Revealing the nuclearity of iron citrate complexes at biologically relevant conditions

. 2024 Apr ; 37 (2) : 461-475. [epub] 20231218

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38110781

Grantová podpora
K-135607 Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
BO/00113/23/8 Bolyai János Research Scolarship, Hungarian Academy of Sciences

Odkazy

PubMed 38110781
PubMed Central PMC11006783
DOI 10.1007/s10534-023-00562-1
PII: 10.1007/s10534-023-00562-1
Knihovny.cz E-zdroje

Citric acid plays an ubiquitous role in the complexation of essential metals like iron and thus it has a key function making them biologically available. For this, iron(III) citrate complexes are considered among the most significant coordinated forms of ferric iron that take place in biochemical processes of all living organisms. Although these systems hold great biological relevance, their coordination chemistry has not been fully elucidated yet. The current study aimed to investigate the speciation of iron(III) citrate using Mössbauer and electron paramagnetic resonance spectroscopies. Our aim was to gain insights into the structure and nuclearity of the complexes depending on the pH and iron to citrate ratio. By applying the frozen solution technique, the results obtained directly reflect the iron speciation present in the aqueous solution. At 1:1 iron:citrate molar ratio, polynuclear species prevailed forming most probably a trinuclear structure. In the case of citrate excess, the coexistence of several monoiron species with different coordination environments was confirmed. The stability of the polynuclear complexes was checked in the presence of organic solvents.

Zobrazit více v PubMed

Akladios FN, Andrew SD, Parkinson CJ. Investigation of the cytotoxic implications of metal chelators against melanoma and approaches to improve the cytotoxicity profiles of metal coordinating agents. Biometals. 2016;29:789–805. doi: 10.1007/s10534-016-9945-1. PubMed DOI

Ariga T, Hazama K, Yanagisawa S, Yoneyama T. Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci Plant Nutr. 2014;60(4):460–469. doi: 10.1080/00380768.2014.922406. DOI

Banerjee S, Paul S, Nguyen LT, Chu BC, Vogel HJ. FecB, a periplasmic ferric-citrate transporter from E. coli, can bind different forms of ferric-citrate as well as a wide variety of metal-free and metal-loaded tricarboxylic acids. Metallomics. 2016;8(1):125–133. doi: 10.1039/c5mt00218d. PubMed DOI

Bartolomé J, Filoti G, Kuncser V, et al. Magnetostructural correlations in the tetranuclear series of Fe3LnO2 butterfly core clusters: magnetic and Mössbauer spectroscopic study. Phys Rev B. 2009;80(1):014430. doi: 10.1103/PhysRevB.80.014430. DOI

Bino A, Shweky I, Cohen S, Bauminger ER, Lippard SJ. A novel nonairon(III) citrate complex: a “ferric triple-decker”. Inorg Chem. 1998;37(20):5168–5172. doi: 10.1021/ic9715658. DOI

Bodor A, Bányai I, Tóth I. 1H-and 13C-NMR as tools to study aluminium coordination chemistry—aqueous Al(III)–citrate complexes. Coord Chem Rev. 2002;228(2):175–186. doi: 10.1016/S0010-8545(02)00039-5. DOI

Botebol H, Sutak R, Scheiber IF, et al. Different iron sources to study the physiology and biochemistry of iron metabolism in marine micro-algae. Biometals. 2014;27:75–88. doi: 10.1007/s10534-013-9688-1. PubMed DOI PMC

Braun V, Herrmann C. Docking of the periplasmic FecB binding protein to the FecCD transmembrane proteins in the ferric citrate transport system of Escherichia coli. J Bacteriol. 2007;189(19):6913–6918. doi: 10.1128/JB.00884-07. PubMed DOI PMC

Brayton CF. Dimethyl sulfoxide (DMSO): a review. Cornell Vet. 1986;76(1):61–90. PubMed

Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull. 2002;25(12):1600–1603. doi: 10.1248/bpb.25.1600. PubMed DOI

Durrett TP, Gassmann W, Rogers EE. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 2007;144(1):197–205. doi: 10.1104/pp.107.097162. PubMed DOI PMC

