Interspecies Transmission of CMY-2-Producing Escherichia coli Sequence Type 963 Isolates between Humans and Gulls in Australia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35862807
PubMed Central
PMC9429958
DOI
10.1128/msphere.00238-22
Knihovny.cz E-zdroje
- Klíčová slova
- Australia, Escherichia coli, ST963, WGS, comparative genomics, humans, phylogenetic analysis, silver gulls, transmission, β-lactamases,
- MeSH
- Charadriiformes * mikrobiologie MeSH
- Escherichia coli * genetika MeSH
- fylogeneze MeSH
- infekce vyvolané Escherichia coli * přenos veterinární MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
Escherichia coli sequence type 963 (ST963) is a neglected lineage closely related to ST38, a globally widespread extraintestinal pathogenic ST causing urinary tract infections (UTI) as well as sepsis in humans. Our current study aimed to improve the knowledge of this understudied ST by carrying out a comprehensive comparative analysis of whole-genome sequencing data consisting of 31 isolates from silver gulls in Australia along with another 80 genomes from public resources originating from geographically scattered regions. ST963 was notable for carriage of cephalosporinase gene blaCMY-2, which was identified in 99 isolates and was generally chromosomally encoded. ST963 isolates showed otherwise low carriage of antibiotic resistance genes, in contrast with the closely related E. coli ST38. We found considerable phylogenetic variability among international ST963 isolates (up to 11,273 single nucleotide polymorphisms [SNPs]), forming three separate clades. A major clade that often differed by 20 SNPs or less consisted of Australian isolates of both human and animal origin, providing evidence of zoonotic or zooanthropogenic transmission. There was a high prevalence of virulence F29:A-:B10 pUTI89-like plasmids within E. coli ST963 (n = 88), carried especially by less variable isolates exhibiting ≤1,154 SNPs. We characterized a novel 115,443-bp pUTI89-like plasmid, pCE2050_A, that carried a traS:IS5 insertion absent from pUTI89. Since IS5 was also present in a transposition unit bearing blaCMY-2 on chromosomes of ST963 strains, IS5 insertion into pUTI89 may enable mobilization of the blaCMY-2 gene from the chromosome/transposition unit to pUTI89 via homologous recombination. IMPORTANCE We have provided the first comprehensive genomic study of E. coli ST963 by analyzing various genomic and phenotypic data sets of isolates from Australian silver gulls and comparison with genomes from geographically dispersed regions of human and animal origin. Our study suggests the emergence of a specific blaCMY-2-carrying E. coli ST963 clone in Australia that is widely spread across the continent by humans and birds. Genomic analysis has revealed that ST963 is a globally dispersed lineage with a remarkable set of virulence genes and virulence plasmids described in uropathogenic E. coli. While ST963 separated into three clusters, a unique specific clade of Australian ST963 isolates harboring a chromosomal copy of AmpC β-lactamase encoding the gene blaCMY-2 and originating from both humans and wild birds was identified. This phylogenetically close cluster comprised isolates of both animal and human origin, thus providing evidence of interspecies zoonotic transmission. The analysis of the genetic environment of the AmpC β-lactamase-encoding gene highlighted ongoing evolutionary events that shape the carriage of this gene in ST963.
