Virulence Properties of mcr-1-Positive Escherichia coli Isolated from Retail Poultry Meat

. 2021 Feb 02 ; 9 (2) : . [epub] 20210202

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33540889

Grantová podpora
NV 18-09-00254 Ministry of Health of the Czech Republic
CZ.1.05./2.1.00/19.0385 Ministry of Education, Youth and Sport (MEYS)

Odkazy

PubMed 33540889
PubMed Central PMC7913130
DOI 10.3390/microorganisms9020308
PII: microorganisms9020308
Knihovny.cz E-zdroje

The great plasticity and diversity of the Escherichia coli genome, together with the ubiquitous occurrence, make E. coli a bacterium of world-wide concern. Of particular interest are pathogenic strains and strains harboring antimicrobial resistance genes. Overlapping virulence-associated traits between avian-source E. coli and human extraintestinal pathogenic E. coli (ExPEC) suggest zoonotic potential and safety threat of poultry food products. We analyzed whole-genome sequencing (WGS) data of 46 mcr-1-positive E. coli strains isolated from retail raw meat purchased in the Czech Republic. The investigated strains were characterized by their phylogroup-B1 (43%), A (30%), D (11%), E (7%), F (4%), B2 (2%), C (2%), MLST type, and serotype. A total of 30 multilocus sequence types (STs), of which ST744 was the most common (11%), were identified, with O8 and O89 as the most prevalent serogroups. Using the VirulenceFinder tool, 3 to 26 virulence genes were detected in the examined strains and a total of 7 (15%) strains met the pathogenic criteria for ExPEC. Four strains were defined as UPEC (9%) and 18 (39%) E. coli strains could be classified as APEC. The WGS methods and available on-line tools for their evaluation enable a comprehensive approach to the diagnosis of virulent properties of E. coli strains and represent a suitable and comfortable platform for their detection. Our results show that poultry meat may serve as an important reservoir of strains carrying both virulence and antibiotic resistance genes for animal and human populations.

Zobrazit více v PubMed

Bielaszewska M., Dobrindt U., Gärtner J., Gallitz I., Hacker J., Karch H., Müller D., Schubert S., Schmidt M.A., Sorsa L.J., et al. Aspects of genome plasticity in pathogenic Escherichia coli. Int. J. Med. Microbiol. 2007;297:625–639. doi: 10.1016/j.ijmm.2007.03.001. PubMed DOI

Da Silva G.J., Mendonça N. Association between antimicrobial resistance and virulence in Escherichia coli. Virulence. 2012;3:18–28. doi: 10.4161/viru.3.1.18382. PubMed DOI

Johnson T.J., Wannemuehler Y., Johnson S.J., Stell A.L., Doetkott C., Johnson J.R., Kim K.S., Spanjaard L., Nolan L.K. Comparison of extraintestinal pathogenic Escherichia coli strains from human and avian sources reveals a mixed subset representing potential zoonotic pathogens. Appl. Environ. Microbiol. 2008;74:7043–7050. doi: 10.1128/AEM.01395-08. PubMed DOI PMC

Terlizzi M.E., Gribaudo G., Maffei M.E. UroPathogenic Escherichia coli (UPEC) Infections: Virulence Factors, Bladder Responses, Antibiotic, and Non-antibiotic Antimicrobial Strategies. Front. Microbiol. 2017;8:1566. doi: 10.3389/fmicb.2017.01566. PubMed DOI PMC

Johnson J.R., Russo T.A. Extraintestinal pathogenic Escherichia coli: ‘the other bad E. coli’. J. Lab. Clin. Med. 2002;139:155–162. doi: 10.1067/mlc.2002.121550. PubMed DOI

Riley L.W. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 2014;20:380–390. doi: 10.1111/1469-0691.12646. PubMed DOI

Stromberg Z.R., Johnson J.R., Fairbrother J.M., Kilbourne J., Van Goor A., Curtiss III R., Mellata M. Evaluation of Escherichia coli isolates from healthy chickens to determine their potential risk to poultry and human health. PLoS ONE. 2017;12:e0180599. doi: 10.1371/journal.pone.0180599. PubMed DOI PMC

Kabir S.M.L. Avian Colibacillosis and Salmonellosis: A Closer Look at Epidemiology, Pathogenesis, Diagnosis, Control and Public Health Concerns. Int. J. Environ. Res. Public Health. 2010;7:89–114. doi: 10.3390/ijerph7010089. PubMed DOI PMC

Manges A.R. Escherichia coli and urinary tract infections: The role of poultry-meat. Clin. Microbiol. Infect. 2016;22:122–129. doi: 10.1016/j.cmi.2015.11.010. PubMed DOI