Dziuba N, Hardy J, Lindahl PA. Low-molecular-mass iron in healthy blood plasma is not predominately ferric citrate. Metallomics. 2018;10(6):802–817. doi: 10.1039/c8mt00055g. PubMed DOI PMC

Epstein LM, Cheng HS, Lin CI, Li NC. The Mössbauer spectra of iron (III)-citrate complexesJ. Inorg Nucl Chem. 1970;32(6):2104–2106. doi: 10.1016/0022-1902(70)80622-4. DOI

Evans RW, Rafique R, Zarea A, et al. Nature of non-transferrin-bound iron: studies on iron citrate complexes and thalassemic sera. JBIC J Biol Inorg Chem. 2008;13(1):57–74. doi: 10.1007/s00775-007-0297-8. PubMed DOI

Ganz T, Bino A, Salusky IB. Mechanism of action and clinical attributes of Auryxia®(ferric citrate) Drugs. 2019;79(9):957–968. doi: 10.1007/s40265-019-01125-w. PubMed DOI PMC

Gautier-Luneau I, Merle C, Phanon D, et al. New trends in the chemistry of iron(III) citrate complexes: correlations between X-ray structures and solution species probed by electrospray mass spectrometry and kinetics of iron uptake from citrate by iron chelators. Chem Eur J. 2005;11(7):2207–2219. doi: 10.1002/chem.200401087. PubMed DOI

Gracheva M, Homonnay Z, Singh A, Fodor F, Marosi VB, Solti Á, Kovács K. New aspects of the photodegradation of iron(III) citrate: spectroscopic studies and plant-related factors. Photochem Photobiol Sci. 2022;21(6):983–996. doi: 10.1007/s43630-022-00188-1. PubMed DOI

Grunwald Y, Wigoda N, Sade N, et al. Arabidopsis leaf hydraulic conductance is regulated by xylem sap pH, controlled, in turn, by a P-type H+-ATPase of vascular bundle sheath cells. Plant J. 2021;106(2):301–313. doi: 10.1111/tpj.15235. PubMed DOI

Gupta A, Pratt R, Mishra B. Physicochemical characterization of ferric pyrophosphate citrate. Biometals. 2018;31:1091–1099. doi: 10.1007/s10534-018-0151-1. PubMed DOI PMC

Gusakovskaya IG, Larkina TI, Ponomarev VI, Atovmyan LO. Mössbauer and X-ray structure studies on the phase transition in the Fe(III) dimethysulfoxide complex. J Struct Chem. 1983;23(6):864–869. doi: 10.1007/BF00746535. DOI

Homonnay Z, Szilágyi PÁ, Vértes A, et al. Iron chelates: a challenge to chemists and Mössbauer spectroscopists. Hyperfine Interact. 2008;182:77–86. doi: 10.1007/s10751-008-9713-x. DOI

Kamnev AA, Antonyuk LP, Kulikov LA, et al. Monitoring of cobalt(II) uptake and transformation in cells of the plant-associated soil bacterium Azospirillum brasilense using emission Mössbauer spectroscopy. Biometals. 2004;17:457–466. doi: 10.1023/B:BIOM.0000029442.72234.2e. PubMed DOI

Klencsár Z, Köntös Z. EPR analysis of Fe3+ and Mn2+ complexation sites in fulvic acid extracted from lignite. J Phys Chem A. 2018;122:3190–3203. doi: 10.1021/acs.jpca.8b00477. PubMed DOI

Klencsár Z (2019) MossWinn 4.0 i Manual. http://www.mosswinn.hu/downloads/mosswinn.pdf

Knutson MD. Non-transferrin-bound iron transporters. Free Radic Biol Med. 2019;133:101–111. doi: 10.1016/j.freeradbiomed.2018.10.413. PubMed DOI

Kobayashi T, Nozoye T, Nishizawa NK. Iron transport and its regulation in plants. Free Radic Biol Med. 2019;133:11–20. doi: 10.1016/j.freeradbiomed.2018.10.439. PubMed DOI