Australian Institute for Microbiology and Infection University of Technology Sydney Ultimo Australia
Central European Institute of Technology University of Veterinary Sciences Brno Brno Czech Republic
Department of Microbiology University Hospital of Larissa Larissa Greece
Faculty of Medicine Biomedical Center Charles Universitygrid 4491 8 Plzen Czech Republic
Zobrazit více v PubMed
Pfeifer Y, Cullik A, Witte W. 2010. Resistance to cephalosporins and carbapenems in gram-negative bacterial pathogens. Int J Med Microbiol 300:371–379. doi:10.1016/j.ijmm.2010.04.005. PubMed DOI
Denisuik AJ, Lagace-Wiens PRS, Pitout JD, Mulvey MR, Simner PJ, Tailor F, Karlowsky JA, Hoban DJ, Adam HJ, Zhanel GG, Zhanel GG, Hoban DJ, Adam HJ, Karlowsky JA, Baxter MR, Nichol KA, Lagace-Wiens PRS, Walkty A, on behalf of the Canadian Antimicrobial Resistance Alliance (CARA) . 2013. Molecular epidemiology of extended-spectrum β-lactamase-, AmpC β-lactamase- and carbapenemase-producing Escherichia coli and Klebsiella pneumoniae isolated from Canadian hospitals over a 5 year period: CANWARD 2007–11. J Antimicrob Chemother 68:i57–i65. doi:10.1093/jac/dkt027. PubMed DOI
Bauernfeind A, Stemplinger I, Jungwirth R, Giamarellou H. 1996. Characterization of the plasmidic beta-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob Agents Chemother 40:221–224. doi:10.1128/AAC.40.1.221. PubMed DOI PMC
Kang MS, Besser TE, Call DR. 2006. Variability in the region downstream of the blaCMY-2 beta-lactamase gene in Escherichia coli and Salmonella enterica plasmids. Antimicrob Agents Chemother 50:1590–1593. doi:10.1128/AAC.50.4.1590-1593.2006. PubMed DOI PMC
Naseer U, Haldorsen B, Simonsen GS, Sundsfjord A. 2010. Sporadic occurrence of CMY-2-producing multidrug-resistant Escherichia coli of ST-complexes 38 and 448, and ST131 in Norway. Clin Microbiol Infect 16:171–178. doi:10.1111/j.1469-0691.2009.02861.x. PubMed DOI
Baudry PJ, Mataseje L, Zhanel GG, Hoban DJ, Mulvey MR. 2009. Characterization of plasmids encoding CMY-2 AmpC beta-lactamases from Escherichia coli in Canadian intensive care units. Diagn Microbiol Infect Dis 65:379–383. doi:10.1016/j.diagmicrobio.2009.08.011. PubMed DOI
Hansen KH, Bortolaia V, Nielsen CA, Nielsen JB, Schønning K, Agersø Y, Guardabassi L. 2016. Host-specific patterns of genetic diversity among IncI1-Igamma and IncK plasmids encoding CMY-2 beta-lactamase in Escherichia coli isolates from humans, poultry meat, poultry and dogs in Denmark. Appl Environ Microbiol 82:4705–4714. doi:10.1128/AEM.00495-16. PubMed DOI PMC
Pietsch M, Irrgang A, Roschanski N, Brenner Michael G, Hamprecht A, Rieber H, Käsbohrer A, Schwarz S, Rösler U, Kreienbrock L, Pfeifer Y, Fuchs S, Werner G, RESET Study Group . 2018. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genomics 19:601. doi:10.1186/s12864-018-4976-3. PubMed DOI PMC
Ambrose SJ, Harmer CJ, Hall RM. 2018. Compatibility and entry exclusion of IncA and IncC plasmids revisited: IncA and IncC plasmids are compatible. Plasmid 96–97:7–12. doi:10.1016/j.plasmid.2018.02.002. PubMed DOI
Seiffert SN, Carattoli A, Schwendener S, Collaud A, Endimiani A, Perreten V. 2017. Plasmids carrying blaCMY -2/4 in Escherichia coli from poultry, poultry meat, and humans belong to a novel IncK Subgroup Designated IncK2. Front Microbiol 8:407. doi:10.3389/fmicb.2017.00407. PubMed DOI PMC
Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 32:e00135-18. doi:10.1128/CMR.00135-18. PubMed DOI PMC
Borges CA, Beraldo LG, Maluta RP, Cardozo MV, Barboza KB, Guastalli EAL, Kariyawasam S, DebRoy C, Ávila FA. 2017. Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital. Avian Pathol 46:76–83. doi:10.1080/03079457.2016.1209298. PubMed DOI
Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I, Literak I, Dolejska M, Djordjevic SP. 2022. Urban wildlife crisis: Australian silver gull is a bystander host to widespread clinical antibiotic resistance. mSystems e0015822. doi:10.1128/msystems.00158-22. PubMed DOI PMC
