Epidemic HI2 Plasmids Mobilising the Carbapenemase Gene blaIMP-4 in Australian Clinical Samples Identified in Multiple Sublineages of Escherichia coli ST216 Colonising Silver Gulls

. 2021 Mar 10 ; 9 (3) : . [epub] 20210310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33801844

Grantová podpora
18-23532S Grantová Agentura České Republiky
LQ1601 Central European Institute of Technology
Q39 Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/16_019/0000787 Ministry of Education Youth and Sports of the Czech Republic
IMA: 2019-FVHE-51 Veterinární a Farmaceutická Univerzita Brno
MRFF75873 Medical Research Future Fund Frontier Health and Medical Research Program

Odkazy

PubMed 33801844
PubMed Central PMC7999438
DOI 10.3390/microorganisms9030567
PII: microorganisms9030567
Knihovny.cz E-zdroje

Escherichia coli ST216, including those that carry blaKPC-2, blaFOX-5, blaCTX-M-15 and mcr-1, have been linked to wild and urban-adapted birds and the colonisation of hospital environments causing recalcitrant, carbapenem-resistant human infections. Here we sequenced 22 multiple-drug resistant ST216 isolates from Australian silver gull chicks sampled from Five Islands, of which 21 carried nine or more antibiotic resistance genes including blaIMP-4 (n = 21), blaTEM-1b (n = 21), aac(3)-IId (n = 20), mph(A) (n = 20), catB3 (n = 20), sul1 (n = 20), aph(3")-Ib (n = 18) and aph(6)-Id (n = 18) on FIB(K) (n = 20), HI2-ST1 (n = 11) and HI2-ST3 (n = 10) plasmids. We show that (i) all HI2 plasmids harbour blaIMP-4 in resistance regions containing In809 flanked by IS26 (HI2-ST1) or IS15DI (HI2-ST3) and diverse metal resistance genes; (ii) HI2-ST1 plasmids are highly related to plasmids reported in diverse Enterobacteriaceae sourced from humans, companion animals and wildlife; (iii) HI2 were a feature of the Australian gull isolates and were not observed in international ST216 isolates. Phylogenetic analyses identified close relationships between ST216 from Australian gull and clinical isolates from overseas. E. coli ST216 from Australian gulls harbour HI2 plasmids encoding resistance to clinically important antibiotics and metals. Our studies underscore the importance of adopting a one health approach to AMR and pathogen surveillance.

Zobrazit více v PubMed

Vittecoq M., Godreuil S., Prugnolle F., Durand P., Brazier L., Renaud N., Arnal A., Aberkane S., Jean-Pierre H., Gauthier-Clerc M., et al. Antimicrobial resistance in wildlife. J. Appl. Ecol. 2016;53:519–529. doi: 10.1111/1365-2664.12596. DOI

Eradhouani H., Esilva N., Epoeta P., Etorres C., Ecorreia S., Eigrejas G. Potential impact of antimicrobial resistance in wildlife, environment and human health. Front. Microbiol. 2014;5:23. doi: 10.3389/fmicb.2014.00023. PubMed DOI PMC

Dolejska M., Literak I. Wildlife Is Overlooked in the Epidemiology of Medically Important Antibiotic-Resistant Bacteria. Antimicrob. Agents Chemother. 2019;63:e01167-19. doi: 10.1128/AAC.01167-19. PubMed DOI PMC

Marcelino V.R., Wille M., Hurt A.C., González-Acuña D., Klaassen M., Schlub T.E., Eden J.-S., Shi M., Iredell J.R., Sorrell T.C., et al. Meta-transcriptomics reveals a diverse antibiotic resistance gene pool in avian microbiomes. BMC Biol. 2019;17:1–11. doi: 10.1186/s12915-019-0649-1. PubMed DOI PMC

