Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38634653
PubMed Central
PMC11412360
DOI
10.33549/physiolres.935364
PII: 935364
Knihovny.cz E-zdroje
- Klíčová slova
- SGLT-2 inhibitor, Hypertension, Chronic kidney disease, Heart failure, Liver disease, Rat,
- MeSH
- glifloziny * terapeutické užití farmakologie MeSH
- hypoglykemika terapeutické užití farmakologie MeSH
- kardiovaskulární nemoci * farmakoterapie prevence a kontrola MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- glifloziny * MeSH
- hypoglykemika MeSH
A new class of antidiabetic drugs - gliflozins (inhibitors of sodium glucose cotransporter-2; SGLT-2i) stimulate glucose and sodium excretion, thereby contributing to improved glycemic control, weight loss and blood pressure reduction in diabetic patients. Large clinical trials in patients with type 2 diabetes treated with empagliflozin, canagliflozin or dapagliflozin have demonstrated their excellent efficacy in improving many cardiovascular outcomes, including the reduction of death from cardiovascular diseases, non-fatal myocardial infarction or stroke, and hospitalization for heart failure. Moreover, the beneficial effects of SGLT-2i were also demonstrated in the decrease in proteinuria, which leads to a lower risk of progression to end-stage renal disease and thus a delay in initiation of the renal replacement therapy. Unexpectedly, their cardioprotective and renoprotective effects have been demonstrated not only in patients with diabetes but also in those without diabetes. Recently, much effort has been focused on patients with heart failure (either with reduced or preserved ejection fraction) or liver disease. Experimental studies have highlighted pleiotropic effects of SGLT-2 inhibitors beyond their natriuretic and glycosuric effects, including reduction of fibrosis, inflammation, reactive oxygen species, and others. Our results in experimental non-diabetic models of hypertension, chronic kidney disease and heart failure are partially consistent with these findings. This raises the question of whether the same mechanisms are at work in diabetic and non-diabetic conditions, and which mechanisms are responsible for the beneficial effects of gliflozins under non-diabetic conditions. Are these effects cardio-renal, metabolic, or others? This review will focus on the effects of gliflozins under different pathophysiological conditions, namely in hypertension, chronic kidney disease, and heart failure, which have been evaluated in non-diabetic rat models of these diseases. Key words: SGLT-2 inhibitor, hypertension, chronic kidney disease, heart failure, liver disease, rat.
Zobrazit více v PubMed
de Konnick LG. Annalen der Pharmacie, Über das Phloridzin (Phlorrhizin) Vol. 15. Heidelberg: 1835. pp. 75–77.
Komoroski B, Vachharajani N, Feng Y, Li L, Kornhauser D, Pfister M. Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin Pharmacol Ther. 2009;85:513–519. doi: 10.1038/clpt.2008.250. PubMed DOI
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373:2117–2128. doi: 10.1056/NEJMoa1504720. PubMed DOI
Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Erondu N, Shaw W, Barrett TD, Weidner-Wells M, Deng H, Matthews DR, Neal B. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6:691–704. doi: 10.1016/S2213-8587(18)30141-4. PubMed DOI
