yang Y, et al. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants. Mol Plant. 2022;15(12):1962–1975. doi: 10.1016/j.molp.2022.11.003. PubMed DOI