Swift B.M., Bennett M., Waller K., Dodd C., Murray A., Gomes R.L., Humphreys B., Hobman J.L., Jones M.A., Whitlock S.E., et al. Anthropogenic environmental drivers of antimicrobial resistance in wildlife. Sci. Total Environ. 2019;649:12–20. doi: 10.1016/j.scitotenv.2018.08.180. PubMed DOI

Dolejska M., Papagiannitsis C.C. Plasmid-mediated resistance is going wild. Plasmid. 2018;99:99–111. doi: 10.1016/j.plasmid.2018.09.010. PubMed DOI

Darwich L., Vidal A., Seminati C., Albamonte A., Casado A., López F., Molina-López R.A., Migura-Garcia L. High prevalence and diversity of extended-spectrum β-lactamase and emergence of OXA-48 producing Enterobacterales in wildlife in Catalonia. PLoS ONE. 2019;14:e0210686. doi: 10.1371/journal.pone.0210686. PubMed DOI PMC

Oteo J., Mencía A., Bautista V., Pastor N., Lara N., González-González F., García-Peña F.J., Campos J. Colonization with Enterobacteriaceae-Producing ESBLs, AmpCs, and OXA-48 in Wild Avian Species, Spain 2015–2016. Microb. Drug Resist. 2018;24:932–938. doi: 10.1089/mdr.2018.0004. PubMed DOI

Bouaziz A., Loucif L., Ayachi A., Guehaz K., Bendjama E., Rolain J.-M. Migratory White Stork (Ciconia ciconia): A Potential Vector of the OXA-48-Producing Escherichia coli ST38 Clone in Algeria. Microb. Drug Resist. 2018;24:461–468. doi: 10.1089/mdr.2017.0174. PubMed DOI

Tarabai H., Valcek A., Jamborova I., Vazhov S.V., Karyakin I.V., Raab R., Literak I., Dolejska M. Plasmid-Mediated mcr-1 Colistin Resistance in Escherichia coli from a Black Kite in Russia. Antimicrob. Agents Chemother. 2019;63:e01266-19. doi: 10.1128/AAC.01266-19. PubMed DOI PMC

Sellera F.P., Fernandes M.R., Sartori L., Carvalho M.P.N., Esposito F., Nascimento C.L., Dutra G.H.P., Mamizuka E.M., Pérez-Chaparro P.J., McCulloch J.A., et al. Escherichia colicarrying IncX4 plasmid-mediatedmcr-1andblaCTX-Mgenes in infected migratory Magellanic penguins (Spheniscus magellanicus) J. Antimicrob. Chemother. 2016;72:1255–1256. doi: 10.1093/jac/dkw543. PubMed DOI

Liakopoulos A., Mevius D.J., Olsen B., Bonnedahl J. The colistin resistancemcr-1gene is going wild: Table 1. J. Antimicrob. Chemother. 2016;71:2335–2336. doi: 10.1093/jac/dkw262. PubMed DOI

Ahlstrom C.A., Ramey A.M., Woksepp H., Bonnedahl J. Early emergence of mcr- 1-positive Enterobacteriaceae in gulls from Spain and Portugal. Environ. Microbiol. Rep. 2019;11:669–671. doi: 10.1111/1758-2229.12779. PubMed DOI

Klemm E.J., Wong V.K., Dougan G. Emergence of dominant multidrug-resistant bacterial clades: Lessons from history and whole-genome sequencing. Proc. Natl. Acad. Sci. USA. 2018;115:12872–12877. doi: 10.1073/pnas.1717162115. PubMed DOI PMC

Venturini C., Hassan K.A., Chowdhury P.R., Paulsen I.T., Walker M.J., Djordjevic S.P. Sequences of Two Related Multiple Antibiotic Resistance Virulence Plasmids Sharing a Unique IS26-Related Molecular Signature Isolated from Different Escherichia coli Pathotypes from Different Hosts. PLoS ONE. 2013;8:e78862. doi: 10.1371/journal.pone.0078862. PubMed DOI PMC

