Nonaqueous Ion Pairing Exemplifies the Case for Including Electronic Polarization in Molecular Dynamics Simulations
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37733610
PubMed Central
PMC10561266
DOI
10.1021/acs.jpclett.3c02231
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The inclusion of electronic polarization is of crucial importance in molecular simulations of systems containing charged moieties. When neglected, as often done in force field simulations, charge-charge interactions in solution may become severely overestimated, leading to unrealistically strong bindings of ions to biomolecules. The electronic continuum correction introduces electronic polarization in a mean-field way via scaling of charges by the reciprocal of the square root of the high-frequency dielectric constant of the solvent environment. Here, we use ab initio molecular dynamics simulations to quantify the effect of electronic polarization on pairs of like-charged ions in a model nonaqueous environment where electronic polarization is the only dielectric response. Our findings confirm the conceptual validity of this approach, underlining its applicability to complex aqueous biomolecular systems. Simultaneously, the results presented here justify the potential employment of weaker charge scaling factors in force field development.
Zobrazit více v PubMed
Leontyev I. V.; Stuchebrukhov A. A. Electronic Continuum Model for Molecular Dynamics Simulations. J. Chem. Phys. 2009, 130, 08510210.1063/1.3060164. PubMed DOI PMC
Kirby B. J.; Jungwirth P. Charge Scaling Manifesto: A Way of Reconciling the Inherently Macroscopic and Microscopic Natures of Molecular Simulations. J. Phys. Chem. Lett. 2019, 10, 7531–7536. 10.1021/acs.jpclett.9b02652. PubMed DOI
Leontyev I.; Stuchebrukhov A. Accounting for Electronic Polarization in Non-Polarizable Force Fields. Phys. Chem. Chem. Phys. 2011, 13, 2613–2626. 10.1039/c0cp01971b. PubMed DOI
Zeron I. M.; Abascal J. L. F.; Vega C. A Force Field of Li+, Na+, K+, Mg2+, Ca2+, Cl-, and SO42- in Aqueous Solution Based on the TIP4P/2005 Water Model and Scaled Charges for the Ions. J. Chem. Phys. 2019, 151, 134504.10.1063/1.5121392. PubMed DOI
Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A Practical Guide to Biologically Relevant Molecular Simulations with Charge Scaling for Electronic Polarization. J. Chem. Phys. 2020, 153, 05090110.1063/5.0017775. PubMed DOI
Liu C.; Piquemal J.-P.; Ren P. AMOEBA+ Classical Potential for Modeling Molecular Interactions. J. Chem. Theory Comput. 2019, 15, 4122–4139. 10.1021/acs.jctc.9b00261. PubMed DOI PMC
Leontyev I. V.; Stuchebrukhov A. A. Electronic Continuum Model for Molecular Dynamics Simulations of Biological Molecules. J. Chem. Theory Comput. 2010, 6, 1498–1508. 10.1021/ct9005807. PubMed DOI PMC
Cui K.; Yethiraj A.; Schmidt J. R. Influence of Charge Scaling on the Solvation Properties of Ionic Liquid Solutions. J. Phys. Chem. B 2019, 123, 9222–9229. 10.1021/acs.jpcb.9b08033. PubMed DOI
Blazquez S.; Conde M. M.; Vega C. Scaled Charges for Ions: An Improvement but Not the Final Word for Modeling Electrolytes in Water. J. Chem. Phys. 2023, 158, 05450510.1063/5.0136498. PubMed DOI
Melcr J.; Piquemal J.-P. Accurate Biomolecular Simulations Account for Electronic Polarization. Front. Mol. Biosci. 2019, 6, 00143.10.3389/fmolb.2019.00143. PubMed DOI PMC
Vazdar M.; Pluhařová E.; Mason P. E.; Vácha R.; Jungwirth P. Ions at Hydrophobic Aqueous Interfaces: Molecular Dynamics with Effective Polarization. J. Phys. Chem. Lett. 2012, 3, 2087–2091. 10.1021/jz300805b. DOI
