Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction

. 2024 Mar 27 ; 146 (12) : 8043-8057. [epub] 20240216

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38363862

We investigate the electronic structure of aromatic radical anions in the solution phase employing a combination of liquid-jet (LJ) photoelectron (PE) spectroscopy measurements and electronic structure calculations. By using recently developed protocols, we accurately determine the vertical ionization energies of valence electrons of both the solvent and the solute molecules. In particular, we first characterize the pure solvent of tetrahydrofuran (THF) by LJ-PE measurements in conjunction with ab initio molecular dynamics simulations and G0W0 calculations. Next, we determine the electronic structure of neutral naphthalene (Np) and benzophenone (Bp) as well as their radical anion counterparts Np- and Bp- in THF. Wherever feasible, we performed orbital assignments of the measured PE features of the aromatic radical anions, with comparisons to UV-vis absorption spectra of the corresponding neutral molecules being instrumental in rationalizing the assignments. Analysis of the electronic structure differences between the neutral species and their anionic counterparts provides understanding of the primarily electrostatic stabilization of the radical anions in solution. Finally, we obtain a very good agreement of the reduction potentials extracted from the present LJ-PES measurements of Np- and Bp- in THF with previous electrochemical data from cyclic voltammetry measurements. In this context, we discuss how the choice of solvent holds significant implications for optimizing conditions for the Birch reduction process, wherein aromatic radical anions play crucial roles as reactive intermediates.

Zobrazit více v PubMed

Connelly N. G.; Geiger W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877–910. 10.1021/cr940053x. PubMed DOI

Birch A. J. 117. Reduction by dissolving metals. Part I. J. Chem. Soc. 1944, 430–436. 10.1039/jr9440000430. DOI

Joshi D. K.; Sutton J. W.; Carver S.; Blanchard J. P. Experiences with Commercial Production Scale Operation of Dissolving Metal Reduction Using Lithium Metal and Liquid Ammonia. Org. Process Res. Dev. 2005, 9, 997–1002. 10.1021/op050155x. DOI

Birch A. J. The Birch reduction in organic synthesis. Pure Appl. Chem. 1996, 68, 553–556. 10.1351/pac199668030553. DOI

Burrows J.; Kamo S.; Koide K. Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science 2021, 374, 741–746. 10.1126/science.abk3099. PubMed DOI

Linthorst J. A. An overview: origins and development of green chemistry. Found. Chem. 2010, 12, 55–68. 10.1007/s10698-009-9079-4. DOI

Song J. K.; Lee N. K.; Han S. Y.; Kim S. K. The naphthalene-benzene anion: Anion complex of aromatic hydrocarbons with the smallest electron affinity. J. Chem. Phys. 2002, 117, 9973–9976. 10.1063/1.1519002. DOI

Zhao J.; Wu W.; Sun J.; Guo S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351. 10.1039/c3cs35531d. PubMed DOI

Suto M.; Wang X.; Shan J.; Lee L. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm. J. Quant. Spectrosc. Radiat. Transfer 1992, 48, 79–89. 10.1016/0022-4073(92)90008-R. DOI

Lyapustina S. A.; Xu S.; Nilles J. M.; Bowen K. H. Jr Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study. J. Chem. Phys. 2000, 112, 6643–6648. 10.1063/1.481237. DOI

Zimmerman H. E. A Mechanistic Analysis of the Birch Reduction. Acc. Chem. Res. 2012, 45, 164–170. 10.1021/ar2000698. PubMed DOI

Greenwood N.; Earnshaw A.. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997.

Marasas R. A.; Iyoda T.; Miller J. R. Benzene Radical Ion in Equilibrium with Solvated Electrons. J. Phys. Chem. A 2003, 107, 2033–2038. 10.1021/jp026893u. DOI

Faubel M.; Schlemmer S.; Toennies J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D: At., Mol. Clusters 1988, 10, 1431–5866. 10.1007/BF01384861. DOI

Faubel M.; Steiner B.; Toennies J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106, 9013–9031. 10.1063/1.474034. DOI

Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106, 1176–1211. 10.1021/cr040381p. PubMed DOI

Kim J. B.; Schoenwaelder C.; Glenzer S. H. Development and characterization of liquid argon and methane microjets for high-rep-rate laser-plasma experiments. Rev. Sci. Instrum. 2018, 89, 10K10510.1063/1.5038561. PubMed DOI

