Empagliflozin Is Not Renoprotective in Non-Diabetic Rat Models of Chronic Kidney Disease

. 2022 Oct 07 ; 10 (10) : . [epub] 20221007

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36289772

Grantová podpora
Nr. 19-06199S. Czech Science Foundation
RVO 67985823 Institute of Physiology

Odkazy

PubMed 36289772
PubMed Central PMC9599022
DOI 10.3390/biomedicines10102509
PII: biomedicines10102509
Knihovny.cz E-zdroje

Gliflozins (sodium-glucose transporter-2 inhibitors) exhibited renoprotective effects not only in diabetic but also in non-diabetic patients with chronic kidney disease (CKD). Controversial results were reported in experimental non-diabetic models of CKD. Therefore, we examined empagliflozin effects in three CKD models, namely, in fawn-hooded hypertensive (FHH) rats, uninephrectomized salt-loaded (UNX + HS) rats, and in rats with Goldblatt hypertension (two-kidney, one-clip 2K1C) that were either untreated or treated with empagliflozin (10 mg/kg/day) for eight weeks. Plethysmography blood pressure (BP) was recorded weekly, and renal parameters (proteinuria, plasma urea, creatinine clearance, and sodium excretion) were analyzed three times during the experiment. At the end of the study, blood pressure was also measured directly. Markers of oxidative stress (TBARS) and inflammation (MCP-1) were analyzed in kidney and plasma, respectively. Body weight and visceral adiposity were reduced by empagliflozin in FHH rats, without a significant effect on BP. Experimentally induced CKD (UNX + HS and 2K1C) was associated with a substantial increase in BP and relative heart and kidney weights. Empagliflozin influenced neither visceral adiposity nor BP in these two models. Although empagliflozin increased sodium excretion, suggesting effective SGLT-2 inhibition, it did not affect diuresis in any experimental model. Unexpectedly, empagliflozin did not provide renoprotection because proteinuria, plasma urea, and plasma creatinine were not lowered by empagliflozin treatment in all three CKD models. In line with these results, empagliflozin treatment did not decrease TBARS or MCP-1 levels in either model. In conclusion, empagliflozin did not provide the expected beneficial effects on kidney function in experimental models of CKD.

Zobrazit více v PubMed

Zinman B., Wanner C., Lachin J.M., Fitchett D., Bluhmki E., Hantel S., Mattheus M., Devins T., Johansen O.E., Woerle H.J., et al. EMPA-REG OUTCOME Investigators, Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. PubMed DOI

Neal B., Perkovic V., Mahaffey K.W., de Zeeuw D., Fulcher G., Erondu N., Shaw W., Law G., Desai M., Matthews D.R., et al. CANVAS Program Collaborative Group, Canagliflozin and cardiovascular and renal events in type 2 diabetes. N. Engl. J. Med. 2017;377:644–657. doi: 10.1056/NEJMoa1611925. PubMed DOI

El Din U.A.A.S., Salem M.M., Abdulazim D.O. Sodium-glucose cotransporter 2 inhibitors as the first universal treatment of chronic kidney disease. Nefrologia. 2021;42:390–403. doi: 10.1016/j.nefro.2021.03.014. PubMed DOI

Cannon C.P., Perkovic V., Agarwal R., Baldassarre J., Bakris G., Charytan D.M., De Zeeuw D., Edwards R., Greene T., Heerspink H.J., et al. Evaluating the Effects of Canagliflozin on Cardiovascular and Renal Events in Patients With Type 2 Diabetes Mellitus and Chronic Kidney Disease According to Baseline HbA1c, Including Those With HbA1c <7%: Results From the CREDENCE Trial. Circulation. 2020;141:407–410. doi: 10.1161/CIRCULATIONAHA.119.044359. PubMed DOI

Wheeler D.C., Stefansson B.V., Batiushin M., Bilchenko O., Cherney D.Z.I., Chertow G.M., Douthat W., Dwyer J.P., Escudero E., Pecoits-Filho R., et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: Baseline characteristics. Nephrol. Dial. Transplant. 2020;35:1700–1711. doi: 10.1093/ndt/gfaa234. PubMed DOI PMC

Zannad F., Ferreira J.P., Pocock S.J., Anker S.D., Butler J., Filippatos G., Brueckmann M., Ofstad A.P., Pfarr E., Jamal W., et al. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: A meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–829. doi: 10.1016/S0140-6736(20)31824-9. PubMed DOI

