Stability and Reactivity of Aromatic Radical Anions in Solution with Relevance to Birch Reduction
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38363862
PubMed Central
PMC10979400
DOI
10.1021/jacs.3c11655
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigate the electronic structure of aromatic radical anions in the solution phase employing a combination of liquid-jet (LJ) photoelectron (PE) spectroscopy measurements and electronic structure calculations. By using recently developed protocols, we accurately determine the vertical ionization energies of valence electrons of both the solvent and the solute molecules. In particular, we first characterize the pure solvent of tetrahydrofuran (THF) by LJ-PE measurements in conjunction with ab initio molecular dynamics simulations and G0W0 calculations. Next, we determine the electronic structure of neutral naphthalene (Np) and benzophenone (Bp) as well as their radical anion counterparts Np- and Bp- in THF. Wherever feasible, we performed orbital assignments of the measured PE features of the aromatic radical anions, with comparisons to UV-vis absorption spectra of the corresponding neutral molecules being instrumental in rationalizing the assignments. Analysis of the electronic structure differences between the neutral species and their anionic counterparts provides understanding of the primarily electrostatic stabilization of the radical anions in solution. Finally, we obtain a very good agreement of the reduction potentials extracted from the present LJ-PES measurements of Np- and Bp- in THF with previous electrochemical data from cyclic voltammetry measurements. In this context, we discuss how the choice of solvent holds significant implications for optimizing conditions for the Birch reduction process, wherein aromatic radical anions play crucial roles as reactive intermediates.
Department of Chemistry University of Southern California Los Angeles California 90089 United States
Fritz Haber Institut der Max Planck Gesellschaft Faradayweg 4 6 14195 Berlin Germany
Helmholtz Zentrum Berlin für Materialien und Energie Hahn Meitner Platz 1 14109 Berlin Germany
Zobrazit více v PubMed
Connelly N. G.; Geiger W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877–910. 10.1021/cr940053x. PubMed DOI
Birch A. J. 117. Reduction by dissolving metals. Part I. J. Chem. Soc. 1944, 430–436. 10.1039/jr9440000430. DOI
Joshi D. K.; Sutton J. W.; Carver S.; Blanchard J. P. Experiences with Commercial Production Scale Operation of Dissolving Metal Reduction Using Lithium Metal and Liquid Ammonia. Org. Process Res. Dev. 2005, 9, 997–1002. 10.1021/op050155x. DOI
Birch A. J. The Birch reduction in organic synthesis. Pure Appl. Chem. 1996, 68, 553–556. 10.1351/pac199668030553. DOI
Burrows J.; Kamo S.; Koide K. Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran. Science 2021, 374, 741–746. 10.1126/science.abk3099. PubMed DOI
Linthorst J. A. An overview: origins and development of green chemistry. Found. Chem. 2010, 12, 55–68. 10.1007/s10698-009-9079-4. DOI
Song J. K.; Lee N. K.; Han S. Y.; Kim S. K. The naphthalene-benzene anion: Anion complex of aromatic hydrocarbons with the smallest electron affinity. J. Chem. Phys. 2002, 117, 9973–9976. 10.1063/1.1519002. DOI
Zhao J.; Wu W.; Sun J.; Guo S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev. 2013, 42, 5323–5351. 10.1039/c3cs35531d. PubMed DOI
Suto M.; Wang X.; Shan J.; Lee L. Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm. J. Quant. Spectrosc. Radiat. Transfer 1992, 48, 79–89. 10.1016/0022-4073(92)90008-R. DOI
Lyapustina S. A.; Xu S.; Nilles J. M.; Bowen K. H. Jr Solvent-induced stabilization of the naphthalene anion by water molecules: A negative cluster ion photoelectron spectroscopic study. J. Chem. Phys. 2000, 112, 6643–6648. 10.1063/1.481237. DOI
Zimmerman H. E. A Mechanistic Analysis of the Birch Reduction. Acc. Chem. Res. 2012, 45, 164–170. 10.1021/ar2000698. PubMed DOI
Greenwood N.; Earnshaw A.. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, 1997.
