Characterization of the Complete Nucleotide Sequences of mcr-1-Encoding Plasmids From Enterobacterales Isolates in Retailed Raw Meat Products From the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33519748
PubMed Central
PMC7843963
DOI
10.3389/fmicb.2020.604067
Knihovny.cz E-zdroje
- Klíčová slova
- IncHI2, IncI2, IncX4, antimicrobial resistance, colistin, meat,
- Publikační typ
- časopisecké články MeSH
The aim of our study was to determine complete nucleotide sequence of mcr-1-carrying plasmids from Enterobacterales isolates recovered from domestic and imported raw retailed meat and compare them with plasmids available at the GenBank sequence database. A set of 16 plasmids originating from Escherichia coli (n = 13), Klebsiella pneumoniae (n = 2), and Citrobacter braakii (n = 1) were analyzed. In our previous study, data from whole genome sequencing showed that mcr-1 gene was located on plasmids of different incompatibility groups (IncHI2, IncI2, and IncX4). The IncI2 (n = 3) and IncX4 (n = 8) plasmids harbored mcr-1.1 gene only, whereas IncHI2 sequence type 4 plasmids (n = 5) carried large multidrug resistance (MDR) regions. MDR regions of IncHI2 plasmids included additional antimicrobial resistance genes conferring resistance to β-lactams (bla TEM-1), aminoglycosides [aadA1, aadA2, and aph(6)-Id], macrolides [mef (B)], tetracycline (tetA, tetR), and sulphonamides (sul1, sul2, and sul3). Likewise, IncHI2 plasmids carried several insertion sequences including IS1, IS3, IS26, IS1326, and ISApl1. In conclusion, our findings confirmed the involvement of IncX4, IncI2, and IncHI2 plasmids in the dissemination of mcr-1.1 gene in several environmental niches, as in samples of retail meat originating from different geographical regions. In contrast to IncX4 and IncI2, IncHI2 plasmids were more diverse and carried additional genes for resistance to heavy metals and multiple antimicrobials.
Department of Bacteriology Veterinary Research Institute Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Brno Czechia
Department of Microbiology University Hospital of Larissa Larissa Greece
Faculty of Medicine Biomedical Center Charles University Plzen Czechia
Zobrazit více v PubMed
Caltagirone M., Nucleo E., Spalla M., Zara F., Novazzi F., Marchetti V. M., et al. . (2017). Occurrence of extended spectrum β-lactamases, KPC-type, and MCR-1.2-producing Enterobacteriaceae from wells, river water, and wastewater treatment plants in Oltrepò Pavese area, Northern Italy. Front. Microbiol. 8:2232. 10.3389/fmicb.2017.02232 PubMed DOI PMC
Carattoli A. (2013). Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303, 298–304. 10.1016/j.ijmm.2013.02.001 PubMed DOI
Carattoli A., Zankari E., García-Fernández A., Larsen M. V., Lund O., Villa L., Hasman H. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58, 3895–3903. 10.1128/AAC.02412-14 PubMed DOI PMC
Chin C.S., Alexander D.H., Marks P., Klammer A.A., Drake J., Heiner C., et al. . (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569. 10.1038/nmeth.2474 PubMed DOI
Chowdhury P. R., Charles I. G., Djordjevic S. P. (2015). A role for Tn6029 in the evolution of the complex antibiotic resistance gene loci in genomic island 3 in enteroaggregative hemorrhagic Escherichia coli O104:H4. PLoS ONE 10:e0115781 10.1371/journal.pone.0115781 PubMed DOI PMC
Donà V., Bernasconi O. J., Pires J., Collaud A., Overesch G., Ramette A., et al. . (2017). Heterogeneous genetic location of mcr-1 in colistin-resistant Escherichia coli isolates from humans and retail chicken meat in Switzerland: emergence of mcr-1-carrying IncK2 plasmids. Antimicrob. Agents Chemother. 61:e01245-17. 10.1128/AAC.01245-17 PubMed DOI PMC