Buttersack T.; Mason P. E.; Jungwirth P.; Schewe H. C.; Winter B.; Seidel R.; McMullen R. S.; Bradforth S. E. Deeply cooled and temperature controlled microjets: Liquid ammonia solutions released into vacuum for analysis by photoelectron spectroscopy. Rev. Sci. Instrum. 2020, 91, 04310110.1063/1.5141359. PubMed DOI

Buttersack T.; Mason P. E.; McMullen R. S.; Schewe H. C.; Martinek T.; Brezina K.; Crhan M.; Gomez A.; Hein D.; Wartner G.; Seidel R.; Ali H.; Thürmer S.; Marsalek O.; Winter B.; Bradforth S. E.; Jungwirth P. Photoelectron spectra of alkali metal-ammonia microjets: From blue electrolyte to bronze metal. Science 2020, 368, 1086–1091. 10.1126/science.aaz7607. PubMed DOI

Schewe H. C.; Brezina K.; Kostal V.; Mason P. E.; Buttersack T.; Stemer D. M.; Seidel R.; Quevedo W.; Trinter F.; Winter B.; Jungwirth P. Photoelectron Spectroscopy of Benzene in the Liquid Phase and Dissolved in Liquid Ammonia. J. Phys. Chem. B 2022, 126, 229–238. 10.1021/acs.jpcb.1c08172. PubMed DOI

Seidel R.; Winter B.; Bradforth S. E. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67, 283–305. 10.1146/annurev-physchem-040513-103715. PubMed DOI

Nolting D.; Ottosson N.; Faubel M.; Hertel I. V.; Winter B. Pseudoequivalent Nitrogen Atoms in Aqueous Imidazole Distinguished by Chemical Shifts in Photoelectron Spectroscopy. J. Am. Chem. Soc. 2008, 130, 8150–8151. 10.1021/ja8022384. PubMed DOI

Lewis T.; Winter B.; Stern A. C.; Baer M. D.; Mundy C. J.; Tobias D. J.; Hemminger J. C. Dissociation of Strong Acid Revisited: X-ray Photoelectron Spectroscopy and Molecular Dynamics Simulations of HNO3 in Water. J. Phys. Chem. B 2011, 115, 9445–9451. 10.1021/jp205510q. PubMed DOI

Szabo A.; Ostlund N. S.. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Courier Corporation, 2012.

Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D.; Meijer G.; Winter B.; Wilkinson I. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021, 12, 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC

Pérez Ramírez L.; Boucly A.; Saudrais F.; Bournel F.; Gallet J.-J.; Maisonhaute E.; Milosavljević A. R.; Nicolas C.; Rochet F. The Fermi level as an energy reference in liquid jet X-ray photoelectron spectroscopy studies of aqueous solutions. Phys. Chem. Chem. Phys. 2021, 23, 16224–16233. 10.1039/D1CP01511G. PubMed DOI

Brezina K.; Jungwirth P.; Marsalek O. Benzene Radical Anion in the Context of the Birch Reduction: When Solvation Is the Key. J. Phys. Chem. Lett. 2020, 11, 6032–6038. 10.1021/acs.jpclett.0c01505. PubMed DOI

Kostal V.; Brezina K.; Marsalek O.; Jungwirth P. Benzene Radical Anion Microsolvated in Ammonia Clusters: Modeling the Transition from an Unbound Resonance to a Bound Species. J. Phys. Chem. A 2021, 125, 5811–5818. 10.1021/acs.jpca.1c04594. PubMed DOI

Follath R.; Schmidt J. S.; Siewert F.; Holldack K.; Zeschke W.; Frentrup T.; Schmitz D.; Sawhney K. J. S. Commissioning of the U49/2-PGM1 beamline. AIP Conf. Proc. 2003, 705, 348–351. 10.1063/1.1757805. DOI

Seidel R.; Pohl M. N.; Ali H.; Winter B.; Aziz E. F. Advances in liquid phase soft-x-ray photoemission spectroscopy: A new experimental setup at BESSY II. Rev. Sci. Instrum. 2017, 88, 07310710.1063/1.4990797. PubMed DOI

Malerz S.; Haak H.; Trinter F.; Stephansen A. B.; Kolbeck C.; Pohl M.; Hergenhahn U.; Meijer G.; Winter B. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93, 01510110.1063/5.0072346. PubMed DOI

Winter B.; Thürmer S.; Wilkinson I. Absolute Electronic Energetics and Quantitative Work Functions of Liquids from Photoelectron Spectroscopy. Acc. Chem. Res. 2023, 56, 77–85. 10.1021/acs.accounts.2c00548. PubMed DOI PMC

Hutter J.; Iannuzzi M.; Schiffmann F.; VandeVondele J. cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15–25. 10.1002/wcms.1159. DOI