Marasas R. A.; Iyoda T.; Miller J. R. Benzene Radical Ion in Equilibrium with Solvated Electrons. J. Phys. Chem. A 2003, 107, 2033–2038. 10.1021/jp026893u. DOI
Faubel M.; Schlemmer S.; Toennies J. P. A molecular beam study of the evaporation of water from a liquid jet. Z. Phys. D: At., Mol. Clusters 1988, 10, 1431–5866. 10.1007/BF01384861. DOI
Faubel M.; Steiner B.; Toennies J. P. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J. Chem. Phys. 1997, 106, 9013–9031. 10.1063/1.474034. DOI
Winter B.; Faubel M. Photoemission from Liquid Aqueous Solutions. Chem. Rev. 2006, 106, 1176–1211. 10.1021/cr040381p. PubMed DOI
Kim J. B.; Schoenwaelder C.; Glenzer S. H. Development and characterization of liquid argon and methane microjets for high-rep-rate laser-plasma experiments. Rev. Sci. Instrum. 2018, 89, 10K10510.1063/1.5038561. PubMed DOI
Buttersack T.; Mason P. E.; Jungwirth P.; Schewe H. C.; Winter B.; Seidel R.; McMullen R. S.; Bradforth S. E. Deeply cooled and temperature controlled microjets: Liquid ammonia solutions released into vacuum for analysis by photoelectron spectroscopy. Rev. Sci. Instrum. 2020, 91, 04310110.1063/1.5141359. PubMed DOI
Buttersack T.; Mason P. E.; McMullen R. S.; Schewe H. C.; Martinek T.; Brezina K.; Crhan M.; Gomez A.; Hein D.; Wartner G.; Seidel R.; Ali H.; Thürmer S.; Marsalek O.; Winter B.; Bradforth S. E.; Jungwirth P. Photoelectron spectra of alkali metal-ammonia microjets: From blue electrolyte to bronze metal. Science 2020, 368, 1086–1091. 10.1126/science.aaz7607. PubMed DOI
Schewe H. C.; Brezina K.; Kostal V.; Mason P. E.; Buttersack T.; Stemer D. M.; Seidel R.; Quevedo W.; Trinter F.; Winter B.; Jungwirth P. Photoelectron Spectroscopy of Benzene in the Liquid Phase and Dissolved in Liquid Ammonia. J. Phys. Chem. B 2022, 126, 229–238. 10.1021/acs.jpcb.1c08172. PubMed DOI
Seidel R.; Winter B.; Bradforth S. E. Valence Electronic Structure of Aqueous Solutions: Insights from Photoelectron Spectroscopy. Annu. Rev. Phys. Chem. 2016, 67, 283–305. 10.1146/annurev-physchem-040513-103715. PubMed DOI
Nolting D.; Ottosson N.; Faubel M.; Hertel I. V.; Winter B. Pseudoequivalent Nitrogen Atoms in Aqueous Imidazole Distinguished by Chemical Shifts in Photoelectron Spectroscopy. J. Am. Chem. Soc. 2008, 130, 8150–8151. 10.1021/ja8022384. PubMed DOI
Lewis T.; Winter B.; Stern A. C.; Baer M. D.; Mundy C. J.; Tobias D. J.; Hemminger J. C. Dissociation of Strong Acid Revisited: X-ray Photoelectron Spectroscopy and Molecular Dynamics Simulations of HNO3 in Water. J. Phys. Chem. B 2011, 115, 9445–9451. 10.1021/jp205510q. PubMed DOI
Szabo A.; Ostlund N. S.. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory; Courier Corporation, 2012.