Biriukov D.; Kroutil O.; Předota M. Modeling of Solid–Liquid Interfaces Using Scaled Charges: Rutile (110) Surfaces. Phys. Chem. Chem. Phys. 2018, 20, 23954–23966. 10.1039/C8CP04535F. PubMed DOI
Biriukov D.; Kroutil O.; Kabeláč M.; Ridley M. K.; Machesky M. L.; Předota M. Oxalic Acid Adsorption on Rutile: Molecular Dynamics and Ab Initio Calculations. Langmuir 2019, 35, 7617–7630. 10.1021/acs.langmuir.8b03984. PubMed DOI
Biriukov D.; Fibich P.; Předota M. Zeta Potential Determination from Molecular Simulations. J. Phys. Chem. C 2020, 124, 3159–3170. 10.1021/acs.jpcc.9b11371. DOI
Bruce E. E.; van der Vegt N. F. A. Does an Electronic Continuum Correction Improve Effective Short-Range Ion-Ion Interactions in Aqueous Solution?. J. Chem. Phys. 2018, 148, 222816.10.1063/1.5017101. PubMed DOI
Chaumont A.; Engler E.; Schurhammer R. Is Charge Scaling Really Mandatory When Developing Fixed-Charge Atomistic Force Fields for Deep Eutectic Solvents?. J. Phys. Chem. B 2020, 124, 7239–7250. 10.1021/acs.jpcb.0c04907. PubMed DOI
Kann Z. R.; Skinner J. L. A Scaled-Ionic-Charge Simulation Model That Reproduces Enhanced and Suppressed Water Diffusion in Aqueous Salt Solutions. J. Chem. Phys. 2014, 141, 104507.10.1063/1.4894500. PubMed DOI
Zhang Y.; Maginn E. J. A Simple AIMD Approach to Derive Atomic Charges for Condensed Phase Simulation of Ionic Liquids. J. Phys. Chem. B 2012, 116, 10036–10048. 10.1021/jp3037999. PubMed DOI
Pluhařová E.; Marsalek O.; Schmidt B.; Jungwirth P. Ab Initio Molecular Dynamics Approach to a Quantitative Description of Ion Pairing in Water. J. Phys. Chem. Lett. 2013, 4, 4177–4181. 10.1021/jz402177q. DOI
Martinek T.; Duboué-Dijon E.; Timr Š.; Mason P. E.; Baxová K.; Fischer H. E.; Schmidt B.; Pluhařová E.; Jungwirth P. Calcium Ions in Aqueous Solutions: Accurate Force Field Description Aided by Ab Initio Molecular Dynamics and Neutron Scattering. J. Chem. Phys. 2018, 148, 222813.10.1063/1.5006779. PubMed DOI
Hammond C. R. In CRC Handbook of Chemistry and Physics, 97th ed.; Haynes W., Ed.; CRC Press: 2016; pp 4-132–4-133.
Sinnock A. C.; Smith B. L. Refractive Indices of the Condensed Inert Gases. Phys. Rev. 1969, 181, 1297–1307. 10.1103/PhysRev.181.1297. DOI
Wohlfarth C. In CRC Handbook of Chemistry and Physics, 97th ed.; Haynes W., Ed.; CRC Press: 2016; pp 6–199.
Lemmon E. W.; Bell I. H.; Huber M. L.; McLinden M. O. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom P. J., Mallard W., Eds.; National Institute of Standards and Technology: Gaithersburg MD, 2022.
Kühne T. D.; Iannuzzi M.; Del Ben M.; Rybkin V. V.; Seewald P.; Stein F.; Laino T.; Khaliullin R. Z.; Schütt O.; Schiffmann F.; et al. CP2K: An Electronic Structure and Molecular Dynamics Software Package - Quickstep: Efficient and Accurate Electronic Structure Calculations. J. Chem. Phys. 2020, 152, 194103.10.1063/5.0007045. PubMed DOI
Lippert G.; Hutter J.; Parrinello M. A Hybrid Gaussian and Plane Wave Density Functional Scheme. Mol. Phys. 1997, 92, 477–488. 10.1080/00268979709482119. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Zhang Y.; Yang W. Comment on “Generalized Gradient Approximation Made Simple“. Phys. Rev. Lett. 1998, 80, 890–890. 10.1103/PhysRevLett.80.890. DOI
Goerigk L.; Grimme S. A Thorough Benchmark of Density Functional Methods for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Phys. Chem. Chem. Phys. 2011, 13, 6670–6688. 10.1039/c0cp02984j. PubMed DOI