Jørgensen S.L., Stegger M., Kudirkiene E., Lilje B., Poulsen L.L., Ronco T., Dos Santos T.P., Kiil K., Bisgaard M., Pedersen K., et al. Diversity and Population Overlap between Avian and Human Escherichia coli Belonging to Sequence Type 95. mSphere. 2019;4:e00333-18. PubMed PMC

EMA (European Medicines Agency) EFSA (European Food Safety Authority) EMA and EFSA Joint Scientific Opinion on measures to reduce the need to use antimicrobial agents in animal husbandry in the European Union, and the resulting impacts on food safety (RONAFA) EFSA J. 2017;15:4666. doi: 10.2903/j.efsa.2017.4666. PubMed DOI PMC

Kempf I., Jouy E., Chauvin C. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents. 2016;48:598–606. doi: 10.1016/j.ijantimicag.2016.09.016. PubMed DOI

Wang R., van Dorp L., Shaw L.P., Bradley P., Wang Q., Wang X., Jin L., Zhang Q., Liu Y., Rieux A., et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 2018;9:1179. doi: 10.1038/s41467-018-03205-z. PubMed DOI PMC

Gelbíčová T., Baráková A., Florianová M., Jamborová I., Zelendová M., Pospíšilová L., Koláčková I., Karpíšková R. Dissemination and Comparison of Genetic Determinants of mcr-Mediated Colistin Resistance in Enterobacteriaceae via Retailed Raw Meat Products. Front. Microbiol. 2019;10:2824. doi: 10.3389/fmicb.2019.02824. PubMed DOI PMC

Liu Y.Y., Wang Y., Walsh T.R., Yi L.X., Zhang R., Spencer J., Doi Y., Tian G., Dong B., Huang X., et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016;16:161–168. doi: 10.1016/S1473-3099(15)00424-7. PubMed DOI

Beghain J., Bridier-Nahmias A., Le Nagard H., Denamur E., Clermont O. ClermonTyping: An easy-to-use and accurate in silico method for Escherichia genus strain phylotyping. Microb. Genom. 2018;4:e000192. doi: 10.1099/mgen.0.000192. PubMed DOI PMC

Wirth T., Falush D., Lan R., Colles F., Mensa P., Wieler L.H., Karch H., Reeves P.R., Maiden M.C., Wirth T., et al. Sex and virulence in Escherichia coli: An evolutionary perspective. Mol. Microbiol. 2006;60:1136–1151. doi: 10.1111/j.1365-2958.2006.05172.x. PubMed DOI PMC

Joensen K.G., Tetzschner A.M., Iguchi A., Aarestrup F.M., Scheutz F. Rapid and easy in silico serotyping of Escherichia coli using whole genome sequencing (WGS) data. J. Clin. Microbiol. 2018;53:2410–2426. doi: 10.1128/JCM.00008-15. PubMed DOI PMC

Johnson J.R., Murray A.C., Gajewski A., Sullivan M., Snippes P., Kuskowski M.A., Smith K.E. Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob. Agents Chem. 2003;47:2161–2168. doi: 10.1128/AAC.47.7.2161-2168.2003. PubMed DOI PMC

Schouler C., Schaeffer B., Brée A., Mora A., Dahbi G., Biet F., Oswald E., Mainil J., Blanco J., Moulin-Schouleur M. Diagnostic strategy for identifying avian pathogenic Escherichia coli based on four patterns of virulence genes. J. Clin. Microbiol. 2012;50:1673–1678. doi: 10.1128/JCM.05057-11. PubMed DOI PMC

Johnson T.J., Wannemuehler Y., Doetkott C., Johnson S.J., Rosenberger S.C., Nolan L.K. Identification of minimal predictors of avian pathogenic Escherichia coli virulence for use as a rapid diagnostic tool. J. Clin. Microbiol. 2008;46:3987–3996. doi: 10.1128/JCM.00816-08. PubMed DOI PMC

Spurbeck R.R., Dinh P.C., Jr., Walk S.T., Stapleton A.E., Hooton T.M., Nolan L.K., Kim K.S., Johnson J.R., Mobley H.L. Escherichia coli isolates that carry vat, fyuA, chuA, and yfcV efficiently colonize, the urinary tract. Infect. Immun. 2012;80:4115–4122. doi: 10.1128/IAI.00752-12. PubMed DOI PMC

Germon P., Chen Y.H., He L., Blanco J.E., Brée A., Schouler C., Huang S.H., Moulin-Schouleur M. IbeA, a virulence factor of avian pathogenic Escherichia coli. Microbiology. 2005;151:1179–1186. doi: 10.1099/mic.0.27809-0. PubMed DOI

Sarowska J., Futoma-Koloch B., Jama-Kmiecik A., Frej-Madrzak M., Ksiazczyk M., Bugla-Ploskonska G., Choroszy-Krol I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: Recent reports. Gut Pathog. 2019;11:10. doi: 10.1186/s13099-019-0290-0. PubMed DOI PMC