Nesporova K, Wyrsch ER, Valcek A, Bitar I, Chaw K, Harris P, Hrabak J, Literak I, Djordjevic SP, Dolejska M. 2020. Escherichia coli sequence type 457 is an emerging extended-spectrum β-lactam resistant lineage with reservoirs in wildlife and food-producing animals. Antimicrob Agents Chemother 65:e01118-20. doi:10.1128/AAC.01118-20. PubMed DOI PMC
Tarabai H, Wyrsch ER, Bitar I, Dolejska M, Djordjevic SP. 2021. Epidemic HI2 plasmids mobilising the carbapenemase gene blaIMP-4 in Australian clinical samples identified in multiple sublineages of Escherichia coli ST216 colonising silver gulls. Microorganisms 9:567. doi:10.3390/microorganisms9030567. PubMed DOI PMC
Villa L, García-Fernández A, Fortini D, Carattoli A. 2010. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65:2518–2529. doi:10.1093/jac/dkq347. PubMed DOI
Miriagou V, Papagiannitsis CC, Kotsakis SD, Loli A, Tzelepi E, Legakis NJ, Tzouvelekis LS. 2010. Sequence of pNL194, a 79.3-kilobase IncN plasmid carrying the blaVIM-1 metallo-beta-lactamase gene in Klebsiella pneumoniae. Antimicrob Agents Chemother 54:4497–4502. doi:10.1128/AAC.00665-10. PubMed DOI PMC
Zelendova M, Papagiannitsis CC, Valcek A, Medvecky M, Bitar I, Hrabak J, Gelbicova T, Barakova A, Kutilova I, Karpiskova R, Dolejska M. 2020. Characterization of the complete nucleotide sequences of mcr-1-encoding plasmids from Enterobacterales isolates in retailed raw meat products from the Czech Republic. Front Microbiol 11:604067. doi:10.3389/fmicb.2020.604067. PubMed DOI PMC
Jacoby GA. 2009. AmpC beta-lactamases. Clin Microbiol Rev 22:161–182. doi:10.1128/CMR.00036-08. PubMed DOI PMC
Zhao S, Li C, Hsu C-H, Tyson GH, Strain E, Tate H, Tran T-T, Abbott J, McDermott PF. 2020. Comparative genomic analysis of 450 strains of Salmonella enterica isolated from diseased animals. Genes 11:1025. doi:10.3390/genes11091025. PubMed DOI PMC
Mukerji S, Gunasekera S, Dunlop JN, Stegger M, Jordan D, Laird T, Abraham RJ, Barton M, O’Dea M, Abraham S. 2020. Implications of foraging and interspecies interactions of birds for carriage of Escherichia coli strains resistant to critically important antimicrobials. Appl Environ Microbiol 86:e01610-20. doi:10.1128/AEM.01610-20. PubMed DOI PMC
Bach S, de Almeida A, Carniel E. 2000. The Yersinia high-pathogenicity island is present in different members of the family Enterobacteriaceae. FEMS Microbiol Lett 183:289–294. doi:10.1111/j.1574-6968.2000.tb08973.x. PubMed DOI
Vogt D, Overesch G, Endimiani A, Collaud A, Thomann A, Perreten V. 2014. Occurrence and genetic characteristics of third-generation cephalosporin-resistant Escherichia coli in Swiss retail meat. Microb Drug Resist 20:485–494. doi:10.1089/mdr.2013.0210. PubMed DOI
Yamaji R, Friedman CR, Rubin J, Suh J, Thys E, McDermott P, Hung-Fan M, Riley LW. 2018. A population-based surveillance study of shared genotypes of Escherichia coli isolates from retail meat and suspected cases of urinary tract infections. mSphere 3:e00179-18. doi:10.1128/mSphere.00179-18. PubMed DOI PMC
Poirel L, Decousser JW, Nordmann P. 2003. Insertion sequence ISEcp1B is involved in expression and mobilization of a bla(CTX-M) beta-lactamase gene. Antimicrob Agents Chemother 47:2938–2945. doi:10.1128/AAC.47.9.2938-2945.2003. PubMed DOI PMC
Kurpiel PM, Hanson ND. 2011. Association of IS5 with divergent tandem blaCMY-2 genes in clinical isolates of Escherichia coli. J Antimicrob Chemother 66:1734–1738. doi:10.1093/jac/dkr212. PubMed DOI
Cummins ML, Reid CJ, Djordjevic SP. 2022. F plasmid lineages in Escherichia coli ST95: implications for host range, antibiotic resistance, and zoonoses. mSystems 7:e0121221. doi:10.1128/msystems.01212-21. PubMed DOI PMC
Chen SL, Hung CS, Xu J, Reigstad CS, Magrini V, Sabo A, Blasiar D, Bieri T, Meyer RR, Ozersky P, Armstrong JR, Fulton RS, Latreille JP, Spieth J, Hooton TM, Mardis ER, Hultgren SJ, Gordon JI. 2006. Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci USA 103:5977–5982. doi:10.1073/pnas.0600938103. PubMed DOI PMC