VandeVondele J.; Krack M.; Mohamed F.; Parrinello M.; Chassaing T.; Hutter J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. 10.1016/j.cpc.2004.12.014. DOI

Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F. CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 19410310.1063/5.0007045. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865. PubMed DOI

Zhang Y.; Yang W. Comment on Generalized gradient approximation made simple. Phys. Rev. Lett. 1998, 80, 890.10.1103/PhysRevLett.80.890. DOI

Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI

Goerigk L.; Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688. 10.1039/c0cp02984j. PubMed DOI

Goedecker S.; Teter M.; Hutter J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703.10.1103/PhysRevB.54.1703. PubMed DOI

Guidon M.; Hutter J.; VandeVondele J. Auxiliary density matrix methods for Hartree- Fock exchange calculations. J. Chem. Theory Comput. 2010, 6, 2348–2364. 10.1021/ct1002225. PubMed DOI

Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI

Wilhelm J.; Del Ben M.; Hutter J. GW in the Gaussian and plane waves scheme with application to linear acenes. J. Chem. Theory Comput. 2016, 12, 3623–3635. 10.1021/acs.jctc.6b00380. PubMed DOI

Pluhařová E.; Slavicek P.; Jungwirth P. Modeling photoionization of aqueous DNA and its components. Acc. Chem. Res. 2015, 48, 1209–1217. 10.1021/ar500366z. PubMed DOI

Becke A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI

Kendall R. A.; Dunning T. H. Jr.; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI

Angeli C.; Cimiraglia R.; Evangelisti S.; Leininger T.; Malrieu J.-P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. 10.1063/1.1361246. DOI

Angeli C.; Cimiraglia R.; Malrieu J.-P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001, 350, 297–305. 10.1016/S0009-2614(01)01303-3. DOI

Angeli C.; Cimiraglia R.; Malrieu J.-P. N-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138–9153. 10.1063/1.1515317. DOI

Eland J. H. D.Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase; Elsevier, 2013.

Goerigk L.; Grimme S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 291–309. 10.1021/ct100466k. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams- Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision A.03; Gaussian Inc.: Wallingford CT, 2016.

Dampc M.; Mielewska B.; Siggel-King M. R.; King G. C.; Zubek M. Threshold photoelectron spectra of tetrahydrofuran over the energy range 9–29 eV. Chem. Phys. 2009, 359, 77–81. 10.1016/j.chemphys.2009.03.009. DOI

Giuliani A.; Limão-Vieira P.; Duflot D.; Milosavljevic A. R.; Marinkovic B. P.; Hoffmann S. V.; Mason N.; Delwiche J.; Hubin-Franskin M.-J. Electronic states of neutral and ionized tetrahydrofuran studied by VUV spectroscopy and ab initio calculations. Eur. Phys. J. D 2009, 51, 97–108. 10.1140/epjd/e2008-00154-7. DOI

Baird Z. S.; Uusi-Kyyny P.; Pokki J.; et al. Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds. Int. J. Thermophys. 2019, 40, 10210.1007/s10765-019-2570-9. DOI

Bowron D. T.; Finney J. L.; Soper A. K. The Structure of Liquid Tetrahydrofuran. J. Am. Chem. Soc. 2006, 128, 5119–5126. 10.1021/ja0583057. PubMed DOI

Grosch H.; Sárossy Z.; Egsgaard H.; Fateev A. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500°C.. J. Quant. Spectrosc. Radiat. Transfer 2015, 156, 17–23. 10.1016/j.jqsrt.2015.01.021. DOI

Birks J. B.Photophysics of Aromatic Molecules; Wiley, 1970.

Montalti M.; Credi A.; Prodi L.; Gandolfi M. T.. Handbook of Photochemistry; CRC Press, 2006.

Segarra-Martí J.; Zvereva E.; Marazzi M.; Brazard J.; Dumont E.; Assfeld X.; Haacke S.; Garavelli M.; Monari A.; Léonard J.; Rivalta I. Resolving the Singlet Excited State Manifold of Benzophenone by First-Principles Simulations and Ultrafast Spectroscopy. J. Chem. Theory Comput. 2018, 14, 2570–2585. 10.1021/acs.jctc.7b01208. PubMed DOI

Cockett M. C. R.; Ozeki H.; Okuyama K.; Kimura K. Vibronic coupling in the ground cationic state of naphthalene: a laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study. J. Chem. Phys. 1993, 98, 7763–7772. 10.1063/1.464584. DOI