Mangat C.S., Bekal S., Irwin R.J., Mulvey M.R. A Novel Hybrid Plasmid Carrying Multiple Antimicrobial Resistance and Virulence Genes in Salmonella enterica Serovar Dublin. Antimicrob. Agents Chemother. 2017;61:e02601-16. doi: 10.1128/AAC.02601-16. PubMed DOI PMC

McKinnon J., Chowdhury P.R., Djordjevic S.P. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int. J. Antimicrob. Agents. 2018;52:430–435. doi: 10.1016/j.ijantimicag.2018.06.017. PubMed DOI

Wyrsch E.R., Hawkey J., Judd L.M., Haites R., Holt K.E., Djordjevic S.P., Billman-Jacobe H. Z/I1 Hybrid Virulence Plasmids Carrying Antimicrobial Resistance genes in S. Typhimurium from Australian Food Animal Production. Microorganisms. 2019;7:299. doi: 10.3390/microorganisms7090299. PubMed DOI PMC

Johnson T.J., Thorsness J.L., Anderson C.P., Lynne A.M., Foley S.L., Han J., Fricke W.F., McDermott P.F., White D.G., Khatri M., et al. Horizontal Gene Transfer of a ColV Plasmid Has Resulted in a Dominant Avian Clonal Type of Salmonella enterica Serovar Kentucky. PLoS ONE. 2010;5:e15524. doi: 10.1371/journal.pone.0015524. PubMed DOI PMC

Venturini C., Beatson S.A., Djordjevic S.P., Walker M.J. Multiple antibiotic resistance gene recruitment onto the enterohemorrhagic Escherichia coli virulence plasmid. FASEB J. 2009;24:1160–1166. doi: 10.1096/fj.09-144972. PubMed DOI

Wong M.H.-Y., Chan E.W.-C., Chen S. IS26-mediated formation of a virulence and resistance plasmid in Salmonella Enteritidis. J. Antimicrob. Chemother. 2017;72:2750–2754. doi: 10.1093/jac/dkx238. PubMed DOI

Santos A.C., Santos F.F., Silva R.M., Gomes T.A.T. Diversity of Hybrid- and Hetero-Pathogenic Escherichia coli and Their Potential Implication in More Severe Diseases. Front. Cell. Infect. Microbiol. 2020;10:339. doi: 10.3389/fcimb.2020.00339. PubMed DOI PMC

Croucher N.J., Klugman K.P. The Emergence of Bacterial “Hopeful Monsters”. mBio. 2014;5:e01355-14. doi: 10.1128/mBio.01550-14. PubMed DOI PMC

Decraene V., Phan H.T.T., George R., Wyllie D.H., Akinremi O., Aiken Z., Cleary P., Dodgson A., Pankhurst L., Crook D.W., et al. A Large, Refractory Nosocomial Outbreak of Klebsiella pneumoniae Carbapenemase-Producing Escherichia coli Demonstrates Carbapenemase Gene Outbreaks Involving Sink Sites Require Novel Approaches to Infection Control. Antimicrob. Agents Chemother. 2018;62:e01689-18. doi: 10.1128/AAC.01689-18. PubMed DOI PMC

Baraniak A., Izdebski R., Fiett J., Herda M., Derde L.P.G., Bonten M.J.M., Adler A., Carmeli Y., Goossens H., Hryniewicz W., et al. KPC-Like Carbapenemase-Producing Enterobacteriaceae Colonizing Patients in Europe and Israel. Antimicrob. Agents Chemother. 2016;60:1912–1917. doi: 10.1128/AAC.02756-15. PubMed DOI PMC

Hazen T.H., Zhao L., Boutin M.A., Stancil A., Robinson G., Harris A.D., Rasko D.A., Johnson J.K. Comparative Genomics of an IncA/C Multidrug Resistance Plasmid from Escherichia coli and Klebsiella Isolates from Intensive Care Unit Patients and the Utility of Whole-Genome Sequencing in Health Care Settings. Antimicrob. Agents Chemother. 2014;58:4814–4825. doi: 10.1128/AAC.02573-14. PubMed DOI PMC