Cusumano CK, Hung CS, Chen SL, Hultgren SJ. 2010. Virulence plasmid harbored by uropathogenic Escherichia coli functions in acute stages of pathogenesis. Infect Immun 78:1457–1467. doi:10.1128/IAI.01260-09. PubMed DOI PMC
Huang W-C, Liao Y-J, Hashimoto M, Chen K-F, Chu C, Hsu P-C, Wang S, Teng C-H. 2020. cjrABC-senB hinders survival of extraintestinal pathogenic E. coli in the bloodstream through triggering complement-mediated killing. J Biomed Sci 27:86. doi:10.1186/s12929-020-00677-4. PubMed DOI PMC
Stephens CM, Adams-Sapper S, Sekhon M, Johnson JR, Riley LW. 2017. Genomic analysis of factors associated with low prevalence of antibiotic resistance in extraintestinal pathogenic Escherichia coli sequence type 95 strains. MSphere 2:e00390-16. doi:10.1128/mSphere.00390-16. PubMed DOI PMC
Elankumaran P, Browning GF, Marenda MS, Reid CJ, Djordjevic SP. 2022. Close genetic linkage between human and companion animal extraintestinal pathogenic Escherichia coli ST127. Current Res Microbial Sci 3:100106. doi:10.1016/j.crmicr.2022.100106. PubMed DOI PMC
Brolund A, Franzen O, Melefors O, Tegmark-Wisell K, Sandegren L. 2013. Plasmidome-analysis of ESBL-producing Escherichia coli using conventional typing and high-throughput sequencing. PLoS One 8:e65793. doi:10.1371/journal.pone.0065793. PubMed DOI PMC
Tarlton NJ, Moritz C, Adams-Sapper S, Riley LW. 2019. Genotypic analysis of uropathogenic Escherichia coli to understand factors that impact the prevalence of β-lactam-resistant urinary tract infections in a community. J Glob Antimicrob Resist 19:173–180. doi:10.1016/j.jgar.2019.03.002. PubMed DOI PMC
Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71:63–70. doi:10.1093/jac/dkv306. PubMed DOI PMC
The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org.
Clinical and Laboratory Standards Institute. 2018. Performance standards for antimicrobial susceptibility testing; 28th informational supplement. CLSI document M100-S28. Clinical and Laboratory Standards Institute, Wayne, PA.
Jouy E, Haenni M, Le Devendec L, Le Roux A, Chatre P, Madec JY, Kempf I. 2017. Improvement in routine detection of colistin resistance in E. coli isolated in veterinary diagnostic laboratories. J Microbiol Methods 132:125–127. doi:10.1016/j.mimet.2016.11.017. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. doi:10.1371/journal.pone.0112963. PubMed DOI PMC
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421. PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi:10.1093/bioinformatics/btt086. PubMed DOI PMC
Milne I, Stephen G, Bayer M, Cock PJA, Pritchard L, Cardle L, Shaw PD, Marshall D. 2013. Using Tablet for visual exploration of second-generation sequencing data. Brief Bioinform 14:193–202. doi:10.1093/bib/bbs012. PubMed DOI
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14. PubMed DOI PMC
Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–21. doi:10.1093/nar/gkw387. PubMed DOI PMC
Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–6. doi:10.1093/nar/gkj014. PubMed DOI PMC
Mikheenko A, Valin G, Prjibelski A, Saveliev V, Gurevich A. 2016. Icarus: visualizer for de novo assembly evaluation. Bioinformatics 32:3321–3323. doi:10.1093/bioinformatics/btw379. PubMed DOI
Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206–D214. doi:10.1093/nar/gkt1226. PubMed DOI PMC
Heng L. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv 1303.3997. https://arxiv.org/abs/1303.3997.
Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L, Wilson RK. 2012. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22:568–576. doi:10.1101/gr.129684.111. PubMed DOI PMC
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109. PubMed DOI PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi:10.1093/bioinformatics/btv421. PubMed DOI PMC
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS One 5:e9490. doi:10.1371/journal.pone.0009490. PubMed DOI PMC
Letunic I, Bork P. 2019. Interactive Tree of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC