Dissemination and Comparison of Genetic Determinants of mcr-Mediated Colistin Resistance in Enterobacteriaceae via Retailed Raw Meat Products

. 2019 ; 10 () : 2824. [epub] 20191212

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31921017

The global food chain may significantly promote the dissemination of bacteria resistant to antibiotics around the world. This study was aimed at determining the prevalence and genetic characteristics of Enterobacteriaceae with mcr-mediated colistin (CT) resistance in retail meat of different origins. Bacteria of the Enterobacteriaceae family carrying the mcr-1 gene were detected in 21% (18/86) of the examined samples, especially in turkey meat and liver originating from EU and non-EU countries (19%) and in rabbit meat imported from China (2%). The examined samples of the meat and liver of chicken and other poultry and of pork and beef were negative for the presence of bacteria carrying the mcr-1 to mcr-5 genes. A huge number of isolates belonging to Escherchia coli (n = 54), Klebsiella pneumoniae (n = 6), and Citrobacter braakii (n = 1) carrying the mcr-1 gene were obtained. Despite the high heterogeneity of the tested isolates, the mcr-1 gene was localized on only three types of plasmids (IncX4, IncHI2, and IncI2). The most frequent type of plasmid was IncX4, which carried the mcr-1 gene in 77% of E. coli and K. pneumoniae isolates from turkey meat and liver samples from the Czechia, Germany, Poland, and Brazil. Our findings indicate highly probable interspecies transfer of IncX4 and IncI2 plasmids within one meat sample. The co-resistance of plasmid-mediated CT resistance encoded by the mcr-1 and ESBL genes was detected in 18% of the isolates. Another noteworthy finding was the fosA3 gene coding for fosfomycin resistance in a multidrug-resistant isolate of E. coli from rabbit meat imported from China. The observed high level of Enterobacteriaceae with plasmids carrying the mcr-1 gene in retail meat reflects the need for Europe-wide monitoring of mcr-mediated CT resistance throughout the whole food chain.

Zobrazit více v PubMed

AbuOun M., Stubberfield E. J., Duggett N. A., Kirchner M., Dormer L., Nunez-Garcia J., et al. (2018). mcr-1 and mcr-2 (mcr-6.1) variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. J. Antimicrob. Chemother. 73:2904. 10.1093/jac/dky272 PubMed DOI PMC

Agnoletti F., Brunetta R., Bano L., Drigo I., Mazzolini E. (2018). Longitudinal study on antimicrobial consumption and resistance in rabbit farming. Int. J. Antimicrob. Agents 51 197–205. 10.1016/j.ijantimicag.2017.10.007 PubMed DOI

Alba P., Leekitcharoenphon P., Franco A., Feltrin F., Ianzano A., Caprioli A., et al. (2018). Molecular epidemiology of mcr-encoded colistin resistance in Enterobacteriaceae from food-producing animals in Italy revealed through the EU harmonized antimicrobial resistance monitoring. Front. Microbiol. 9:1217. 10.3389/fmicb.2018.01217 PubMed DOI PMC

Al-Tawfiq J., Laxminarayan R., Mendelson M. (2017). How should we respond to the emergence of plasmid-mediated colistin resistance in humans and animals? Int. J. Infect. Dis. 54 77–84. 10.1016/j.ijid.2016.11.415 PubMed DOI

Bauer A. P., Dieckmann S. M., Ludwig W., Schleifer K. H. (2007). Rapid identification of Escherichia coli safety and laboratory strain lineages based on Multiplex-PCR. FEMS Microbiol. Lett. 269 36–40. 10.1111/j.1574-6968.2006.00594.x PubMed DOI

Borowiak M., Fischer J., Hammerl J. A., Hendriksen R. S., Szabo I., Malorny B. (2017). Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J. Antimicrob. Chemother. 72 3317–3324. 10.1093/jac/dkx327 PubMed DOI

Borowiak M., Hammerl J. A., Deneke C., Fischer J., Szabo I., Malorny B. (2019). Characterization of mcr-5-harboring Salmonella enterica subsp. enterica serovar Typhimurium isolates from animal and food origin in Germany. Antimicrob. Agents Chemother. 63:e00063-19. 10.1128/AAC.00063-19 PubMed DOI PMC