Manges A.R., Geum H.M., Guo A., Edens T.J., Fibke C.D., Pitout J.D.D. Global Extraintestinal Pathogenic Escherichia coli (ExPEC) Lineages. Clin. Microbiol. Rev. 2019;32:e00135-18. doi: 10.1128/CMR.00135-18. PubMed DOI PMC

Roer L., Overballe-Petersen S., Hansen F., Schønning K., Wang M., Røder B.L., Hansen D.S., Justesen U.S., Andersen L.P., Fulgsang-Damgaard D., et al. Escherichia coliSequence Type 410 Is Causing New International High-Risk Clones. mSphere. 2018;3:e00337-18. doi: 10.1128/mSphere.00337-18. PubMed DOI PMC

Zingali T., Chapman T.A., Webster J., Chowdhury P.R., Djordjevic S.P. Genomic Characterisation of a Multiple Drug Resistant IncHI2 ST4 Plasmid in Escherichia coli ST744 in Australia. Microorganisms. 2020;8:896. doi: 10.3390/microorganisms8060896. PubMed DOI PMC

Adler A., Baraniak A., Izdebski R., Fiett J., Salvia A., Samso J., Lawrence C., Solomon J., Paul M., Lerman Y., et al. A multinational study of colonization with extended spectrum β-lactamase-producing Enterobacteriaceae in healthcare personnel and family members of carrier patients hospitalized in rehabilitation centres. Clin. Microbiol. Infect. 2014;20:O516–O523. doi: 10.1111/1469-0691.12560. PubMed DOI

Del Bianco F., Morotti M., Pedna M., Farabegoli P., Sambri V. Microbiological surveillance of plasmid mediated colistin resistance in human Enterobacteriaceae isolates in Romagna (Northern Italy): August 2016–July 2017. Int. J. Infect. Dis. 2018;69:96–98. doi: 10.1016/j.ijid.2018.02.006. PubMed DOI

Cheruvanky A., Stoesser N., Sheppard A.E., Crook D.W., Hoffman P.S., Weddle E., Carroll J., Sifri C.D., Chai W., Barry K., et al. Enhanced Klebsiella pneumoniae Carbapenemase Expression from a Novel Tn4401 Deletion. Antimicrob. Agents Chemother. 2017;61:e00025-17. doi: 10.1128/AAC.00025-17. PubMed DOI PMC

Piedra-Carrasco N., Fàbrega A., Calero-Cáceres W., Cornejo-Sánchez T., Brown-Jaque M., Mir-Cros A., Muniesa M., González-López J.J. Carbapenemase-producing enterobacteriaceae recovered from a Spanish river ecosystem. PLoS ONE. 2017;12:e0175246. doi: 10.1371/journal.pone.0175246. PubMed DOI PMC

Dolejska M., Masarikova M., Dobiasova H., Jamborova I., Karpiskova R., Havlicek M., Carlile N., Priddel D., Cizek A., Literak I. High prevalence ofSalmonellaand IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J. Antimicrob. Chemother. 2016;71:63–70. doi: 10.1093/jac/dkv306. PubMed DOI PMC

Nesporova K., Wyrsch E.R., Valcek A., Bitar I., Chaw K., Harris P., Hrabak J., Literak I., Djordjevic S.P., Dolejska M. Escherichia coli Sequence Type 457 Is an Emerging Extended-Spectrum-β-Lactam-Resistant Lineage with Reservoirs in Wildlife and Food-Producing Animals. Antimicrob. Agents Chemother. 2020;65:e01118-20. doi: 10.1128/AAC.01118-20. PubMed DOI PMC