Kostal V.; Mason P. E.; Martinez-Seara H.; Jungwirth P. Common Cations Are Not Polarizable: Effects of Dispersion Correction on Hydration Structures from Ab Initio Molecular Dynamics. J. Phys. Chem. Lett. 2023, 14, 4403–4408. 10.1021/acs.jpclett.3c00856. PubMed DOI PMC
VandeVondele J.; Hutter J. Gaussian Basis Sets for Accurate Calculations on Molecular Systems in Gas and Condensed Phases. J. Chem. Phys. 2007, 127, 114105.10.1063/1.2770708. PubMed DOI
Goedecker S.; Teter M.; Hutter J. Separable Dual-Space Gaussian Pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710. 10.1103/PhysRevB.54.1703. PubMed DOI
Andersen H.; Rattle C. A “Velocity” Version of the Shake Algorithm for Molecular Dynamics Calculations. J. Comput. Phys. 1983, 52, 24–34. 10.1016/0021-9991(83)90014-1. DOI
Abraham M. J.; Murtola T.; Schulz R.; Páll S.; Smith J. C.; Hess B.; Lindahl E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. 10.1016/j.softx.2015.06.001. DOI
Bussi G.; Donadio D.; Parrinello M. Canonical Sampling through Velocity Rescaling. J. Chem. Phys. 2007, 126, 01410110.1063/1.2408420. PubMed DOI
Kohagen M.; Mason P. E.; Jungwirth P. Accurate Description of Calcium Solvation in Concentrated Aqueous Solutions. J. Phys. Chem. B 2014, 118, 7902–7909. 10.1021/jp5005693. PubMed DOI
Martinez-Seara H.ProsECCo. https://gitlab.com/sparkly/prosecco/prosECCo75. Date accessed: 18th July 2023.
Kohagen M.; Mason P. E.; Jungwirth P. Accounting for Electronic Polarization Effects in Aqueous Sodium Chloride via Molecular Dynamics Aided by Neutron Scattering. J. Phys. Chem. B 2016, 120, 1454–1460. 10.1021/acs.jpcb.5b05221. PubMed DOI
Mason P. E.; Wernersson E.; Jungwirth P. Accurate Description of Aqueous Carbonate Ions: An Effective Polarization Model Verified by Neutron Scattering. J. Phys. Chem. B 2012, 116, 8145–8153. 10.1021/jp3008267. PubMed DOI
Verlet L.; Weis J.-J. Perturbation Theory for the Thermodynamic Properties of Simple Liquids. Mol. Phys. 1972, 24, 1013–1024. 10.1080/00268977200102111. DOI
Szalewicz K. Symmetry-Adapted Perturbation Theory of Intermolecular Forces. WIREs Comput. Mol. Sci. 2012, 2, 254–272. 10.1002/wcms.86. DOI
Rappoport D.; Furche F. Property-Optimized Gaussian Basis Sets for Molecular Response Calculations. J. Chem. Phys. 2010, 133, 134105.10.1063/1.3484283. PubMed DOI
Epifanovsky E.; Gilbert A. T. B.; Feng X.; Lee J.; Mao Y.; Mardirossian N.; Pokhilko P.; White A. F.; Coons M. P.; Dempwolff A. L.; et al. Software for the Frontiers of Quantum Chemistry: An Overview of Developments in the Q-Chem 5 Package. J. Chem. Phys. 2021, 155, 08480110.1063/5.0055522. PubMed DOI PMC
Genovese L.; Deutsch T.; Neelov A.; Goedecker S.; Beylkin G. Efficient Solution of Poisson’s Equation with Free Boundary Conditions. J. Chem. Phys. 2006, 125, 07410510.1063/1.2335442. PubMed DOI
Boys S.; Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. 10.1080/00268977000101561. DOI
Trzesniak D.; Kunz A.-P. E.; van Gunsteren W. F. A Comparison of Methods to Compute the Potential of Mean Force. ChemPhysChem 2007, 8, 162–169. 10.1002/cphc.200600527. PubMed DOI
Tuckerman M. E.Statistical Mechanics: Theory and Molecular Simulation; Oxford University Press: 2010; pp 333–340.
Lundborg M.; Lidmar J.; Hess B. The Accelerated Weight Histogram Method for Alchemical Free Energy Calculations. J. Chem. Phys. 2021, 154, 204103.10.1063/5.0044352. PubMed DOI
Timko J.; Bucher D.; Kuyucak S. Dissociation of NaCl in Water from Ab Initio Molecular Dynamics Simulations. J. Chem. Phys. 2010, 132, 114510.10.1063/1.3360310. PubMed DOI