Thürmer S.; Malerz S.; Trinter F.; Hergenhahn U.; Lee C.; Neumark D.; Meijer G.; Winter B.; Wilkinson I. Accurate vertical ionization energy and work function determinations of liquid water and aqueous solutions. Chem. Sci. 2021, 12, 10558–10582. 10.1039/D1SC01908B. PubMed DOI PMC
Pérez Ramírez L.; Boucly A.; Saudrais F.; Bournel F.; Gallet J.-J.; Maisonhaute E.; Milosavljević A. R.; Nicolas C.; Rochet F. The Fermi level as an energy reference in liquid jet X-ray photoelectron spectroscopy studies of aqueous solutions. Phys. Chem. Chem. Phys. 2021, 23, 16224–16233. 10.1039/D1CP01511G. PubMed DOI
Brezina K.; Jungwirth P.; Marsalek O. Benzene Radical Anion in the Context of the Birch Reduction: When Solvation Is the Key. J. Phys. Chem. Lett. 2020, 11, 6032–6038. 10.1021/acs.jpclett.0c01505. PubMed DOI
Kostal V.; Brezina K.; Marsalek O.; Jungwirth P. Benzene Radical Anion Microsolvated in Ammonia Clusters: Modeling the Transition from an Unbound Resonance to a Bound Species. J. Phys. Chem. A 2021, 125, 5811–5818. 10.1021/acs.jpca.1c04594. PubMed DOI
Follath R.; Schmidt J. S.; Siewert F.; Holldack K.; Zeschke W.; Frentrup T.; Schmitz D.; Sawhney K. J. S. Commissioning of the U49/2-PGM1 beamline. AIP Conf. Proc. 2003, 705, 348–351. 10.1063/1.1757805. DOI
Seidel R.; Pohl M. N.; Ali H.; Winter B.; Aziz E. F. Advances in liquid phase soft-x-ray photoemission spectroscopy: A new experimental setup at BESSY II. Rev. Sci. Instrum. 2017, 88, 07310710.1063/1.4990797. PubMed DOI
Malerz S.; Haak H.; Trinter F.; Stephansen A. B.; Kolbeck C.; Pohl M.; Hergenhahn U.; Meijer G.; Winter B. A setup for studies of photoelectron circular dichroism from chiral molecules in aqueous solution. Rev. Sci. Instrum. 2022, 93, 01510110.1063/5.0072346. PubMed DOI
Winter B.; Thürmer S.; Wilkinson I. Absolute Electronic Energetics and Quantitative Work Functions of Liquids from Photoelectron Spectroscopy. Acc. Chem. Res. 2023, 56, 77–85. 10.1021/acs.accounts.2c00548. PubMed DOI PMC
Hutter J.; Iannuzzi M.; Schiffmann F.; VandeVondele J. cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15–25. 10.1002/wcms.1159. DOI
VandeVondele J.; Krack M.; Mohamed F.; Parrinello M.; Chassaing T.; Hutter J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. 10.1016/j.cpc.2004.12.014. DOI
Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F. CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 19410310.1063/5.0007045. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865.10.1103/PhysRevLett.77.3865. PubMed DOI
Zhang Y.; Yang W. Comment on Generalized gradient approximation made simple. Phys. Rev. Lett. 1998, 80, 890.10.1103/PhysRevLett.80.890. DOI
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. 10.1063/1.478522. DOI
Goerigk L.; Grimme S. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688. 10.1039/c0cp02984j. PubMed DOI
Goedecker S.; Teter M.; Hutter J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703.10.1103/PhysRevB.54.1703. PubMed DOI
Guidon M.; Hutter J.; VandeVondele J. Auxiliary density matrix methods for Hartree- Fock exchange calculations. J. Chem. Theory Comput. 2010, 6, 2348–2364. 10.1021/ct1002225. PubMed DOI
Bussi G.; Donadio D.; Parrinello M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI
Wilhelm J.; Del Ben M.; Hutter J. GW in the Gaussian and plane waves scheme with application to linear acenes. J. Chem. Theory Comput. 2016, 12, 3623–3635. 10.1021/acs.jctc.6b00380. PubMed DOI
Pluhařová E.; Slavicek P.; Jungwirth P. Modeling photoionization of aqueous DNA and its components. Acc. Chem. Res. 2015, 48, 1209–1217. 10.1021/ar500366z. PubMed DOI
Becke A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377. 10.1063/1.464304. DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 15410410.1063/1.3382344. PubMed DOI
Kendall R. A.; Dunning T. H. Jr.; Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. 10.1063/1.462569. DOI
Angeli C.; Cimiraglia R.; Evangelisti S.; Leininger T.; Malrieu J.-P. Introduction of n-electron valence states for multireference perturbation theory. J. Chem. Phys. 2001, 114, 10252–10264. 10.1063/1.1361246. DOI
Angeli C.; Cimiraglia R.; Malrieu J.-P. N-electron valence state perturbation theory: a fast implementation of the strongly contracted variant. Chem. Phys. Lett. 2001, 350, 297–305. 10.1016/S0009-2614(01)01303-3. DOI
Angeli C.; Cimiraglia R.; Malrieu J.-P. N-electron valence state perturbation theory: A spinless formulation and an efficient implementation of the strongly contracted and of the partially contracted variants. J. Chem. Phys. 2002, 117, 9138–9153. 10.1063/1.1515317. DOI
Eland J. H. D.Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectron Spectroscopy in the Gas Phase; Elsevier, 2013.
