Directionality of developing skeletal muscles is set by mechanical forces
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural
Grantová podpora
DOC 33
Austrian Science Fund FWF - Austria
F32 DE029662
NIDCR NIH HHS - United States
PubMed
37244931
PubMed Central
PMC10224984
DOI
10.1038/s41467-023-38647-7
PII: 10.1038/s41467-023-38647-7
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované * genetika MeSH
- kosterní svaly * fyziologie MeSH
- morfogeneze MeSH
- myoblasty fyziologie MeSH
- myofibrily fyziologie MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.
Center for iPS Cell Research and Application Kyoto University Kyoto 606 8507 Japan
Central European Institute of Technology Brno University of Technology Brno Czech Republic
Department of Neuroscience Karolinska Institutet 17177 Stockholm Sweden
Department of Physics University of Erlangen Nuremberg 91052 Erlangen Germany
Department of Physiology and Pharmacology Karolinska Institutet 17177 Stockholm Sweden
Institute for the Advanced Study of Human Biology Kyoto University Kyoto 606 8501 Japan
KTH Royal Institute of Technology SE 100 44 Stockholm Sweden
Max Planck Institute for Evolutionary Biology August Thienemann Str 2 24306 Plön Germany
Zobrazit více v PubMed
Kim JH, et al. Mechanisms of myoblast fusion during muscle development. Curr. Opin Genet Dev. 2015;32:162–170. doi: 10.1016/j.gde.2015.03.006. PubMed DOI PMC
Schejter ED. Myoblast fusion: Experimental systems and cellular mechanisms. Semin Cell Dev. Biol. 2016;60:112–120. doi: 10.1016/j.semcdb.2016.07.016. PubMed DOI
Chal J, Pourquie O. Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017;144:2104–2122. doi: 10.1242/dev.151035. PubMed DOI
Kaucka, M., et al. Oriented clonal cell dynamics enables accurate growth and shaping of vertebrate cartilage. Elife6, e25902 (2017). PubMed PMC
Schweitzer R, Zelzer E, Volk T. Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development. 2010;137:2807–2817. doi: 10.1242/dev.047498. PubMed DOI PMC
Huang AH, et al. Repositioning forelimb superficialis muscles: tendon attachment and muscle activity enable active relocation of functional myofibers. Dev Cell. 2013;26:544–551. doi: 10.1016/j.devcel.2013.08.007. PubMed DOI PMC
Schweitzer R, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001;128:3855–3866. doi: 10.1242/dev.128.19.3855. PubMed DOI
Chen JW, Galloway JL. The development of zebrafish tendon and ligament progenitors. Development. 2014;141:2035–2045. doi: 10.1242/dev.104067. PubMed DOI PMC
Blitz E, et al. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013;140:2680–2690. doi: 10.1242/dev.093906. PubMed DOI
Gros J, Serralbo O, Marcelle C. WNT11 acts as a directional cue to organize the elongation of early muscle fibres. Nature. 2009;457:589–593. doi: 10.1038/nature07564. PubMed DOI
Kaucka M, et al. Analysis of neural crest-derived clones reveals novel aspects of facial development. Sci. Adv. 2016;2:e1600060. doi: 10.1126/sciadv.1600060. PubMed DOI PMC
Ho HY, et al. Wnt5a-Ror-Dishevelled signaling constitutes a core developmental pathway that controls tissue morphogenesis. Proc. Natl. Acad. Sci. 2012;109:4044–4051. doi: 10.1073/pnas.1200421109. PubMed DOI PMC
Collinsworth AM, et al. Orientation and length of mammalian skeletal myocytes in response to a unidirectional stretch. Cell Tissue Res. 2000;302:243–251. doi: 10.1007/s004410000224. PubMed DOI