Cummins M.L., Sanderson-Smith M., Newton P., Carlile N., Phalen D.N., Maute K., Monahan L.G., Hoye B.J., Djordjevic S.P. Whole-Genome Sequence Analysis of an Extensively Drug-Resistant Salmonella enterica Serovar Agona Isolate from an Australian Silver Gull (Chroicocephalus novaehollandiae) Reveals the Acquisition of Multidrug Resistance Plasmids. mSphere. 2020;5:e00743-20. doi: 10.1128/mSphere.00743-20. PubMed DOI PMC

Dolejska M., Cizek A., Literak I. High prevalence of antimicrobial-resistant genes and integrons in Escherichia coli isolates from Black-headed Gulls in the Czech Republic. J. Appl. Microbiol. 2007;103:11–19. doi: 10.1111/j.1365-2672.2006.03241.x. PubMed DOI

Cole D., Drum D.J., Stallknecht D.E., White D.G., Lee M.D., Ayers S., Sobsey M., Maurer J.J. Free-living Canada Geese and Antimicrobial Resistance. Emerg. Infect. Dis. 2005;11:935–938. doi: 10.3201/eid1106.040717. PubMed DOI PMC

Seeman T. Shovill: Faster SPAdes Assembly of Illumina Reads (v0.9.0) [(accessed on 28 April 2020)]; Available online: https://github.com/tseemann/shovill.

Chin C.-S., Alexander D.H., Marks P., Klammer A.A., Drake J., Heiner C., Clum A., Copeland A., Huddleston J., Eichler E.E., et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods. 2013;10:563–569. doi: 10.1038/nmeth.2474. PubMed DOI

Zhou Z., Alikhan N.-F., Mohamed K., Fan Y., Achtman M., the Agama Study Group. Brown D., Chattaway M., Dallman T., Delahay R., et al. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020;30:138–152. doi: 10.1101/gr.251678.119. PubMed DOI PMC

Alcock B.P., Raphenya A.R., Lau T.T.Y., Tsang K.K., Bouchard M., Edalatmand A., Huynh W., Nguyen A.-L.V., Cheng A.A., Liu S., et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020;48:D517–D525. doi: 10.1093/nar/gkz935. PubMed DOI PMC

Chen L., Zheng D., Liu B., Yang J., Jin Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44:D694–D697. doi: 10.1093/nar/gkv1239. PubMed DOI PMC

Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R.J., Overbeek R., Parrello B., Pusch G.D., et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015;5:srep08365. doi: 10.1038/srep08365. PubMed DOI PMC

Siguier P. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34(Suppl. 1):D32–D36. doi: 10.1093/nar/gkj014. PubMed DOI PMC

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

EUCAST Antimicrobial Susceptibility Testing. EUCAST Disk Diffusion Method. [(accessed on 18 December 2019)]; Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2019_manuals/Manual_v_7.0_EUCAST_Disk_Test_2019.pdf.

EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters. [(accessed on 19 December 2019)]; Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf.

CLSI . CLSI Supplement M100. 27th ed. Clinical and Laboratory Standards Institute; Wayne, PA, USA: 2017. [(accessed on 19 December 2019)]. Performance Standards for Antimicrobial Susceptibility Testing. Available online: http://file.qums.ac.ir/repository/mmrc/clsi%202017.pdf.

Jouy E., Haenni M., Le Devendec L., Le Roux A., Châtre P., Madec J.-Y., Kempf I. Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories. J. Microbiol. Methods. 2017;132:125–127. doi: 10.1016/j.mimet.2016.11.017. PubMed DOI

Rotova V., Papagiannitsis C.C., Skalova A., Chudejova K., Hrabak J. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods. 2017;137:30–33. doi: 10.1016/j.mimet.2017.04.003. PubMed DOI

Magiorakos A.-P., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012;18:268–281. doi: 10.1111/j.1469-0691.2011.03570.x. PubMed DOI

Kaas R.S., Leekitcharoenphon P., Aarestrup F.M., Lund O. Solving the Problem of Comparing Whole Bacterial Genomes across Different Sequencing Platforms. PLoS ONE. 2014;9:e104984. doi: 10.1371/journal.pone.0104984. PubMed DOI PMC