Carattoli A. (2013). Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303 298–304. 10.1016/j.ijmm.2013.02.001 PubMed DOI

Carattoli A., Villa L., Feudi C., Curcio L., Orsini S., Luppi A., et al. (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Euro Surveill. 22:30589. 10.2807/1560-7917.ES.2017.22.31.30589 PubMed DOI PMC

Carattoli A., Zankari E., García-Fernández A., Voldby Larsen M., Lund O., Villa L., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58 3895–3903. 10.1128/AAC.02412-14 PubMed DOI PMC

Carroll L. M., Gaballa A., Guldimann C., Sullivan G., Henderson L. O., Wiedmann M. (2019). Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio 10:e00853-19. 10.1128/mBio.00853-19 PubMed DOI PMC

Chen L., Zhang J., Wang J., Butaye P., Kelly P., Li M., et al. (2018). Newly identified colistin resistance genes, mcr-4 and mcr-5, from upper and lower alimentary tract of pigs and poultry in China. PLoS One 13:e0193957. 10.1371/journal.pone.0193957 PubMed DOI PMC

El Garch F., de Jong A., Bertrand X., Hocquet D., Sauget M. (2018). mcr-1-like detection in commensal Escherichia coli and Salmonella spp. from food-producing animals at slaughter in Europe. Vet. Microbiol. 213 42–46. 10.1016/j.vetmic.2017.11.014 PubMed DOI

EMA/AMEG (2016). Updated Advice on the use of Colistin Products in Animals Within the European Union: Development of Resistance and Possible Impact on Human and Animal Health. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/07/WC500211080.pdf (accessed February 22, 2019).

ESVAC (2018). European Medicines Agency, European Surveillance of Veterinary Antimicrobial Consumption, Sales of veterinary Antimicrobial Agents in 30 European Countries in 2016. Available at: https://www.ema.europa.eu/veterinary-regulatory/overview/antimicrobial-resistance/european-surveillance-veterinary-antimicrobial-consumption-esvac (accessed February 22, 2019).

EUCAST (2018). European Committee on Antimicrobial Susceptibility Testing Clinical Breakpoints – Bacteria (v. 8.0). Available at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf (accessed January 1, 2018).

Freitas-Silva J., Inácio A. S., Mourao J., Antunes P., Mendes A., de Carvalho A. P., et al. (2018). Occurrence of mcr-1 in Escherichia coli from rabbits of intensive farming. Vet. Microbiol. 227 78–81. 10.1016/j.vetmic.2018.10.020 PubMed DOI

Gelbíčová T., Koláčková I., Krütová M., Karpíšková R. (2019). The emergence of mcr-1-mediated colistin-resistant Escherichia coli and Klebsiella pneumoniae in domestic and imported turkey meat in the Czech Republic 2017-2018. Folia Microbiol. [Epub ahead of print]. PubMed

Haenni M., Beyrouthy R., Lupo A., Châtre P., Madec J. Y., Bonnet R. (2018). Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J. Antimicrob. Chemother. 73 533–536. 10.1093/jac/dkx418 PubMed DOI PMC

Hasman H., Hammerum A. M., Hansen F., Hendriksen R. S., Olesen B., Agersø Y., et al. (2015). Detection of mcr-1-encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill. 20:49. 10.2807/1560-7917.ES.2015.20.49.30085 PubMed DOI

Hernández M., Iglesias M. R., Rodríguez-Lázaro D., Gallardo A., Quijada N., Miguela-Villoldo P., et al. (2017). Co-occurrence of colistin-resistance genes mcr-1 and mcr-3 among multidrug-resistant Escherichia coli isolated from cattle, Spain, September 2015. Euro Surveill. 22:30586. 10.2807/1560-7917.ES.2017.22.31.30586 PubMed DOI PMC

Irrgang A., Roschanski N., Tenhagen B. A., Grobbel M., Skladnikiewicz-Ziemer T., Thomas K., et al. (2016). Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PLoS One 11:e0159863. 10.1371/journal.pone.0159863 PubMed DOI PMC