Doumith M., Godbole G., Ashton P., Larkin L., Dallman T., Day M., Johnson A. P. (2016). Detection of the plasmid-mediated mcr-1 gene conferring colistin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. J. Antimicrob. Chemother. 71, 2300–2305. 10.1093/jac/dkw093 PubMed DOI
Falagas M.E., Rafailidis P.I., Matthaiou D.K. (2010). Resistance to polymyxins: mechanisms, frequency and treatment options. Drug Resist. Update 13, 132–138. 10.1016/j.drup.2010.05.002 PubMed DOI
Fang L., Li X., Li L., Li S., Liao X., Sun J., Liu Y. (2016). Co-spread of metal and antibiotic resistance within ST3-IncHI2 plasmids from E. coli isolates of food-producing animals. Sci. Rep. 6:25312. 10.1038/srep25312 PubMed DOI PMC
Gelbíčová T., Barakova A., Florianová M., Jamborova I., Zelendova M., Pospisilova L., et al. . (2019). Dissemination and comparison of genetic determinants of mcr-mediated colistin resistance in Enterobacteriaceae via retailed raw meat products. Front. Microbiol. 10:2824. 10.3389/fmicb.2019.02824 PubMed DOI PMC
Gilmour M.W., Thomson N.R., Sanders M., Parkhill J., Taylor D.E. (2004). The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52, 182–202. 10.1016/j.plasmid.2004.06.006 PubMed DOI
Hassen B., Abbassi M.S., Ruiz-Ripa L., Mama O.M., Hassen A., Torres C., et al. (2020). High prevalence of mcr-1 encoding colistin resistance and first identification of blaCTX−M−55 in ESBL/CMY-2-producing Escherichia coli isolated from chicken faeces and retail meat in Tunisia. Int. J. Food Microbiol. 318:108478 10.1016/j.ijfoodmicro.2019.108478 PubMed DOI
Kluytmans-van den Bergh M.F., Huizinga P., Bonten M.J., Bos M., De Bruyne K., Friedrich A.W., et al. . (2016). Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009. Euro Surveill. 21:30149. 10.2807/1560-7917.ES.2016.21.9.30149 PubMed DOI
Landman D., Georgescu C., Martin D. A., Quale J. (2008). Polymyxins revisited. Clin. Microbiol. Rev. 21, 449–465. 10.1128/CMR.00006-08 PubMed DOI PMC
Li R., Xie M., Zhang J., Yang Z., Liu L., Liu X., Chen S. (2017). Genetic characterization of mcr-1-bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. J. Antimicrob. Chemother. 72, 393–401. 10.1093/jac/dkw411 PubMed DOI
Liu Y. Y., Wang Y., Walsh T. R., Yi L. X., Zhang R., Spencer J., Yu L. F. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168. 10.1016/S1473-3099(15)00424-7 PubMed DOI
Mangat C. S., Bekal S., Irwin R. J., Mulvey M. R. (2017). A novel hybrid plasmid carrying multiple antimicrobial resistance and virulence genes in Salmonella enterica serovar Dublin. Antimicrob. Agents Chemother. 61:e02601-16. 10.1128/AAC.02601-16 PubMed DOI PMC
Matamoros S., Van Hattem J. M., Arcilla M. S., Willemse N., Melles D. C., Penders J., et al. . (2017). Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 7:15364. 10.1038/s41598-017-15539-7 PubMed DOI PMC
Monte D. F., Fernandes M. R., Cerdeira L., Esposito F., Galvão J. A., Franco B. D., Landgraf M. (2017). Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob. Agents Chemother. 61:e02718-16. 10.1128/AAC.02718-16 PubMed DOI PMC
Moreno L. Z., Gomes V. T., Moreira J., de Oliveira C. H., Peres B. P., Silva A. P. S., et al. . (2019). First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn. Microbiol. Infect. Dis. 93, 376–379. 10.1016/j.diagmicrobio.2018.10.016 PubMed DOI