Ives CL, Eskin SG, McIntire LV. Mechanical effects on endothelial cell morphology: in vitro assessment. In Vitro Cell Dev. Biol. 1986;22:500–507. doi: 10.1007/BF02621134. PubMed DOI
Bagriantsev SN, Gracheva EO, Gallagher PG. Piezo proteins: regulators of mechanosensation and other cellular processes. J. Biol. Chem. 2014;289:31673–81.. doi: 10.1074/jbc.R114.612697. PubMed DOI PMC
Hsu HJ, et al. Stretch-induced stress fiber remodeling and the activations of JNK and ERK depend on mechanical strain rate, but not FAK. PLoS One. 2010;5:e12470. doi: 10.1371/journal.pone.0012470. PubMed DOI PMC
Ingber DE. Mechanosensation through integrins: cells act locally but think globally. Proc. Natl. Acad. Sci. 2003;100:1472–1474. doi: 10.1073/pnas.0530201100. PubMed DOI PMC
Merks AM, et al. Planar cell polarity signalling coordinates heart tube remodelling through tissue-scale polarisation of actomyosin activity. Nat. Commun. 2018;9:2161. doi: 10.1038/s41467-018-04566-1. PubMed DOI PMC
Ohata S, et al. Mechanosensory Genes Pkd1 and Pkd2 Contribute to the Planar Polarization of Brain Ventricular Epithelium. J. Neurosci. 2015;35:11153–68.. doi: 10.1523/JNEUROSCI.0686-15.2015. PubMed DOI PMC
Smutny M, et al. UV laser ablation to measure cell and tissue-generated forces in the zebrafish embryo in vivo and ex vivo. Methods Mol. Biol. 2015;1189:219–235. doi: 10.1007/978-1-4939-1164-6_15. PubMed DOI
Heisenberg CP, Bellaiche Y. Forces in tissue morphogenesis and patterning. Cell. 2013;153:948–962. doi: 10.1016/j.cell.2013.05.008. PubMed DOI
Porazinski S, et al. YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature. 2015;521:217–221. doi: 10.1038/nature14215. PubMed DOI PMC
Miroshnikova YA, et al. Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nat. Cell Biol. 2018;20:69–80. doi: 10.1038/s41556-017-0005-z. PubMed DOI
Dan P, et al. The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells. J Cell Sci. 2015;128:2415–2422. PubMed
Chanet S, et al. Actomyosin meshwork mechanosensing enables tissue shape to orient cell force. Nat. Commun. 2017;8:15014. doi: 10.1038/ncomms15014. PubMed DOI PMC
Kaucka, M., et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife7, e34465 (2018). PubMed PMC
Denny AD, Gingrass DJ, Ferguson DJ. Comprehensive correction of the craniofacial deformity in achondroplastic dwarfism. Ann. Plast Surg. 1992;29:550–558. doi: 10.1097/00000637-199212000-00012. PubMed DOI
Kwasnik RE, Raymond GA. Achondroplastic dwarfism. A literature review and a case report. J. Am. Podiatry Assoc. 1983;73:302–306. doi: 10.7547/87507315-73-6-302. PubMed DOI
Schilling TF, Kimmel CB. Musculoskeletal patterning in the pharyngeal segments of the zebrafish embryo. Development. 1997;124:2945–2960. doi: 10.1242/dev.124.15.2945. PubMed DOI
Yan YL, et al. A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development. Development. 2005;132:1069–1083. doi: 10.1242/dev.01674. PubMed DOI
Flores MV, et al. A hierarchy of Runx transcription factors modulate the onset of chondrogenesis in craniofacial endochondral bones in zebrafish. Dev. Dyn. 2006;235:3166–3176. doi: 10.1002/dvdy.20957. PubMed DOI
Morcos, P.A., A.C. Vincent, and J.D. Moulton, Gene Editing Versus Morphants, in Zebrafish. 2015: United States. p. 319. PubMed PMC
Weitkunat M, et al. Tension and force-resistant attachment are essential for myofibrillogenesis in Drosophila flight muscle. Curr. Biol. 2014;24:705–716. doi: 10.1016/j.cub.2014.02.032. PubMed DOI
Cserjesi P, et al. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development. 1995;121:1099–1110. doi: 10.1242/dev.121.4.1099. PubMed DOI
Huss D, et al. Combinatorial analysis of mRNA expression patterns in mouse embryos using hybridization chain reaction. Cold Spring Harb. Protoc. 2015;2015:259–268. doi: 10.1101/pdb.prot083832. PubMed DOI
Choi HMT, et al. Third-generation <em>in situ</em> hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development. 2018;145:dev165753. doi: 10.1242/dev.165753. PubMed DOI PMC
Taverna E, Huttner WB. Neural progenitor nuclei IN motion. Neuron. 2010;67:906–914. doi: 10.1016/j.neuron.2010.08.027. PubMed DOI
Webster MT, et al. Intravital Imaging Reveals Ghost Fibers as Architectural Units Guiding Myogenic Progenitors during Regeneration. Cell Stem Cell. 2016;18:243–252. doi: 10.1016/j.stem.2015.11.005. PubMed DOI PMC
Cheung A, et al. A small-molecule inhibitor of skeletal muscle myosin II. Nat. Cell Biol. 2002;4:83–88. doi: 10.1038/ncb734. PubMed DOI
Ostap EM. 2,3-Butanedione monoxime (BDM) as a myosin inhibitor. J. Muscle Res. Cell Motil. 2002;23:305–308. doi: 10.1023/A:1022047102064. PubMed DOI
Lemke, S. B. & Schnorrer, F. Mechanical forces during muscle development. Mech. Dev.144, 92–101 (2017). PubMed
Powell GT, Wright GJ. Jamb and jamc are essential for vertebrate myocyte fusion. PLoS Biol. 2011;9:e1001216. doi: 10.1371/journal.pbio.1001216. PubMed DOI PMC
Robu ME, et al. p53 Activation by Knockdown Technologies. PLOS Genetics. 2007;3:e78. doi: 10.1371/journal.pgen.0030078. PubMed DOI PMC
Heisenberg CP, et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature. 2000;405:76–81. doi: 10.1038/35011068. PubMed DOI
Tzahor E, et al. Antagonists of Wnt and BMP signaling promote the formation of vertebrate head muscle. Genes Dev. 2003;17:3087–3099. doi: 10.1101/gad.1154103. PubMed DOI PMC
Franco A, Jr., Winegar BD, Lansman JB. Open channel block by gadolinium ion of the stretch-inactivated ion channel in mdx myotubes. Biophys J. 1991;59:1164–1170. doi: 10.1016/S0006-3495(91)82332-3. PubMed DOI PMC
Sachs F. Stretch-activated ion channels: what are they? Physiology (Bethesda) 2010;25:50–56. PubMed PMC
Sukharev S, Sachs F. Molecular force transduction by ion channels: diversity and unifying principles. J. Cell Sci. 2012;125:3075–3083. PubMed PMC
Legant WR, et al. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc. Natl. Acad. Sci. 2009;106:10097–10102. doi: 10.1073/pnas.0900174106. PubMed DOI PMC
Spörrer M, et al. The desmin mutation R349P increases contractility and fragility of stem cell-generated muscle micro-tissues. Neuropathol. Appl. Neurobiol. 2022;48:e12784. doi: 10.1111/nan.12784. PubMed DOI
Wang X, Li L, Liu D. Expression analysis of integrin β1 isoforms during zebrafish embryonic development. Gene Expr. Patterns. 2014;16:86–92. doi: 10.1016/j.gep.2014.10.001. PubMed DOI
Gullberg D, Tiger CF, Velling T. Laminins during muscle development and in muscular dystrophies. Cell Mol. Life Sci. 1999;56:442–460. doi: 10.1007/PL00000616. PubMed DOI PMC
Subramanian A, Schilling TF. Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions. Elife. 2014;3:e02372. doi: 10.7554/eLife.02372. PubMed DOI PMC
Hall TE, et al. The zebrafish candyfloss mutant implicates extracellular matrix adhesion failure in laminin alpha2-deficient congenital muscular dystrophy. Proc. Natl. Acad. Sci. 2007;104:7092–7097. doi: 10.1073/pnas.0700942104. PubMed DOI PMC