Ojima A., Matsui T., Nishino Y., Nakamura N., Yamagishi S. Empagliflozin, an Inhibitor of Sodium-Glucose Cotransporter 2 Exerts Anti-Inflammatory and Antifibrotic Effects on Experimental Diabetic Nephropathy Partly by Suppressing AGEs-Receptor Axis. Horm. Metab. Res. 2015;47:686–692. doi: 10.1055/s-0034-1395609. PubMed DOI

Shin S.J., Chung S., Kim S.J., Lee E.-M., Yoo Y.-H., Kim J.-W., Ahn Y.-B., Kim E.-S., Moon S.-D., Kim M.-J., et al. Effect of Sodium-Glucose Co-Transporter 2 Inhibitor, Dapagliflozin, on Renal Renin-Angiotensin System in an Animal Model of Type 2 Diabetes. PLoS ONE. 2016;11:e0165703. doi: 10.1371/journal.pone.0165703. PubMed DOI PMC

Steven S., Oelze M., Hanf A., Kröller-Schön S., Kashani F., Roohani S., Welschof P., Kopp M., Gödtel-Armbrust U., Xia N., et al. The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats. Redox Biol. 2017;13:370–385. doi: 10.1016/j.redox.2017.06.009. PubMed DOI PMC

Gallo L.A., Ward M.S., Fotheringham A.K., Zhuang A., Borg D.J., Flemming N.B., Harvie B.M., Kinneally T.L., Yeh S.-M., McCarthy D.A., et al. Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci. Rep. 2016;26:26428. doi: 10.1038/srep26428. PubMed DOI PMC

Tang L., Wu Y., Tian M., Sjöström C.D., Johansson U., Peng X.-R., Smith D.M., Huang Y. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am. J. Physiol. Metab. 2017;313:E563–E576. doi: 10.1152/ajpendo.00086.2017. PubMed DOI

Zhang Y., Thai K., Kepecs D.M., Gilbert R.E. Sodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease. PLoS ONE. 2016;11:e0144640. doi: 10.1371/journal.pone.0144640. PubMed DOI PMC

Rajasekeran H., Reich H.N., Hladunewich M.A., Cattran D., Lovshin J.A., Lytvyn Y., Bjornstad P., Lai V., Tse J., Cham L., et al. Dapagliflozin in focal segmental glomerulosclerosis: A combined human-rodent pilot study. Am. J. Physiol. Renal Physiol. 2018;314:F412–F422. doi: 10.1152/ajprenal.00445.2017. PubMed DOI PMC

Li L., Konishi Y., Morikawa T., Zhang Y., Kitabayashi C., Kobara H., Masaki T., Nakano D., Hitomi H., Kobori H., et al. Effect of a SGLT2 inhibitor on the systemic and intrarenal renin–angiotensin system in subtotally nephrectomized rats. J. Pharmacol. Sci. 2018;137:220–223. doi: 10.1016/j.jphs.2017.10.006. PubMed DOI PMC

Kim S., Jo C.H., Kim G.-H. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens. Res. 2019;42:1905–1915. doi: 10.1038/s41440-019-0326-3. PubMed DOI PMC

Wan N., Fujisawa Y., Kobara H., Masaki T., Nakano D., Rahman A., Nishiyama A. Effects of an SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in a nondiabetic rat model of chronic kidney disease. Hypertens. Res. 2020;43:492–499. doi: 10.1038/s41440-020-0410-8. PubMed DOI

Zeng S., Delic D., Chu C., Xiong Y., Luo T., Chen X., Gaballa M.M., Xue Y., Chen X., Cao Y., et al. Antifibrotic effects of low dose SGLT2 Inhibition with empagliflozin in comparison to Ang II receptor blockade with telmisartan in 5/6 nephrectomised rats on high salt diet. Biomed. Pharmacother. 2022;146:112606. doi: 10.1016/j.biopha.2021.112606. PubMed DOI

Ali B.H., Al-Salam S., Al Suleimani Y., Al Za’Abi M., Abdelrahman A.M., Ashique M., Manoj P., Adham S.A., Hartmann C., Schupp N., et al. Effects of the SGLT-2 Inhibitor Canagliflozin on Adenine-Induced Chronic Kidney Disease in Rats. Cell. Physiol. Biochem. 2019;52:27–39. doi: 10.33594/000000003. PubMed DOI

Castoldi G., Carletti R., Ippolito S., Colzani M., Barzaghi F., Stella A., Zerbini G., Perseghin G., di Gioia C.R. Renal Anti-Fibrotic Effect of Sodium Glucose Cotransporter 2 Inhibition in Angiotensin II-Dependent Hypertension. Am. J. Nephrol. 2020;51:119–129. doi: 10.1159/000505144. PubMed DOI