Ito R., Mustapha M. M., Tomich A. D., Callaghan J. D., McElheny C. L., Mettus R. T., et al. (2017). Widespread fosfomycin resistance in gram-negative bacteria attributable to the chromosomal fosA gene. mBio 8:e00749-17. 10.1128/mBio.00749-17 PubMed DOI PMC

Jamborova I., Dolejska M., Vojtech J., Guenther S., Uricariu R., Drozdowska J., et al. (2015). Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl. Environ. Microbiol. 81 648–657. 10.1128/AEM.02459-14 PubMed DOI PMC

Karpíšková R., Koláčková I., Gelbíčová T., Zobaníková M. (2017). A rare mechanism of resistance to colistin in Escherichia coli isolated from raw poultry meat. Klin. Mikrobiol. Infekc. Lek. 23 58–60. PubMed

Kawanishi M., Abo H., Ozawa M., Uchiyama M., Shirakawa T., Suzuki S., et al. (2016). Prevalence of colistin resistance gene mcr-1 and absence of mcr-2 in Escherichia coli isolated from healthy food-producing animals in Japan. Antimicrob. Agents Chemother. 61:e02057-16. 10.1128/AAC.02057-16 PubMed DOI PMC

Kempf I., Jouy E., Chauvin C. (2016). Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents 48 598–606. 10.1016/j.ijantimicag.2016.09.016 PubMed DOI

Kluytmans-van den Bergh M. F., Huizinga P., Bonten M. J., Bos M., De Bruyne K., Friedrich A. W., et al. (2016). Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009. Euro Surveill. 21:30149. 10.2807/1560-7917.ES.2016.21.9.30149 PubMed DOI

Lescat M., Poirel L., Nordmann P. (2018). Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes. Diagn. Microbiol. Infect. Dis. 92 267–269. 10.1016/j.diagmicrobio.2018.04.010 PubMed DOI

Liu X., Li R., Zheng Z., Chen K., Xie M., Chan E. W.-C., et al. (2017). Molecular characterization of Escherichia coli isolates carrying mcr-1, fosA3, and extended-spectrum-ß-lactamase genes from food samples in China. Antimicrob. Agents Chemother. 61:e00064-17. 10.1128/AAC.00064-17 PubMed DOI PMC

Liu Y. Y., Wang Y., Walsh T. R., Yi L. X., Zhang R., Spencer J., et al. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect. Dis. 16 161–168. 10.1016/S1473-3099(15)00424-7 PubMed DOI

Luo Q., Yu W., Zhou K., Guo L., Shen P., Lu H., et al. (2017). Molecular epidemiology and colistin resistance mechanism of mcr-positive and mcr-negative clinical isolated Escherichia coli. Front. Microbiol. 8:2262. 10.3389/fmicb.2017.02262 PubMed DOI PMC

Lupo A., Saras E., Madec J. Y., Haenni M. (2018). Emergence of blaCTX-M-55 associated with fosA, rmtB and mcr gene variants in Escherichia coli from various animal species in France. J. Antimcrob. Chemother. 73 867–872. 10.1093/jac/dkx489 PubMed DOI

Monte D. F., Mem A., Fernandez M. R., Cerdeira L., Esposito F., Galvão J. A., et al. (2017). Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob. Agents Chemother. 61:e02718-16. 10.1128/AAC.02718-16 PubMed DOI PMC

Mulvey M. R., Mataseje L. F., Robertson J., Nash J. H., Boerlin P., Toye B., et al. (2016). Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 16 289–290. 10.1016/S1473-3099(16)00067-0 PubMed DOI

Perrin-Guyomard A., Bruneau M., Houée P., Deleurme K., Legrandois P., Poirier C., et al. (2016). Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro Surveill. 21:6. 10.2807/1560-7917.ES.2016.21.6.30135 PubMed DOI

PulseNet Europe, (2013). Standard Operating Procedure for PulseNet PFGE of Escherichia coli O157:H7, Escherichia coli non-O157 (STEC), Salmonella serotypes, Shigella sonnei and Shigella flexneri. Stockholm: PulseNet Europe.