Snow CJ, et al. Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis. PLoS Genet. 2008;4:e1000219. doi: 10.1371/journal.pgen.1000219. PubMed DOI PMC
Samaj J, Baluska F, Hirt H. From signal to cell polarity: mitogen-activated protein kinases as sensors and effectors of cytoskeleton dynamicity. J. Exp. Bot. 2004;55:189–198. doi: 10.1093/jxb/erh012. PubMed DOI
La Manno G, et al. RNA velocity of single cells. Nature. 2018;560:494–498. doi: 10.1038/s41586-018-0414-6. PubMed DOI PMC
Gulati GS, et al. Single-cell transcriptional diversity is a hallmark of developmental potential. Science. 2020;367:405. doi: 10.1126/science.aax0249. PubMed DOI PMC
Bergen, V. et al. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat. Biotechnol.38, 1408–1414 (2020). PubMed
Erdmann-Pham DD, et al. Likelihood-based deconvolution of bulk gene expression data using single-cell references. Genome Res. 2021;31:1794–1806. doi: 10.1101/gr.272344.120. PubMed DOI PMC
De Micheli AJ, et al. Single-Cell Analysis of the Muscle Stem Cell Hierarchy Identifies Heterotypic Communication Signals Involved in Skeletal Muscle Regeneration. Cell Rep. 2020;30:3583–3595.e5. doi: 10.1016/j.celrep.2020.02.067. PubMed DOI PMC
McKellar DW, et al. Large-scale integration of single-cell transcriptomic data captures transitional progenitor states in mouse skeletal muscle regeneration. Commun. Biol. 2021;4:1280. doi: 10.1038/s42003-021-02810-x. PubMed DOI PMC
Zeng W, et al. Single-nucleus RNA-seq of differentiating human myoblasts reveals the extent of fate heterogeneity. Nucl. Acids Res. 2016;44:e158. PubMed PMC
Mackie EJ, et al. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int. J. Biochem. Cell Biol. 2008;40:46–62. doi: 10.1016/j.biocel.2007.06.009. PubMed DOI
Pauli RM. Achondroplasia: a comprehensive clinical review. Orphanet J. Rare Dis. 2019;14:1. doi: 10.1186/s13023-018-0972-6. PubMed DOI PMC
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development. 2015;142:4191–4204. doi: 10.1242/dev.114777. PubMed DOI PMC
Kerney R, Gross JB, Hanken J. Runx2 is essential for larval hyobranchial cartilage formation in Xenopus laevis. Dev. Dyn. 2007;236:1650–1662. doi: 10.1002/dvdy.21175. PubMed DOI
Kook SH, et al. Cyclic mechanical stretch stimulates the proliferation of C2C12 myoblasts and inhibits their differentiation via prolonged activation of p38 MAPK. Mol. Cells. 2008;25:479–486. PubMed
Kurazumi H, et al. The effects of mechanical stress on the growth, differentiation, and paracrine factor production of cardiac stem cells. PLoS One. 2011;6:e28890. doi: 10.1371/journal.pone.0028890. PubMed DOI PMC
Chang YJ, et al. Cyclic Stretch Facilitates Myogenesis in C2C12 Myoblasts and Rescues Thiazolidinedione-Inhibited Myotube Formation. Front Bioeng. Biotechnol. 2016;4:27. doi: 10.3389/fbioe.2016.00027. PubMed DOI PMC
Andersen JI, et al. Focal adhesion kinase activation is necessary for stretch-induced alignment and enhanced differentiation of myogenic precursor cells. Tissue Eng Part A. 2018;24:631–640. doi: 10.1089/ten.tea.2017.0137. PubMed DOI
Spear PC, Erickson CA. Interkinetic nuclear migration: a mysterious process in search of a function. Dev. Growth Differ. 2012;54:306–316. doi: 10.1111/j.1440-169X.2012.01342.x. PubMed DOI PMC
Gache V, Gomes ER, Cadot B. Microtubule motors involved in nuclear movement during skeletal muscle differentiation. Mol. Biol. Cell. 2017;28:865–874. doi: 10.1091/mbc.e16-06-0405. PubMed DOI PMC