Reyes-Pardo H., Bautista R., Vargas-Robles H., Rios A., Sanchez D., Escalante B. Role of sodium/glucose cotransporter inhibition on a rat model of angiotensin II–dependent kidney damage. BMC Nephrol. 2019;20:292. doi: 10.1186/s12882-019-1490-z. PubMed DOI PMC

Huttl M., Markova I., Miklankova D., Oliyarnyk O., Trnovska J., Kucera J., Sedlacek R., Haluzik M., Malinska H. Metabolic cardio- and reno-protective effects of empagliflozin in a prediabetic rat model. J. Physiol. Pharmacol. 2020;71:635–645. doi: 10.26402/jpp.2020.5.04. PubMed DOI

Hojná S., Rauchová H., Malínská H., Marková I., Hüttl M., Papoušek F., Behuliak M., Miklánková D., Vaňourková Z., Neckář J., et al. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed. Pharmacother. 2021;144:112246. doi: 10.1016/j.biopha.2021.112246. PubMed DOI

Malínská H., Hüttl M., Marková I., Miklánková D., Hojná S., Papoušek F., Šilhavý J., Mlejnek P., Zicha J., Hrdlička J., et al. Beneficial Effects of Empagliflozin Are Mediated by Reduced Renal Inflammation and Oxidative Stress in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. Biomedicines. 2022;10:2066. doi: 10.3390/biomedicines10092066. PubMed DOI PMC

Provoost A.P. Spontaneous glomerulosclerosis: Insights from the fawn-hooded rat. Kidney Int. Suppl. 1994;45:S2–S5. PubMed

Drábková N., Hojná S., Zicha J., Vaněčková I. Contribution of Selected Vasoactive Systems to Blood Pressure Regulation in Two Models of Chronic Kidney Disease. Physiol. Res. 2020;69:405–414. doi: 10.33549/physiolres.934392. PubMed DOI PMC

Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Vaněčková I., Dobešová Z., Kuneš J., Zicha J. The effects of repeated delivery of angiotensin II AT1 receptor antisense on distinct vasoactive systems in Ren-2 transgenic rats: Young vs. adult animals. Hypertens. Res. 2012;35:761–768. doi: 10.1038/hr.2012.29. PubMed DOI

Abbas N.A.T., El Salem A., Awad M.M. Empagliflozin, SGLT-2 inhibitor, attenuates renal fibrosis in rats exposed to unilateral ureteric obstruction: Potential role of klotho expression. Naunyn Schmiedebergs Arch Pharmacol. 2018;391:1347–1360. doi: 10.1007/s00210-018-1544-y. PubMed DOI

Cruz C., Correa-Rotter R., Sánchez-González D.J., Hernández-Pando R., Maldonado P.D., Martínez-Martínez C.M., Medina-Campos O.N., Tapia E., Aguilar D., Chirino Y.I., et al. Renoprotective and antihypertensive effects of S-allylcysteine in 5/6 nephrectomized rats. Am. J. Physio.l Renal Physiol. 2007;293:F1691–F1698. doi: 10.1152/ajprenal.00235.2007. PubMed DOI

Kujal P., Chábová V.Č., Vernerová Z., Walkowska A., Kompanowska-Jezierska E., Sadowski J., Vaňourková Z., Husková Z., Opočenský M., Skaroupková P., et al. Similar renoprotection after renin-angiotensin-dependent and –independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: Are there blood pressure-independent effects? Clin. Exp. Pharmacol. Physiol. 2010;37:1159–1169. doi: 10.1111/j.1440-1681.2010.05453.x. PubMed DOI

Hao L., Kanno Y., Fukushima R., Watanabe Y., Ishida Y., Suzuki H. Effects of eplerenone on heart and kidney in two-kidney, one-clip rats. Am. J. Nephrol. 2004;24:54–60. doi: 10.1159/000075945. PubMed DOI

Imamura A., Mackenzie H.S., Lacy E.R., Hutchison F.N., Fitzgibbon W.R., Ploth D.W. Effects of chronic treatment with angiotensin converting enzyme inhibitor or an angiotensin receptor antagonist in two-kidney, one-clip hypertensive rats. Kidney Int. 1995;47:1394–1402. doi: 10.1038/ki.1995.196. PubMed DOI

Chábová V.C., Červenka L. The dilemma of dual renin-angiotensin system blockade in chronic kidney disease: Why beneficial in animal experiments but not in the clinic? Physiol. Res. 2017;66:181–192. doi: 10.33549/physiolres.933607. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases

. 2024 Apr 18 ; 73 (Suppl 1) : S377-S387. [epub] 20240418

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...