Goerigk L.; Grimme S. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7, 291–309. 10.1021/ct100466k. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato M.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams- Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, revision A.03; Gaussian Inc.: Wallingford CT, 2016.
Dampc M.; Mielewska B.; Siggel-King M. R.; King G. C.; Zubek M. Threshold photoelectron spectra of tetrahydrofuran over the energy range 9–29 eV. Chem. Phys. 2009, 359, 77–81. 10.1016/j.chemphys.2009.03.009. DOI
Giuliani A.; Limão-Vieira P.; Duflot D.; Milosavljevic A. R.; Marinkovic B. P.; Hoffmann S. V.; Mason N.; Delwiche J.; Hubin-Franskin M.-J. Electronic states of neutral and ionized tetrahydrofuran studied by VUV spectroscopy and ab initio calculations. Eur. Phys. J. D 2009, 51, 97–108. 10.1140/epjd/e2008-00154-7. DOI
Baird Z. S.; Uusi-Kyyny P.; Pokki J.; et al. Vapor Pressures, Densities, and PC-SAFT Parameters for 11 Bio-compounds. Int. J. Thermophys. 2019, 40, 10210.1007/s10765-019-2570-9. DOI
Bowron D. T.; Finney J. L.; Soper A. K. The Structure of Liquid Tetrahydrofuran. J. Am. Chem. Soc. 2006, 128, 5119–5126. 10.1021/ja0583057. PubMed DOI
Grosch H.; Sárossy Z.; Egsgaard H.; Fateev A. UV absorption cross-sections of phenol and naphthalene at temperatures up to 500°C.. J. Quant. Spectrosc. Radiat. Transfer 2015, 156, 17–23. 10.1016/j.jqsrt.2015.01.021. DOI
Birks J. B.Photophysics of Aromatic Molecules; Wiley, 1970.
Montalti M.; Credi A.; Prodi L.; Gandolfi M. T.. Handbook of Photochemistry; CRC Press, 2006.
Segarra-Martí J.; Zvereva E.; Marazzi M.; Brazard J.; Dumont E.; Assfeld X.; Haacke S.; Garavelli M.; Monari A.; Léonard J.; Rivalta I. Resolving the Singlet Excited State Manifold of Benzophenone by First-Principles Simulations and Ultrafast Spectroscopy. J. Chem. Theory Comput. 2018, 14, 2570–2585. 10.1021/acs.jctc.7b01208. PubMed DOI
Cockett M. C. R.; Ozeki H.; Okuyama K.; Kimura K. Vibronic coupling in the ground cationic state of naphthalene: a laser threshold photoelectron [zero kinetic energy (ZEKE)-photoelectron] spectroscopic study. J. Chem. Phys. 1993, 98, 7763–7772. 10.1063/1.464584. DOI
Yagi I.; Maeyama T.; Fujii A.; Mikami N. Stepwise solvatochromism of ketyl anions in the gas phase: Photodetachment excitation spectroscopy of benzophenone and acetophenone radical anions microsolvated with methanol. J. Phys. Chem. A 2007, 111, 7646–7652. 10.1021/jp072167l. PubMed DOI
McAlduff E.; Bunbury D. Photoelectron spectra of some aromatic mono-and di-ketones. J. Electron Spectrosc. Relat. Phenom. 1979, 17, 81–89. 10.1016/0368-2048(79)85030-6. DOI
Smid J. A Stable Dianion of Naphthalene. J. Am. Chem. Soc. 1965, 87, 655–656. 10.1021/ja01081a048. DOI
Pearson R. G. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg. Chem. 1988, 27, 734–740. 10.1021/ic00277a030. DOI
Pluhařová E.; Ončák M.; Seidel R.; Schroeder C.; Schroeder W.; Winter B.; Bradforth S. E.; Jungwirth P.; Slavíček P. Transforming Anion Instability into Stability: Contrasting Photoionization of Three Protonation Forms of the Phosphate Ion upon Moving into Water. J. Phys. Chem. B 2012, 116, 13254–13264. 10.1021/jp306348b. PubMed DOI