Spassova MA, et al. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc. Natl. Acad. Sci. 2006;103:16586–16591. doi: 10.1073/pnas.0606894103. PubMed DOI PMC
Burridge K, Guilluy C. Focal adhesions, stress fibers and mechanical tension. Exp. Cell Res. 2016;343:14–20. doi: 10.1016/j.yexcr.2015.10.029. PubMed DOI PMC
Burridge K, Wittchen ES. The tension mounts: stress fibers as force-generating mechanotransducers. J. Cell Biol. 2013;200:9–19. doi: 10.1083/jcb.201210090. PubMed DOI PMC
Greiner AM, et al. Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells. PLoS One. 2013;8:e77328. doi: 10.1371/journal.pone.0077328. PubMed DOI PMC
Pasapera AM, et al. Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 2010;188:877–890. doi: 10.1083/jcb.200906012. PubMed DOI PMC
Pereira AM, et al. Integrin-Dependent Activation of the JNK Signaling Pathway by Mechanical Stress. PLOS One. 2011;6:e26182. doi: 10.1371/journal.pone.0026182. PubMed DOI PMC
Kawakami K, Shima A. Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio. Gene. 1999;240:239–244. doi: 10.1016/S0378-1119(99)00444-8. PubMed DOI
Kwan KM, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236:3088–3099. doi: 10.1002/dvdy.21343. PubMed DOI
Kawabata N, Matsuda M. Cell Density-Dependent Increase in Tyrosine-Monophosphorylated ERK2 in MDCK Cells Expressing Active Ras or Raf. PLoS One. 2016;11:e0167940. doi: 10.1371/journal.pone.0167940. PubMed DOI PMC
Turner KJ, Bracewell TG, Hawkins TA. Anatomical dissection of zebrafish brain development. Methods Mol. Biol. 2014;1082:197–214. doi: 10.1007/978-1-62703-655-9_14. PubMed DOI
Goody MF, et al. NAD+ biosynthesis ameliorates a zebrafish model of muscular dystrophy. PLoS Biol. 2012;10:e1001409. doi: 10.1371/journal.pbio.1001409. PubMed DOI PMC
Shah AN, et al. Rapid reverse genetic screening using CRISPR in zebrafish. Nat. Methods. 2015;12:535–540. doi: 10.1038/nmeth.3360. PubMed DOI PMC
Dehnisch Ellström I, et al. Spinal cord injury in zebrafish induced by near-infrared femtosecond laser pulses. J. Neurosci. Methods. 2019;311:259–266. doi: 10.1016/j.jneumeth.2018.10.035. PubMed DOI
Bonakdar N, et al. Measuring mechanical properties in cells: three easy methods for biologists. Cell Biol. Int. 2014;38:1227–1232. doi: 10.1002/cbin.10303. PubMed DOI
Gerum R, Richter S, Fabry B, Zitterbart DP. ClickPoints, an expandable toolbox for scientific image annotation and analysis. Methods Ecol. Evol. 2016;8:750–756. doi: 10.1111/2041-210X.12702. DOI
Syed, S., Karadaghy, A. & Zustiak, S. Simple polyacrylamide-based multiwell stiffness assay for the study of stiffness-dependent cell responses. J. Vis. Exp.97, 52643 (2015) PubMed PMC
Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Dev. Dyn. 2006;235:2603–2612. doi: 10.1002/dvdy.20892. PubMed DOI
Voehringer D, Liang HE, Locksley RM. Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice. J. Immunol. 2008;180:4742–4753. doi: 10.4049/jimmunol.180.7.4742. PubMed DOI PMC
Tanaka N, et al. Three-dimensional single-cell imaging for the analysis of RNA and protein expression in intact tumour biopsies. Nat. Biomed. Eng. 2020;4:875–888. doi: 10.1038/s41551-020-0576-z. PubMed DOI
Metscher BD. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 2009;9:11. doi: 10.1186/1472-6793-9-11. PubMed DOI PMC
Fan J, et al. Characterizing transcriptional heterogeneity through pathway and gene set overdispersion analysis. Nat. Methods. 2016;13:241–244. doi: 10.1038/nmeth.3734. PubMed DOI PMC