Yagi I.; Maeyama T.; Fujii A.; Mikami N. Stepwise solvatochromism of ketyl anions in the gas phase: Photodetachment excitation spectroscopy of benzophenone and acetophenone radical anions microsolvated with methanol. J. Phys. Chem. A 2007, 111, 7646–7652. 10.1021/jp072167l. PubMed DOI

McAlduff E.; Bunbury D. Photoelectron spectra of some aromatic mono-and di-ketones. J. Electron Spectrosc. Relat. Phenom. 1979, 17, 81–89. 10.1016/0368-2048(79)85030-6. DOI

Smid J. A Stable Dianion of Naphthalene. J. Am. Chem. Soc. 1965, 87, 655–656. 10.1021/ja01081a048. DOI

Pearson R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. 10.1021/ic00277a030. DOI

Pluhařová E.; Ončák M.; Seidel R.; Schroeder C.; Schroeder W.; Winter B.; Bradforth S. E.; Jungwirth P.; Slavíček P. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion upon Moving into Water. J. Phys. Chem. B 2012, 116, 13254–13264. 10.1021/jp306348b. PubMed DOI

Malerz S.; Trinter F.; Hergenhahn U.; Ghrist A.; Ali H.; Nicolas C.; Saak C.-M.; Richter C.; Hartweg S.; Nahon L.; Lee C.; Goy C.; Neumark D. M.; Meijer G.; Wilkinson I.; Winter B.; Thürmer S. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 2021, 23, 8246–8260. 10.1039/D1CP00430A. PubMed DOI

Wang X.-B.; Wang L.-S. Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions. J. Chem. Phys. 2000, 112, 6959–6962. 10.1063/1.481292. DOI

Jordan K. D.; Burrow P. D. Studies of the temporary anion states of unsaturated hydrocarbons by electron transmission spectroscopy. Acc. Chem. Res. 1978, 11, 341–348. 10.1021/ar50129a004. DOI

Schiedt J.; Weinkauf R. Photodetachment photoelectron spectroscopy of mass selected anions: anthracene and the anthracene-H2O cluster. Chem. Phys. Lett. 1997, 266, 201–205. 10.1016/S0009-2614(96)01512-6. DOI

Bedard-Hearn M. J.; Larsen R. E.; Schwartz B. J. The role of solvent structure in the absorption spectrum of solvated electrons: Mixed quantum/classical simulations in tetrahydrofuran. J. Chem. Phys. 2005, 122, 13450610.1063/1.1867378. PubMed DOI

Bragg A. E.; Schwartz B. J. The Ultrafast Charge-Transfer-to-Solvent Dynamics of Iodide in Tetrahydrofuran. 1. Exploring the Roles of Solvent and Solute Electronic Structure in Condensed-Phase Charge-Transfer Reactions. J. Phys. Chem. B 2008, 112, 483–494. 10.1021/jp076934s. PubMed DOI

Shkrob I. A. Ammoniated Electron as a Solvent Stabilized Multimer Radical Anion. J. Phys. Chem. A 2006, 110, 3967–3976. 10.1021/jp055500z. PubMed DOI

Uhlig F.; Marsalek O.; Jungwirth P. Unraveling the Complex Nature of the Hydrated Electron. J. Phys. Chem. Lett. 2012, 3, 3071–3075. 10.1021/jz301449f. PubMed DOI

Kevan L. Solvated electron structure in glassy matrixes. Acc. Chem. Res. 1981, 14, 138–145. 10.1021/ar00065a002. DOI

Jas G. S.; Kuczera K. Ab initio calculations of S1 excited state vibrational spectra of benzene, naphthalene and anthracene. Chem. Phys. 1997, 214, 229–241. 10.1016/S0301-0104(96)00315-1. DOI

Beck S. M.; Powers D. E.; Hopkins J. B.; Smalley R. E. Jet-cooled naphthalene. I. Absorption spectra and line profiles. J. Chem. Phys. 1980, 73, 2019–2028. 10.1063/1.440421. DOI

Craig D. P.; Hollas J. M.; Redies M. F.; Wait S. C. Jr.; Ingold C. K. Analysis of the naphthalene vapour absorption bands at 3200Å. I. Naphthalene h-8. Philos. Trans. R. Soc. London, Ser. A 1961, 253, 543–568. 10.1098/rsta.1961.0009. DOI

Kregel S. J.; Thurston G. K.; Garand E. Photoelectron spectroscopy of anthracene and fluoranthene radical anions. J. Chem. Phys. 2018, 148, 23430610.1063/1.5036757. PubMed DOI