Lázár K, Lázár I, Sáfrán G, Szilágyi A. Iron oxyhydroxide aerogels and xerogels by hydrolysis of FeCl3∙6H2O in organic media: early stages. Croat Chem Acta. 2015;88(4):413–419. doi: 10.5562/cca2749. DOI

Long GJ, Robinson WT, Tappmeyer WP, Bridges DL. The magnetic, electronic, and Mössbauer spectral properties of several trinuclear iron(III) carboxylate complexes. J Chem Soc Dalton Trans. 1973;6:573–579. doi: 10.1039/DT9730000573. DOI

Matzapetakis M, Raptopoulou CP, Tsohos A, et al. Synthesis, spectroscopic and structural characterization of the first mononuclear, water soluble iron—citrate complex, (NH4)5Fe(C6H4O7)2⋅2H2O. J Am Chem Soc. 1998;120(50):13266–13267. doi: 10.1021/ja9807035. DOI

McGavin DG, Tennant WC. Analysis and computer simulation of high-spin Fe3+ powder EPR spectra with giso approximately 30/7. J Magn Reson. 1985;62:357–369. doi: 10.1016/0022-2364(85)90205-7. DOI

Merkel DG, Tanczikó F, Sajti S, et al. Modification of local order in FePd films by low energy He+ irradiation. J Appl Phys. 2008;104(1):013901. doi: 10.1063/1.2938027. DOI

Mørup S, Knudsen JE, Nielsen MK, Trumpy G. Mössbauer spectroscopic studies of frozen aqueous solutions of Fe3+ salts. J Chem Phys. 1976;65:536–543. doi: 10.1063/1.433133. DOI

Mørup S, Sontheimer F, Ritter G, Zimmermann R. Mössbauer effect studies of spin-spin relaxation in single crystals of Fe(NO3)3⋅9H2O at 4.2 K. J Phys Chem Solids. 1978;39(2):123–128. doi: 10.1016/0022-3697(78)90210-X. DOI

Müller B, Kovács K, Pham HD, et al. Chloroplasts preferentially take up ferric–citrate over iron–nicotianamine complexes in Brassica napus. Planta. 2019;249(3):751–763. doi: 10.1007/s00425-018-3037-0. PubMed DOI

Nakajima H, Okazawa A, Kubuki S, et al. Determination of iron species, including biomineralized jarosite, in the iron-hyperaccumulator moss Scopelophila ligulata by Mössbauer, X-ray diffraction, and elemental analyses. Biometals. 2019;32:171–184. doi: 10.1007/s10534-019-00169-5. PubMed DOI

Oosterhuis WT. Biochemistry. Berlin: Springer; 1974. The electronic state of iron in some natural iron compounds: determination by Mössbauer and ESR spectroscopy; pp. 59–101.

Pierre JL, Gautier-Luneau I. Iron and citric acid: a fuzzy chemistry of ubiquitous biological relevance. Biometals. 2000;13(1):91–96. doi: 10.1023/A:1009225701332. PubMed DOI

Procházka V, Novák P, Vrba V, Stejskal A, Dudka M. Autotuning procedure for energy modulation in Mössbauer spectroscopy. Nucl Instrum Methods Phys Res B. 2020;483:55–62. doi: 10.1016/j.nimb.2020.08.015. DOI

Rajniak J, Giehl RF, Chang E, Murgia I, von Wirén N, Sattely ES. Biosynthesis of redox-active metabolites as a general strategy for iron acquisition in plants. Nat Chem Biol. 2018;14(5):442–450. doi: 10.1038/s41589-018-0019-2. PubMed DOI PMC

Rellán-Álvarez R, Giner-Martínez-Sierra J, Orduna J, et al. Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: new insights into plant iron long-distance transport. Plant Cell Physiol. 2010;51(1):91–102. doi: 10.1093/pcp/pcp170. PubMed DOI

Ruby SL, Tseng PK, Cheng HS, Li NC. Concentration dependence of tin(IV) isomer shifts in ice. Chem Phys Lett. 1968;2(1):39–41. doi: 10.1016/0009-2614(68)80142-3. DOI