Shen Y., Zhou H., Xu J., Wang Y., Zhang Q., Walsh T.R., Shao B., Wu C., Hu Y., Yang L., et al. Anthropogenic and environmental factors associated with high incidence of mcr-1 carriage in humans across China. Nat. Microbiol. 2018;3:1054–1062. doi: 10.1038/s41564-018-0205-8. PubMed DOI PMC

Monte D.F., Mem A., Fernandes M.R., Cerdeira L., Esposito F., Galvão J.A., Franco B.D.G.M., Lincopan N., Landgraf M. Chicken meat as a reservoir of colistin-resistant Escherichia coli strains carrying mcr-1 genes in South America. Antimicrob. Agents Chemother. 2017;61:e02718-16. doi: 10.1128/AAC.02718-16. PubMed DOI PMC

Mulvey M.R., Mataseje L.F., Robertson J., Nash J.H., Boerlin P., Toye B., Irwin R., Melano R.G. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 2016;16:289–290. doi: 10.1016/S1473-3099(16)00067-0. PubMed DOI

Zhuge X., Jiang M., Tang F., Sun Y., Ji Y., Xue F., Ren J., Zhu W., Dai J. Avian-source mcr-1-positive characteristics with E. coli causing human extra-intestinal infections. Vet. Microbiol. 2019;239:108483. doi: 10.1016/j.vetmic.2019.108483. PubMed DOI

Mainil J. Escherichia coli virulence factors. Vet. Immun. Immunopathol. 2013;152:2–12. doi: 10.1016/j.vetimm.2012.09.032. PubMed DOI

EFSA BIOHAZ Panel. Koutsoumanis K., Allende A., Alvarez-Ordonez A., Bover-Cid S., Chemaly M., Davies R., De Cesare A., Herman L., Hilbert F., et al. Scientific Opinion on the pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020;18:5967.

Clermont O., Christenson J.K., Denamur E., Gordon D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013;5:58–65. doi: 10.1111/1758-2229.12019. PubMed DOI

Clermont O., Bonacorsi S., Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000;66:4555–4558. doi: 10.1128/AEM.66.10.4555-4558.2000. PubMed DOI PMC

Markland S.M., LeStrange K.J., Sharma M., Kniel K.E. Old Friends in New Places: Exploring the Role of Extraintestinal E. coli in Intestinal Disease and Foodborne Illness. Zoonoses Public Health. 2015;62:491–496. doi: 10.1111/zph.12194. PubMed DOI

Aslam M., Toufeer M., Narvaez Bravo C., Lai V., Rempel H., Manges A., Diarra M.S. Characterization of Extraintestinal Pathogenic Escherichia coli isolated from retail poultry meats from Alberta, Canada. Int. J. Food Microbiol. 2014;177:49–56. doi: 10.1016/j.ijfoodmicro.2014.02.006. PubMed DOI

Cyoia P.S., Koga V.L., Nishio E.K., Houle S., Dozois C.M., Tagliari de Brito K.C., Benito Guimarães de Brito B., Nakazato G., Takayama Kobayashi R.K. Distribution of ExPEC Virulence Factors, blaCTX-M, fosA3, and mcr-1 in Escherichia coli Isolated From Commercialized Chicken Carcasses. Front. Microbiol. 2019;9:3254. doi: 10.3389/fmicb.2018.03254. PubMed DOI PMC

Mitchell N.M., Johnson J.R., Johnston B., Curtis III R., Mellata M. Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Appl. Environ. Microbiol. 2015;81:1177–1187. doi: 10.1128/AEM.03524-14. PubMed DOI PMC

Clermont O., Gordon D., Denamur E. Guide to the various phylogenetic classification schemes for Escherichia coli and the correspondence among schemes. Microbiology. 2015;161 (Pt. 5):980–988. doi: 10.1099/mic.0.000063. PubMed DOI

World Health Organization 1980 World Health Organization (W.H.O.) Scientific Working Group Escherichia coli diarrhoea. Bull. WHO. 1980;58:23–36. PubMed PMC

Tetzschner A.M.M., Johnson J.R., Johnston B.D., Lund O., Scheutz F. In Silico Genotyping of Escherichia coli Isolates for Extraintestinal Virulence Genes by Use of Whole-Genome Sequencing Data. J. Clin. Microbiol. 2020;58:e01269-20. doi: 10.1128/JCM.01269-20. PubMed DOI PMC

De Oliveira A.L., Rocha D.A., Finkler F., de Moraes L.B., Barbieri N.L., Pavanelo D.B., Winkler C., Grassotti T.T., de Brito K.C., de Brito B.G., et al. Prevalence of ColV Plasmid-Linked Genes and In Vivo Pathogenicity of Avian Strains of Escherichia coli. Foodborne Pathog. Dis. 2015;12:679–685. doi: 10.1089/fpd.2014.1934. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...