Malerz S.; Trinter F.; Hergenhahn U.; Ghrist A.; Ali H.; Nicolas C.; Saak C.-M.; Richter C.; Hartweg S.; Nahon L.; Lee C.; Goy C.; Neumark D. M.; Meijer G.; Wilkinson I.; Winter B.; Thürmer S. Low-energy constraints on photoelectron spectra measured from liquid water and aqueous solutions. Phys. Chem. Chem. Phys. 2021, 23, 8246–8260. 10.1039/D1CP00430A. PubMed DOI
Wang X.-B.; Wang L.-S. Probing the electronic structure of redox species and direct determination of intrinsic reorganization energies of electron transfer reactions. J. Chem. Phys. 2000, 112, 6959–6962. 10.1063/1.481292. DOI
Jordan K. D.; Burrow P. D. Studies of the temporary anion states of unsaturated hydrocarbons by electron transmission spectroscopy. Acc. Chem. Res. 1978, 11, 341–348. 10.1021/ar50129a004. DOI
Schiedt J.; Weinkauf R. Photodetachment photoelectron spectroscopy of mass selected anions: anthracene and the anthracene-H2O cluster. Chem. Phys. Lett. 1997, 266, 201–205. 10.1016/S0009-2614(96)01512-6. DOI
Bedard-Hearn M. J.; Larsen R. E.; Schwartz B. J. The role of solvent structure in the absorption spectrum of solvated electrons: Mixed quantum/classical simulations in tetrahydrofuran. J. Chem. Phys. 2005, 122, 13450610.1063/1.1867378. PubMed DOI
Bragg A. E.; Schwartz B. J. The Ultrafast Charge-Transfer-to-Solvent Dynamics of Iodide in Tetrahydrofuran. 1. Exploring the Roles of Solvent and Solute Electronic Structure in Condensed-Phase Charge-Transfer Reactions. J. Phys. Chem. B 2008, 112, 483–494. 10.1021/jp076934s. PubMed DOI
Shkrob I. A. Ammoniated Electron as a Solvent Stabilized Multimer Radical Anion. J. Phys. Chem. A 2006, 110, 3967–3976. 10.1021/jp055500z. PubMed DOI
Uhlig F.; Marsalek O.; Jungwirth P. Unraveling the Complex Nature of the Hydrated Electron. J. Phys. Chem. Lett. 2012, 3, 3071–3075. 10.1021/jz301449f. PubMed DOI
Kevan L. Solvated electron structure in glassy matrixes. Acc. Chem. Res. 1981, 14, 138–145. 10.1021/ar00065a002. DOI
Jas G. S.; Kuczera K. Ab initio calculations of S1 excited state vibrational spectra of benzene, naphthalene and anthracene. Chem. Phys. 1997, 214, 229–241. 10.1016/S0301-0104(96)00315-1. DOI
Beck S. M.; Powers D. E.; Hopkins J. B.; Smalley R. E. Jet-cooled naphthalene. I. Absorption spectra and line profiles. J. Chem. Phys. 1980, 73, 2019–2028. 10.1063/1.440421. DOI
Craig D. P.; Hollas J. M.; Redies M. F.; Wait S. C. Jr.; Ingold C. K. Analysis of the naphthalene vapour absorption bands at 3200Å. I. Naphthalene h-8. Philos. Trans. R. Soc. London, Ser. A 1961, 253, 543–568. 10.1098/rsta.1961.0009. DOI
Kregel S. J.; Thurston G. K.; Garand E. Photoelectron spectroscopy of anthracene and fluoranthene radical anions. J. Chem. Phys. 2018, 148, 23430610.1063/1.5036757. PubMed DOI
Juneau A.; Frenette M. Raman Spectra of Persistent Radical Anions from Benzophenone, Fluorenone, 2, 2’-Bipyridyl, 4, 4’-Di-tert-butyl-2, 2’-dipyridyl, and Anthracene: Excellent Agreement between DFT and Experiment for Highly Delocalized Radical Systems. J. Phys. Chem. B 2021, 125, 1595–1603. 10.1021/acs.jpcb.0c04742. PubMed DOI