Roschanski N., Falgenhauer L., Grobbel M., Guenther S., Kreienbrock L., Imirzalioglu C., et al. (2017). Retrospective survey of mcr-1 and mcr-2 in German pig-fattening farms, 2011-2012. Int. J. Antimicrob. Agents 50 266–271. 10.1016/j.ijantimicag.2017.03.007 PubMed DOI

Shen Y., Zhou H., Xu J., Wang Y., Zhang Q., Walsh T. R., et al. (2018). Anthropogenic and environmental factors associated with high prevalence of mcr-1 carriage in humans across China. Nat. Microbiol. 3 1054–1062. 10.1038/s41564-018-0205-8 PubMed DOI PMC

Skov R. L., Monnet D. L. (2016). Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill. 21:30155. 10.2807/1560-7917.ES.2016.21.9.30155 PubMed DOI

Sun J., Fang L. X., Wu Z., Deng H., Yang R. S., Li X. P., et al. (2017). Genetic analysis of the IncX4 plasmids: implications for a unique pattern in the mcr-1 acquisition. Sci. Rep. 7:424. 10.1038/s41598-017-00095-x PubMed DOI PMC

Wang R., van Dorp L., Shaw L. P., Bradley P., Wang Q., Wang X., et al. (2018). The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9:1179. 10.1038/s41467-018-03205-z PubMed DOI PMC

Wang X., Wang Y., Zhou Y., Li J., Yin W., Wang S., et al. (2018). Emergence of a novel mobile colistin resistance gene, mcr-8, in NDM-producing Klebsiella pneumoniae. Emerg. Microbes. Infect. 7:122. 10.1038/s41426-018-0124-z PubMed DOI PMC

Wu C., Wang Y., Shi X., Wang S., Ren H., Shen Z., et al. (2018). Rapid rise of the ESBL and mcr-1 genes in Escherichia coli of chicken origin in China, 2008-2014. Emerg. Microbes Infect. 7:30. 10.1038/s41426-0118-0033-1 PubMed DOI PMC

Xavier B. B., Lammens C., Ruhal R., Kumar-Singh S., Butaye P., Goossens H., et al. (2016). Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June, 2016. Euro Surveill. 21:30280. 10.2807/1560-7917.ES.2016.21.27.30280 PubMed DOI

Yang Y. Q., Li Y. X., Lei C. W., Zhang A. Y., Wang H. N. (2018). Novel plasmid-mediated colistin resistance gene mcr-7.1 in Klebsiella pneumoniae. J. Antimicrob. Chemother. 73 1791–1795. 10.1093/jac/dky111 PubMed DOI

Yin W., Li H., Shen Y., Liu Z., Wang S., Shen Z., et al. (2017). Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio 8:e00543-17. 10.1128/mBio.00543-17 PubMed DOI PMC

Zaja̧c M. M., Sztromwasser P., Bortolaia V., Leekitcharoenphon P., Cavaco L. M., Ziêtek-Barszcz A., et al. (2019). Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011-2016. Front. Microbiol. 10:1753. 10.3389/fmicb.2019.01753 PubMed DOI PMC

Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., et al. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67 2640–2644. 10.1093/jac/dks261 PubMed DOI PMC

Zhang J., Chen L., Wang J., Yassin A. K., Butaye P., Kelly P., et al. (2018). Molecular detection of colistin resistance genes (mcr-1, mcr-2 and mcr-3) in nasal/oropharyngeal and anal/cloacal swabs from pigs and poultry. Sci. Rep. 8:3705. 10.1038/s41598-018-22084-4 PubMed DOI PMC

Zurfluh K., Buess S., Roger S., Nuesch-Inderbinen M. (2016). Assessment of the occurrence of MCR producing Enterobacteriaceae in Swiss and imported poultry meat. SDRP J. Food Sci. Tech. 1 137–141. 10.15436/JFST.1.4.5 DOI

Zurfluh K., Nuesch-Inderbinen M., Klumpp J., Poirel L., Nordmann P., Stephan R. (2017). Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food. Antimicrob. Resist. Incfect. Control 6:91. 10.1186/s13756-017-0250-8 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...