Juneau A.; Frenette M. Raman Spectra of Persistent Radical Anions from Benzophenone, Fluorenone, 2, 2’-Bipyridyl, 4, 4’-Di-tert-butyl-2, 2’-dipyridyl, and Anthracene: Excellent Agreement between DFT and Experiment for Highly Delocalized Radical Systems. J. Phys. Chem. B 2021, 125, 1595–1603. 10.1021/acs.jpcb.0c04742. PubMed DOI

Bock H.; Arad C.; Näther C.; Havlas Z. The structures of solvent-separated naphthalene and anthracene radical anions. J. Chem. Soc., Chem. Commun. 1995, 0, 2393–2394. 10.1039/C39950002393. DOI

Castillo M.; Metta-Magaña A. J.; Fortier S. Isolation of gravimetrically quantifiable alkali metal arenides using 18-crown-6. New J. Chem. 2016, 40, 1923–1926. 10.1039/C5NJ02841H. DOI

Scott T. A.; Ooro B. A.; Collins D. J.; Shatruk M.; Yakovenko A.; Dunbar K. R.; Zhou H.-C. After 118 years, the isolation of two common radical anion reductants as simple, stable solids. Chem. Commun. 2009, 65–67. 10.1039/B815272A. PubMed DOI

Torii H.; Ueno Y.; Sakamoto A.; Tasumi M. Vibrational spectra and electron-vibration interactions of the naphthalene radical anion - Experimental and theoretical study. Can. J. Chem. 2004, 82, 951–963. 10.1139/v04-050. DOI

Martin J. M. L.; El-Yazal J.; François J.-P. Structure and Vibrational Spectrum of Some Polycyclic Aromatic Compounds Studied by Density Functional Theory. 1. Naphthalene, Azulene, Phenanthrene, and Anthracene. J. Phys. Chem. A 1996, 100, 15358–15367. 10.1021/jp960598q. DOI

Christesen S. D.; Johnson C. S. Jr. Resonance Raman spectra of naphthalene and naphthalene-d8 anions in THF. J. Raman Spectrosc. 1983, 14, 53–58. 10.1002/jrs.1250140113. DOI

Fleischer E. B.; Sung N.; Hawkinson S. Crystal structure of benzophenone. J. Phys. Chem. A 1968, 72, 4311–4312. 10.1021/j100858a065. DOI

Lietard A.; Mensa-Bonsu G.; Verlet J. R. R. The effect of solvation on electron capture revealed using anion two-dimensional photoelectron spectroscopy. Nat. Chem. 2021, 13, 737–742. 10.1038/s41557-021-00687-1. PubMed DOI

Young R. M.; Neumark D. M. Dynamics of Solvated Electrons in Clusters. Chem. Rev. 2012, 112, 5553–5577. 10.1021/cr300042h. PubMed DOI

Cooper G. A.; Clarke C. J.; Verlet J. R. R. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023, 145, 1319–1326. 10.1021/jacs.2c11440. PubMed DOI PMC

Ritzoulis G.; Papadopoulos N.; Jannakoudakis D. Densities, viscosities, and dielectric constants of acetonitrile + toluene at 15, 25, and 35.degree.C. J. Chem. Eng. Data 1986, 31, 146–148. 10.1021/je00044a004. DOI

Katime I.; Ochoa J. R. Thermodynamic properties of the PMMA-acetonitrile-1,4-dioxane system. J. Chem. Soc., Faraday Trans. 1 1987, 83, 2289–2300. 10.1039/f19878302289. DOI

Grills D. C.; Lymar S. V. Solvated Electron in Acetonitrile: Radiation Yield, Absorption Spectrum, and Equilibrium between Cavity- and Solvent-Localized States. J. Phys. Chem. B 2022, 126, 262–269. 10.1021/acs.jpcb.1c08946. PubMed DOI

Nemirovich T.; Kostal V.; Copko J.; Schewe H. C.; Bohacova S.; Martinek T.; Slanina T.; Jungwirth P. Bridging Electrochemistry and Photoelectron Spectroscopy in the Context of Birch Reduction: Detachment Energies and Redox Potentials of Electron, Dielectron, and Benzene Radical Anion in Liquid Ammonia. J. Am. Chem. Soc. 2022, 144, 22093–22100. 10.1021/jacs.2c09478. PubMed DOI

Narwade B. S.; Gawali P. G.; Pande R.; Kalamse G. M. Dielectric studies of binary mixtures of n-propyl alcohol and ethylenediamine. J. Chem. Sci. 2005, 117, 673–676. 10.1007/BF02708297. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...