Bock H.; Arad C.; Näther C.; Havlas Z. The structures of solvent-separated naphthalene and anthracene radical anions. J. Chem. Soc., Chem. Commun. 1995, 0, 2393–2394. 10.1039/C39950002393. DOI
Castillo M.; Metta-Magaña A. J.; Fortier S. Isolation of gravimetrically quantifiable alkali metal arenides using 18-crown-6. New J. Chem. 2016, 40, 1923–1926. 10.1039/C5NJ02841H. DOI
Scott T. A.; Ooro B. A.; Collins D. J.; Shatruk M.; Yakovenko A.; Dunbar K. R.; Zhou H.-C. After 118 years, the isolation of two common radical anion reductants as simple, stable solids. Chem. Commun. 2009, 65–67. 10.1039/B815272A. PubMed DOI
Torii H.; Ueno Y.; Sakamoto A.; Tasumi M. Vibrational spectra and electron-vibration interactions of the naphthalene radical anion - Experimental and theoretical study. Can. J. Chem. 2004, 82, 951–963. 10.1139/v04-050. DOI
Martin J. M. L.; El-Yazal J.; François J.-P. Structure and Vibrational Spectrum of Some Polycyclic Aromatic Compounds Studied by Density Functional Theory. 1. Naphthalene, Azulene, Phenanthrene, and Anthracene. J. Phys. Chem. A 1996, 100, 15358–15367. 10.1021/jp960598q. DOI
Christesen S. D.; Johnson C. S. Jr. Resonance Raman spectra of naphthalene and naphthalene-d8 anions in THF. J. Raman Spectrosc. 1983, 14, 53–58. 10.1002/jrs.1250140113. DOI
Fleischer E. B.; Sung N.; Hawkinson S. Crystal structure of benzophenone. J. Phys. Chem. A 1968, 72, 4311–4312. 10.1021/j100858a065. DOI
Lietard A.; Mensa-Bonsu G.; Verlet J. R. R. The effect of solvation on electron capture revealed using anion two-dimensional photoelectron spectroscopy. Nat. Chem. 2021, 13, 737–742. 10.1038/s41557-021-00687-1. PubMed DOI
Young R. M.; Neumark D. M. Dynamics of Solvated Electrons in Clusters. Chem. Rev. 2012, 112, 5553–5577. 10.1021/cr300042h. PubMed DOI
Cooper G. A.; Clarke C. J.; Verlet J. R. R. Low-Energy Shape Resonances of a Nucleobase in Water. J. Am. Chem. Soc. 2023, 145, 1319–1326. 10.1021/jacs.2c11440. PubMed DOI PMC
Ritzoulis G.; Papadopoulos N.; Jannakoudakis D. Densities, viscosities, and dielectric constants of acetonitrile + toluene at 15, 25, and 35.degree.C. J. Chem. Eng. Data 1986, 31, 146–148. 10.1021/je00044a004. DOI
Katime I.; Ochoa J. R. Thermodynamic properties of the PMMA-acetonitrile-1,4-dioxane system. J. Chem. Soc., Faraday Trans. 1 1987, 83, 2289–2300. 10.1039/f19878302289. DOI
Grills D. C.; Lymar S. V. Solvated Electron in Acetonitrile: Radiation Yield, Absorption Spectrum, and Equilibrium between Cavity- and Solvent-Localized States. J. Phys. Chem. B 2022, 126, 262–269. 10.1021/acs.jpcb.1c08946. PubMed DOI
Nemirovich T.; Kostal V.; Copko J.; Schewe H. C.; Bohacova S.; Martinek T.; Slanina T.; Jungwirth P. Bridging Electrochemistry and Photoelectron Spectroscopy in the Context of Birch Reduction: Detachment Energies and Redox Potentials of Electron, Dielectron, and Benzene Radical Anion in Liquid Ammonia. J. Am. Chem. Soc. 2022, 144, 22093–22100. 10.1021/jacs.2c09478. PubMed DOI
Narwade B. S.; Gawali P. G.; Pande R.; Kalamse G. M. Dielectric studies of binary mixtures of n-propyl alcohol and ethylenediamine. J. Chem. Sci. 2005, 117, 673–676. 10.1007/BF02708297. DOI