Brown E, Rajeev SP, Cuthbertson DJ, Wilding JPH. A review of the mechanism of action, metabolic profile and haemodynamic effects of sodium-glucose co-transporter-2 inhibitors. Diabetes Obes Metab. 2019;21(Suppl 2):9–18. doi: 10.1111/dom.13650. PubMed DOI
Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794. doi: 10.1152/physrev.00055.2009. PubMed DOI
Cherney DZ, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, Fagan NM, Woerle HJ, Johansen OE, Broedl UC, von Eynatten M. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation. 2014;129:587–597. doi: 10.1161/CIRCULATIONAHA.113.005081. PubMed DOI
Androutsakos T, Nasiri-Ansari N, Bakasis AD, Kyrou I, Efstathopoulos E, Randeva HS, Kassi E. SGLT-2 Inhibitors in NAFLD: Expanding their role beyond diabetes and cardioprotection. Int J Mol Sci. 2022;23:3107. doi: 10.3390/ijms23063107. PubMed DOI PMC
Pereira MJ, Eriksson JW. Emerging Role of SGLT-2 Inhibitors for the treatment of obesity. Drugs. 2019;79:219–230. doi: 10.1007/s40265-019-1057-0. PubMed DOI PMC
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, Ruff CT, Gause-Nilsson IAM, Fredriksson M, Johansson PA, Langkilde AM, Sabatine MS. Dapagliflozin and cardiovascular outcomes in type 2 Diabetes. N Engl J Med. 2019;380:347–357. doi: 10.1056/NEJMoa1812389. PubMed DOI
Cannon CP, Perkovic V, Agarwal R, Baldassarre J, Bakris G, Charytan DM, de Zeeuw D, Edwards R, Greene T, Heerspink HJL, Jardine MJ, Levin A, Li JW, Neal B, Pollock C, Wheeler DC, Zhang H, Zinman B, Mahaffey KW. Evaluating the effects of canagliflozin on cardiovascular and renal events in patients with type 2 diabetes mellitus and chronic kidney disease according to baseline HbA1c, including those with HbA1c <7%: Results from the CREDENCE Trial. Circulation. 2020;141:407–410. doi: 10.1161/CIRCULATIONAHA.119.044359. PubMed DOI
Wheeler DC, Stefansson BV, Batiushin M, Bilchenko O, Cherney DZI, Chertow GM, Douthat W, Dwyer JP, Escudero E, Pecoits-Filho R, Furuland H, Górriz JL, Greene T, Haller H, Hou FF, Kang SW, Isidto R, Khullar D, Mark PB, McMurray JJV, Kashihara N, Nowicki M, Persson F, Correa-Rotter R, Rossing P, Toto RD, Umanath K, Van Bui P, Wittmann I, Lindberg M, Sjöström CD, Langkilde AM, Heerspink HJL. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: baseline characteristics. Nephrol Dial Transplant. 2020;35:1700–1711. doi: 10.1093/ndt/gfaa234. PubMed DOI PMC
Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, Emberson JR, Preiss D, Judge P, Mayne KJ, Ng SYA, Sammons E, Zhu D, Hill M, Stevens W, Wallendszus K, Brenner S, Cheung AK, Liu ZH, Li J, Hooi LS, Liu W, Kadowaki T, Nangaku M, Levin A, Cherney D, Maggioni AP, Pontremoli R, Deo R, Goto S, Rossello X, Tuttle KR, Steubl D, Petrini M, Massey D, Eilbracht J, Brueckmann M, Landray MJ, Baigent C, Haynes R. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2023;388:117–127. doi: 10.1056/NEJMoa2204233. PubMed DOI PMC
Zannad F, Ferreira JP, Pocock SJ, Anker SD, Butler J, Filippatos G, Brueckmann M, Ofstad AP, Pfarr E, Jamal W, Packer M. SGLT2 inhibitors in patients with heart failure with reduced ejection fraction: a meta-analysis of the EMPEROR-Reduced and DAPA-HF trials. Lancet. 2020;396:819–829. doi: 10.1016/S0140-6736(20)31824-9. PubMed DOI
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chuquiure-Valenzuela E, Giannetti N, Gomez-Mesa JE, Janssens S, Januzzi JL, Gonzalez-Juanatey JR, Merkely B, Nicholls SJ, Perrone SV, Piña IL, Ponikowski P, Senni M, Sim D, Spinar J, Squire I, Taddei S, Tsutsui H, Verma S, Vinereanu D, Zhang J, Carson P, Lam CSP, Marx N, Zeller C, Sattar N, Jamal W, Schnaidt S, Schnee JM, Brueckmann M, Pocock SJ, Zannad F, Packer M. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385:1451–1461. doi: 10.1056/NEJMoa2107038. PubMed DOI
Rajasekeran H, Cherney DZ, Lovshin JA. Do effects of sodium-glucose cotransporter-2 inhibitors in patients with diabetes give insight into potential use in non-diabetic kidney disease? Curr Opin Nephrol Hypertens. 2017;26:358–367. doi: 10.1097/MNH.0000000000000343. PubMed DOI
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI
Hojná S, Rauchová H, Malínská H, Marková I, Hüttl M, Papoušek F, Behuliak M, Miklánková D, Vaňourková Z, Neckář J, Kadlecová M, Kujal P, Zicha J, Vaněčková I. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed Pharmacother. 2021;144:112246. doi: 10.1016/j.biopha.2021.112246. PubMed DOI
Vrána A, Kazdová L. The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplant Proc. 1990;22:2579. PubMed
Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Haluzik M, Vaněčkova I, Malinska H. In a prediabetic model, empagliflozin improves hepatic lipid metabolism independently of obesity and before onset of hyperglycemia. Int J Mol Sci. 2021;22:11513. doi: 10.3390/ijms222111513. PubMed DOI PMC
Pravenec M, Kajiya T, Zídek V, Landa V, Mlejnek P, Simáková M, Silhavý J, Malínská H, Oliyarnyk O, Kazdová L, Fan J, Wang J, Kurtz TW. Effects of human C-reactive protein on pathogenesis of features of the metabolic syndrome. Hypertension. 2011;57:731–737. doi: 10.1161/HYPERTENSIONAHA.110.164350. PubMed DOI PMC
Malínská H, Hüttl M, Marková I, Miklánková D, Hojná S, Papoušek F, Šilhavý J, Mlejnek P, Zicha J, Hrdlička J, Pravenec M, Vaněčková I. Beneficial effects of Empagliflozin are mediated by reduced renal inflammation and oxidative stress in spontaneously hypertensive rats expressing human C-reactive protein. Biomedicines. 2022;10:2066. doi: 10.3390/biomedicines10092066. PubMed DOI PMC
Hojná S, Kotsaridou Z, Vaňourková Z, Rauchová H, Behuliak M, Kujal P, Kadlecová M, Zicha J, Vaněčková I. Empagliflozin is not renoprotective in non-diabetic rat models of chronic kidney disease. Biomedicines. 2022;10:2509. doi: 10.3390/biomedicines10102509. PubMed DOI PMC
Provoost AP. Spontaneous glomerulosclerosis: insights from the fawn-hooded rat. Kidney Int Suppl. 1994;45:S2–5. PubMed
Drábková N, Hojná S, Zicha J, Vaněčková I. Contribution of selected vasoactive systems to blood pressure regulation in two models of chronic kidney disease. Physiol Res. 2020;69:405–414. doi: 10.33549/physiolres.934392. PubMed DOI PMC
Hojná SMH, Hüttl M, Vaňourková Z, Marková Z, Miklánková D, Hrdlička J, Papoušek F, Neckář J, Kujal P, Behuliak M, Rauchová H, Kadlecová M, Sedmera D, Neffeová K, Zábrodská E, Olejníčková V, Zicha J, Vaněčková I. Hepatoprotective and cardioprotective effects of empagliflozin in spontaneously hypertensive rats fed a high-fat diet. Biomed Pharmacother. 2024;174:116520. doi: 10.1016/j.biopha.2024.116520. PubMed DOI
Castoldi GCR, Barzaghi F, Meani M, Zatti M, Perseghin G, Di Gioia CRT, Zerbini G. Sodium glucose cotransporter-2 inhibitors in non-diabetic kidney disease: evidence in experimental models. Pharmaceuticals. 2024;17:362. doi: 10.3390/ph17030362. PubMed DOI PMC
Abdelrahman AM, Awad AS, Abdel-Rahman EM. Sodium-Glucose Co-Transporter 2 Inhibitors: Mechanism of action and efficacy in non-diabetic kidney disease from bench to bed-side. J Clin Med. 2024;13(4):956. doi: 10.3390/jcm13040956. PubMed DOI PMC
Panico C, Bonora B, Camera A, Chilelli NC, Prato GD, Favacchio G, Grancini V, Resi V, Rondinelli M, Zarra E, Pintaudi B. Pathophysiological basis of the cardiological benefits of SGLT-2 inhibitors: a narrative review. Cardiovasc Diabetol. 2023;22:164. doi: 10.1186/s12933-023-01855-y. PubMed DOI PMC
Castoldi G, Carletti R, Barzaghi F, Meani M, Zatti G, Perseghin G, Di Gioia CRT, Zerbini G. Sodium glucose cotransporter-2 inhibitors in non-diabetic kidney disease: evidence in experimental models. Pharmaceuticals (Basel) 2024;17(3):362. doi: 10.3390/ph17030362. PubMed DOI PMC
Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, Donniacuo M, Riemma MA, Mele E, Cianflone E, Naviglio S, Conte E, Camerino GM, Mele M, Bucci M, Castaldo G, De Luca A, Rossi F, Berrino L, Liantonio A, De Angelis A. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res. 2023;188:106659. doi: 10.1016/j.phrs.2023.106659. PubMed DOI
Schork A, Saynisch J, Vosseler A, Jaghutriz BA, Heyne N, Peter A, Häring HU, Stefan N, Fritsche A, Artunc F. Effect of SGLT2 inhibitors on body composition, fluid status and renin-angiotensin-aldosterone system in type 2 diabetes: a prospective study using bioimpedance spectroscopy. Cardiovasc Diabetol. 2019;18:46. doi: 10.1186/s12933-019-0852-y. PubMed DOI PMC
Kim S, Jo CH, Kim GH. Effects of empagliflozin on nondiabetic salt-sensitive hypertension in uninephrectomized rats. Hypertens Res. 2019;42:1905–1915. doi: 10.1038/s41440-019-0326-3. PubMed DOI PMC
Zhang Y, Thai K, Kepecs DM, Gilbert RE. Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS One. 2016;11:e0144640. doi: 10.1371/journal.pone.0144640. PubMed DOI PMC
Ali BH, Al Salam S, Al Suleimani Y, Al Za’abi M, Abdelrahman AM, Ashique M, Manoj P, Adham SA, Hartmann C, Schupp N, Nemmar A. Effects of the SGLT-2 Inhibitor canagliflozin on adenine-induced chronic kidney disease in rats. Cell Physiol Biochem. 2019;52:27–39. doi: 10.33594/000000003. PubMed DOI
Rajasekeran H, Reich HN, Hladunewich MA, Cattran D, Lovshin JA, Lytvyn Y, Bjornstad P, Lai V, Tse J, Cham L, Majumder S, Bowskill BB, Kabir MG, Advani SL, Gibson IW, Sood MM, Advani A, Cherney DZI. Dapagliflozin in focal segmental glomerulosclerosis: a combined human-rodent pilot study. Am J Physiol Renal Physiol. 2018;314:F412–F422. doi: 10.1152/ajprenal.00445.2017. PubMed DOI PMC
Zeng S, Delic D, Chu C, Xiong Y, Luo T, Chen X, Gaballa MMS, Xue Y, Chen X, Cao Y, Hasan AA, Stadermann K, Frankenreiter S, Yin L, Krämer BK, Klein T, Hocher B. Antifibrotic effects of low dose SGLT2 inhibition with empagliflozin in comparison to Ang II receptor blockade with telmisartan in 5/6 nephrectomised rats on high salt diet. Biomed Pharmacother. 2022;146:112606. doi: 10.1016/j.biopha.2021.112606. PubMed DOI
Wan N, Fujisawa Y, Kobara H, Masaki T, Nakano D, Rahman A, Nishiyama A. Effects of an SGLT2 inhibitor on the salt sensitivity of blood pressure and sympathetic nerve activity in a nondiabetic rat model of chronic kidney disease. Hypertens Res. 2020;43:492–499. doi: 10.1038/s41440-020-0410-8. PubMed DOI