Moura A., Soares M., Pereira C., Leitão N., Henriques I., Correia A. (2009). INTEGRALL: a database and search engine for integrons, integrases and gene cassettes. Bioinformatics 25, 1096–1098. 10.1093/bioinformatics/btp105 PubMed DOI
Olaitan A. O., Morand S., Rolain J. M. (2014). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front. Microbiol. 5:643. 10.3389/fmicb.2014.00643 PubMed DOI PMC
Partridge S.R., Kwong S.M., Firth N., Jensen S.O. (2018). Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31:e00088-17. 10.1128/CMR.00088-17 PubMed DOI PMC
Poirel L., Jayol A., Nordmann P. (2017). Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin. Microbiol. Rev. 30, 557–596. 10.1128/CMR.00064-16 PubMed DOI PMC
Rozwandowicz M., Brouwer M.S.M., Fischer J., Wagenaar J.A., Gonzalez-Zorn B., Guerra B., et al. . (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73, 1121–1137. 10.1093/jac/dkx488 PubMed DOI
Sun J., Fang L. X., Wu Z., Deng H., Yang R. S., Li X. P., et al. . (2017). Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci. Rep. 7:424. 10.1038/s41598-017-00095-x PubMed DOI PMC
Sun J., Li X. P., Yang R. S., Fang L. X., Huo W., Li S. M., Liu Y. H. (2016). Complete nucleotide sequence of an IncI2 plasmid coharboring blaCTX-M-55 and mcr-1. Antimicrob. Agents Chemother. 60, 5014–5017. 10.1128/AAC.00774-16 PubMed DOI PMC
Tijet N., Faccone D., Rapoport M., Seah C., Pasteran F., Ceriana P., Melano R. G. (2017). Molecular characteristics of mcr-1-carrying plasmids and new mcr-1 variant recovered from polyclonal clinical Escherichia coli from Argentina and Canada. PLoS ONE. 12:e0180347. 10.1371/journal.pone.0180347 PubMed DOI PMC
Wang C., Feng Y., Liu L., Wei L., Kang M., Zong Z. (2020). Identification of novel mobile colistin resistance gene mcr-10. Emerg. Microbes Infect. 9, 508–516. 10.1080/22221751.2020.1732231 PubMed DOI PMC
Wang R., van Dorp L., Shaw L. P., Bradley P., Wang Q., Wang X. Dorai-Schneiders, T. (2018). The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1–9. 10.1038/s41467-018-03205-z PubMed DOI PMC
Wyrsch E., Chowdhury P. R., Abraham S., Santos J., Darling A.E., Charles I.G., et al. . (2015). Comparative genomic analysis of a multiple antimicrobial resistant enterotoxigenic E. coli O157 lineage from Australian pigs. BMC Genomics. 16:165. 10.1186/s12864-015-1382-y PubMed DOI PMC
Xavier B. B., Lammens C., Butaye P., Goossens H., Malhotra-Kumar S. (2016). Complete sequence of an IncFII plasmid harbouring the colistin resistance gene mcr-1 isolated from Belgian pig farms. J. Antimicrob. Chemother. 71, 2342–2344. 10.1093/jac/dkw191 PubMed DOI
Yau S., Liu X., Djordjevic S.P., Hall R.M. (2010). RSF1010-like plasmids in Australian Salmonella enterica serovar Typhimurium and origin of their sul2-strA-strB antibiotic resistance gene cluster. Microb. Drug. Resist. 16, 249–252. 10.1089/mdr.2010.0033 PubMed DOI
Zajac M., Sztromwasser P., Bortolaia V., Leekitcharoenphon P., Cavaco L.M., Ziȩtek-Barszcz A., et al. (2019). Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011–2016. Front Microbiol. 10:1753 10.3389/fmicb.2019.01753 PubMed DOI PMC
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Larsen M. V. (2012). Identification of acquired antimicrobial resistance genes. J Antimicrob. Chemother. 67, 2640–2644. 10.1093/jac/dks261 PubMed DOI PMC
Zingali T., Chapman T. A., Webster J., Chowdhury P. R., Djordjevic S. P. (2020). Genomic characterisation of a multiple drug resistant IncHI2 ST4 plasmid in Escherichia coli ST744 in Australia. Microorganisms. 8:896. 10.3390/microorganisms8060896 PubMed DOI PMC