Letunic I., Bork P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019;47:W256–W259. doi: 10.1093/nar/gkz239. PubMed DOI PMC

Darling A.E., Mau B., Perna N.T. progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement. PLoS ONE. 2010;5:e11147. doi: 10.1371/journal.pone.0011147. PubMed DOI PMC

Cummins M.L., Reid C.J., Chowdhury P.R., Bushell R.N., Esbert N., Tivendale K.A., Noormohammadi A.H., Islam S., Marenda M.S., Browning G.F., et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb. Genom. 2019;5:e000250. doi: 10.1099/mgen.0.000250. PubMed DOI PMC

Alikhan N.-F., Petty N.K., Ben Zakour N.L., Beatson S.A. BLAST Ring Image Generator (BRIG): Simple prokaryote genome comparisons. BMC Genom. 2011;12:402. doi: 10.1186/1471-2164-12-402. PubMed DOI PMC

Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K.L., Threlfall E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods. 2005;63:219–228. doi: 10.1016/j.mimet.2005.03.018. PubMed DOI

Valcek A., Overballe-Petersen S., Hansen F., Dolejska M., Hasman H. Complete Genome Sequence of Escherichia coli MT102, a Plasmid-Free Recipient Resistant to Rifampin, Azide, and Streptomycin, Used in Conjugation Experiments. Microbiol. Resour. Announc. 2019;8:e00383-19. doi: 10.1128/MRA.00383-19. PubMed DOI PMC

Everett M.J., Jin Y.F., Ricci V., Piddock L.J. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob. Agents Chemother. 1996;40:2380–2386. doi: 10.1128/AAC.40.10.2380. PubMed DOI PMC

Pong C.H., Harmer C.J., Ataide S.F., Hall R.M. An IS26variant with enhanced activity. FEMS Microbiol. Lett. 2019;366:fnz031. doi: 10.1093/femsle/fnz031. PubMed DOI

Reid C.J., Chowdhury P.R., Djordjevic S.P. Tn6026 and Tn6029 are found in complex resistance regions mobilised by diverse plasmids and chromosomal islands in multiple antibiotic resistant Enterobacteriaceae. Plasmid. 2015;80:127–137. doi: 10.1016/j.plasmid.2015.04.005. PubMed DOI

Wyrsch E.R., Reid C.J., DeMaere M.Z., Liu M.Y., Chapman T.A., Chowdhury P.R., Djordjevic S.P. Complete Sequences of Multiple-Drug Resistant IncHI2 ST3 Plasmids in Escherichia coli of Porcine Origin in Australia. Front. Sustain. Food Syst. 2019;3:18. doi: 10.3389/fsufs.2019.00018. DOI

Cascales E., Buchanan S.K., Duché D., Kleanthous C., Lloubès R., Postle K., Riley M., Slatin S., Cavard D. Colicin Biology. Microbiol. Mol. Biol. Rev. 2007;71:158–229. doi: 10.1128/MMBR.00036-06. PubMed DOI PMC

Gordon A.K., Phan H.T.T., Lipworth S.I., Cheong E., Gottlieb T., George S., Peto T.E.A., Mathers A.J., Walker A.S., Crook D.W., et al. Genomic dynamics of species and mobile genetic elements in a prolonged blaIMP-4-associated carbapenemase outbreak in an Australian hospital. J. Antimicrob. Chemother. 2020;75:873–882. doi: 10.1093/jac/dkz526. PubMed DOI PMC

Roberts L.W., Harris P.N.A., Forde B.M., Ben Zakour N.L., Catchpoole E., Stanton-Cook M., Phan M.-D., Sidjabat H.E., Bergh H., Heney C., et al. Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei. Nat. Commun. 2020;11:1–11. doi: 10.1038/s41467-019-14139-5. PubMed DOI PMC

Abraham S., O’Dea M., Trott D.J., Abraham R.J., Hughes D., Pang S., McKew G., Cheong E.Y.L., Merlino J., Saputra S., et al. Isolation and plasmid characterization of carbapenemase (IMP-4) producing Salmonella enterica Typhimurium from cats. Sci. Rep. 2016;6:35527. doi: 10.1038/srep35527. PubMed DOI PMC

Dolejska M., Papagiannitsis C.C., Medvecky M., Davidova-Gerzova L., Valcek A. Characterization of the Complete Nucleotide Sequences of IMP-4-Encoding Plasmids, Belonging to Diverse Inc Families, Recovered from Enterobacteriaceae Isolates of Wildlife Origin. Antimicrob. Agents Chemother. 2018;62:e02434-17. doi: 10.1128/AAC.02434-17. PubMed DOI PMC

Wang J., Ma Z.-B., Zeng Z.-L., Yang X.-W., Huang Y., Liu J.-H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 2017;38:55–80. doi: 10.24272/j.issn.2095-8137.2017.024. PubMed DOI PMC

Wu J., Huang Y., Rao D., Zhang Y., Yang K. Evidence for Environmental Dissemination of Antibiotic Resistance Mediated by Wild Birds. Front. Microbiol. 2018;9:745. doi: 10.3389/fmicb.2018.00745. PubMed DOI PMC

Mukerji S., Stegger M., Truswell A.V., Laird T., Jordan D., Abraham R.J., Harb A., Barton M., O’Dea M., Abraham S. Resistance to critically important antimicrobials in Australian silver gulls (Chroicocephalus novaehollandiae) and evidence of anthropogenic origins. J. Antimicrob. Chemother. 2019;74:2566–2574. doi: 10.1093/jac/dkz242. PubMed DOI

Harmer C.J., Moran R.A., Hall R.M. Movement of IS26-Associated Antibiotic Resistance Genes Occurs via a Translocatable Unit That Includes a Single IS26 and Preferentially Inserts Adjacent to Another IS26. mBio. 2014;5:e01801-14. doi: 10.1128/mBio.01801-14. PubMed DOI PMC

Wan M., Gao X., Lv L., Cai Z., Liu J.H. IS26 mediate the acquisition of tigecycline resistance gene cluster tmexCD1-toprJ1 by IncHI1B-FIB plasmids in Klebsiella pneumoniae and Klebsie lla quasipneumoniae from food market sewage. Antimicrob. Agents Chemother. 2020;65:e02178-20. doi: 10.1128/AAC.02178-20. PubMed DOI PMC

Cain A.K., Liu X., Djordjevic S.P., Hall R.M. Transposons Related to Tn1696in IncHI2 Plasmids in Multiply Antibiotic ResistantSalmonella entericaSerovar Typhimurium from Australian Animals. Microb. Drug Resist. 2010;16:197–202. doi: 10.1089/mdr.2010.0042. PubMed DOI

Hastak P., Cummins M.L., Gottlieb T., Cheong E., Merlino J., Myers G.S.A., Djordjevic S.P., Chowdhury P.R. Genomic profiling of Escherichia coli isolates from bacteraemia patients: A 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb. Genom. 2020;6:e000371. doi: 10.1099/mgen.0.000371. PubMed DOI PMC

Reid C.J., Wyrsch E.R., Chowdhury P.R., Zingali T., Liu M., Darling A.E., Chapman T.A., Djordjevic S.P. Porcine commensal Escherichia coli: A reservoir for Class 1 Integrons Associated with IS26. Microb. Genom. 2017;3:e000143. doi: 10.1099/mgen.0.000143. PubMed DOI PMC

Dawes F.E., Kuzevski A., Bettelheim K.A., Hornitzky M.A., Djordjevic S.P., Walker M.J. Distribution of Class 1 Integrons with IS26-Mediated Deletions in Their 3′-Conserved Segments in Escherichia coli of Human and Animal Origin. PLoS ONE. 2010;5:e12754. doi: 10.1371/journal.pone.0012754. PubMed DOI PMC

Li D., Reid C.J., Kudinha T., Jarocki V.M., Djordjevic S.P. Genomic analysis of trimethoprim-resistant extraintestinal pathogenic Escherichia coli and recurrent urinary tract infections. Microb. Genom. 2020;6:mgen000475. doi: 10.1099/mgen.0.000475. PubMed DOI PMC

García V., García P., Rodríguez I., Rodicio R., Rodicio M.D.R.R. The role of IS 26 in evolution of a derivative of the virulence plasmid of Salmonella enterica serovar Enteritidis which confers multiple drug resistance. Infect. Genet. Evol. 2016;45:246–249. doi: 10.1016/j.meegid.2016.09.008. PubMed DOI

Porse A., Schønning K., Munck C., Sommer M.O. Survival and Evolution of a Large Multidrug Resistance Plasmid in New Clinical Bacterial Hosts. Mol. Biol. Evol. 2016;33:2860–2873. doi: 10.1093/molbev/msw163. PubMed DOI PMC

Yang X., Ye L., Li Y., Chan E.W.-C., Zhang R., Chen S. Identification of a Chromosomal Integrated DNA Fragment Containing the rmpA2 and iucABCDiutA Virulence Genes in Klebsiella pneumoniae. mSphere. 2020;5:e01179-20. doi: 10.1128/mSphere.01179-20. PubMed DOI PMC

Carattoli A. Plasmids in Gram negatives: Molecular typing of resistance plasmids. Int. J. Med. Microbiol. 2011;301:654–658. doi: 10.1016/j.ijmm.2011.09.003. PubMed DOI

Ravi A., Valdés-Varela L., Gueimonde M., Rudi K. Transmission and persistence of IncF conjugative plasmids in the gut microbiota of full-term infants. FEMS Microbiol. Ecol. 2018;94:94. doi: 10.1093/femsec/fix158. PubMed DOI

Girón J.A., Torres A.G., Freer E., Kaper J.B. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 2002;44:361–379. doi: 10.1046/j.1365-2958.2002.02899.x. PubMed DOI

Luck S.N., Badea L., Bennett-Wood V., Robins-Browne R., Hartland E.L. Contribution of FliC to Epithelial Cell Invasion by Enterohemorrhagic Escherichia coli O113:H21. Infect. Immun. 2006;74:6999–7004. doi: 10.1128/IAI.00435-06. PubMed DOI PMC

He Y., Xu T., Fossheim L.E., Zhang X.-H. FliC, a Flagellin Protein, Is Essential for the Growth and Virulence of Fish Pathogen Edwardsiella tarda. PLoS ONE. 2012;7:e45070. doi: 10.1371/journal.pone.0045070. PubMed DOI PMC

Eporcheron G., Egarenaux A., Eproulx J., Esabri M., Dozois C.M. Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: Correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Front. Cell. Infect. Microbiol. 2013;3:90. doi: 10.3389/fcimb.2013.00090. PubMed DOI PMC

Pal C., Asiani K., Arya S., Rensing C., Stekel D.J., Larsson D.J., Hobman J.L. Metal Resistance and Its Association With Antibiotic Resistance. Adv. Microb. Physiol. 2017;70:261–313. doi: 10.1016/bs.ampbs.2017.02.001. PubMed DOI

Smith G.C., Carlile N. Food and Feeding Ecology of Breeding Silver Gulls (Larus novaehollandiae) in Urban Australia. Colon. Waterbirds. 1993;16:9. doi: 10.2307/1521551. DOI

Jackson R.W., Johnson L.J., Clarke S.R., Arnold D.L. Bacterial pathogen evolution: Breaking news. Trends Genet. 2011;27:32–40. doi: 10.1016/j.tig.2010.10.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...