Kravtsova O, Levchenko V, Klemens CA, Rieg T, Liu R, Staruschenko A. Effect of SGLT2 inhibition on salt-induced hypertension in female Dahl SS rats. Sci Rep. 2023;13:19231. doi: 10.1038/s41598-023-46016-z. PubMed DOI PMC
Reyes-Pardo H, Bautista R, Vargas-Robles H, Rios A, Sánchez D, Escalante B. Role of sodium/glucose cotransporter inhibition on a rat model of angiotensin II-dependent kidney damage. BMC Nephrol. 2019;20:292. doi: 10.1186/s12882-019-1490-z. PubMed DOI PMC
Yurista SR, Silljé HHW, Oberdorf-Maass SU, Schouten EM, Pavez Giani MG, Hillebrands JL, van Goor H, van Veldhuisen DJ, de Boer RA, Westenbrink BD. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction. Eur J Heart Fail. 2019;21:862–873. doi: 10.1002/ejhf.1473. PubMed DOI
Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, Zhazykbayeva S, Kovács Á, Fülöp G, Falcão-Pires I, Reusch PH, Linthout SV, Papp Z, van Heerebeek L, Vecchione C, Maier LS, Ciccarelli M, Tschöpe C, Mügge A, Bagi Z, Sossalla S, Hamdani N. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc Res. 2021;117:495–507. doi: 10.1093/cvr/cvaa123. PubMed DOI
Daud E, Ertracht O, Bandel N, Moady G, Shehadeh M, Reuveni T, Atar S. The impact of empagliflozin on cardiac physiology and fibrosis early after myocardial infarction in non-diabetic rats. Cardiovasc Diabetol. 2021;20:132. doi: 10.1186/s12933-021-01322-6. PubMed DOI PMC
Lee HC, Shiou YL, Jhuo SJ, Chang CY, Liu PL, Jhuang WJ, Dai ZK, Chen WY, Chen YF, Lee AS. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18:45. doi: 10.1186/s12933-019-0849-6. PubMed DOI PMC
Lu YP, Wu HW, Zhu T, Li XT, Zuo J, Hasan AA, Reichetzeder C, Delic D, Yard B, Klein T, Krämer BK, Zhang ZY, Wang XH, Yin LH, Dai Y, Zheng ZH, Hocher B. Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy. Biomed Pharmacother. 2022;156:113947. doi: 10.1016/j.biopha.2022.113947. PubMed DOI
Jaikumkao K, Pongchaidecha A, Chueakula N, Thongnak LO, Wanchai K, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, slows the progression of renal complications through the suppression of renal inflammation, endoplasmic reticulum stress and apoptosis in prediabetic rats. Diabetes Obes Metab. 2018;20:2617–2626. doi: 10.1111/dom.13441. PubMed DOI
Neal B, Perkovic V, de Zeeuw D, Mahaffey KW, Fulcher G, Ways K, Desai M, Shaw W, Capuano G, Alba M, Jiang J, Vercruysse F, Meininger G, Matthews D. Efficacy and safety of canagliflozin, an inhibitor of sodium-glucose cotransporter 2, when used in conjunction with insulin therapy in patients with type 2 diabetes. Diabetes Care. 2015;38:403–411. doi: 10.2337/dc14-1237. PubMed DOI
Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, Laverman GD, Lim SK, Di Tanna GL, Reich HN, Vervloet MG, Wong MG, Gansevoort RT, Heerspink HJL. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non-diabetic patients with chronic kidney disease (DIAMOND): a randomised, double-blind, crossover trial. Lancet Diabetes Endocrinol. 2020;8:582–593. doi: 10.1016/S2213-8587(20)30162-5. PubMed DOI
Heerspink HJL, Stefánsson BV, Correa-Rotter R, Chertow GM, Greene T, Hou FF, Mann JFE, McMurray JJV, Lindberg M, Rossing P, Sjöström CD, Toto RD, Langkilde AM, Wheeler DC. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020;383:1436–1446. doi: 10.1056/NEJMoa2024816. PubMed DOI