Rumbold BD, Wilson GVH. Mössbauer effect studies of some trimeric iron compounds. J Phys Chem Solids. 1973;34(11):1887–1891. doi: 10.1016/S0022-3697(73)80110-6. DOI

Sági-Kazár M, Solymosi K, Solti Á. Iron in leaves: chemical forms, signalling, and in-cell distribution. J Exp Bot. 2022;73(6):1717–1734. doi: 10.1093/jxb/erac030. PubMed DOI PMC

Sharma VK, Szilágyi PÁ, Homonnay Z, Kuzmann E, Vértes A. Mössbauer investigation of peroxo species in the iron(III)–EDTA–H2O2 system. Eur J Inorg Chem. 2005;2005:4393–4400. doi: 10.1002/ejic.200500299. DOI

Shweky I, Bino A, Goldberg DP, Lippard SJ. Syntheses, structures, and magnetic properties of two dinuclear iron(III) citrate complexes. Inorg Chem. 1994;33(23):5161–5162. doi: 10.1021/ic00101a001. DOI

Silva AM, Kong X, Parkin MC, Cammack R, Hider RC. Iron(III) citrate speciation in aqueous solution. Dalton Trans. 2009;40:8616–8625. doi: 10.1039/B910970F. PubMed DOI

Silva AMN, Kong X, Hider RC. Determination of the pKa value of the hydroxyl group in the α-hydroxycarboxylates citrate, malate and lactate by 13C NMR: implications for metal coordination in biological systems. Biometals. 2009;22:771–778. doi: 10.1007/s10534-009-9224-5. PubMed DOI

Singh A, Pankaczi F, May Z et al. submitted to Plant and soil

Solano-Peralta A, Saucedo-Vázquez JP, Escudero R, et al. Magnetic and high-frequency EPR studies of an octahedral Fe(III) compound with unusual zero-field splitting parameters. Dalton Trans. 2009;9:1668–1674. doi: 10.1039/B814225D. PubMed DOI

Takano M. Mössbauer study on the magnetism of trinuclear complex salts. J Phys Soc Japan. 1972;33(5):1312–1317. doi: 10.1143/JPSJ.33.1312. DOI

Terzano R, Mimmo T, Vekemans B, et al. Iron (Fe) speciation in xylem sap by XANES at a high brilliant synchrotron X-ray source: opportunities and limitations. Anal Bioanal Chem. 2013;405(16):5411–5419. doi: 10.1007/s00216-013-6959-1. PubMed DOI

Tsai HH, Rodríguez-Celma J, Lan P, Wu YC, Vélez-Bermúdez IC, Schmidt W. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 2018;177(1):194–207. doi: 10.1104/pp.18.00178. PubMed DOI PMC

Vértes A, Nagy DL. Mössbauer spectroscopy of frozen solutions, Akad. Budapest: Kiadó; 1990.

Vértes A, Parak F. A study of the relationship between the spin relaxation and certain chemical properties of paramagnetic iron(III) salt solutions by Mössbauer spectroscopy. Dalton Trans. 1972;19:2062–2068. doi: 10.1039/DT9720002062. DOI

West CP, Morales AC, Ryan J, et al. Molecular investigation of the multi-phase photochemistry of Fe(III)–citrate in aqueous solution. Environ Sci. 2023;25:190–213. doi: 10.1039/D1EM00503K. PubMed DOI

Wrobleski JT, Brown DB. Physical and chemical properties of squarate complexes. II. Mössbauer spectroscopy and magnetic susceptibility studies of several dimeric and trimeric iron(III) complexes containing the squarate dianion. Inorg Chim Acta. 1979;35:109–118. doi: 10.1016/S0020-1693(00)93426-1. DOI

Xu ZR, Cai ML, Yang Y, et al. The ferroxidases LPR1 and LPR2 control iron translocation in the xylem of Arabidopsis plants. Mol Plant. 2022;15(12):1962–1975. doi: 10.1016/j.molp.2022.11.003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...