Plasmid-mediated colistin resistance from fresh meat and slaughtered animals in the Czech Republic: nation-wide surveillance 2020-2021

. 2023 Sep 12 ; 11 (5) : e0060923. [epub] 20230912

Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37698419

The aim of this study was to determine the occurrence of plasmid-mediated colistin resistance in domestic and imported meat and slaughter animals in the Czech Republic during 2020-2021 by using selective cultivation and direct PCR testing. A total of 111 colistin-resistant Escherichia coli isolates with mcr-1 gene were obtained from 65 (9.9%, n = 659) samples and subjected to whole-genome sequencing. Isolates with mcr were frequently found in fresh meat from domestic production (14.2%) as well as from import (28.8%). The mcr-1-positive E. coli isolates predominantly originated from meat samples (16.6%), mainly poultry (27.1%), and only minor part of the isolates came from the cecum (1.7%). In contrast to selective cultivation, 205 (31.1%) samples of whole-community DNA were positive for at least one mcr variant, and other genes besides mcr-1 were detected. Analysis of whole-genome data of sequenced E. coli isolates revealed diverse sequence types (STs) including pathogenic lineages and dominance of ST1011 (15.6%) and ST162 (12.8%). Most isolates showed multidrug-resistant profile, and 9% of isolates produced clinically important beta-lactamases. The mcr-1 gene was predominantly located on one of three conjugative plasmids of IncX4 (83.5%), IncI2 (7.3%), and IncHI2 (7.3%) groups. Seventy-two percent isolates of several STs carried ColV plasmids. The study revealed high prevalence of mcr genes in fresh meat of slaughter animals. Our results confirmed previous assumptions that the livestock, especially poultry production, is an important source of colistin-resistant E. coli with the potential of transfer to humans via the food chain. IMPORTANCE We present the first data on nation-wide surveillance of plasmid-mediated colistin resistance in the Czech Republic. High occurrence of plasmid-mediated colistin resistance was found in meat samples, especially in poultry from both domestic production and import, while the presence of mcr genes was lower in the gut of slaughter animals. In contrast to culture-based approach, testing of whole-community DNA showed higher prevalence of mcr and presence of various mcr variants. Our results support the importance of combining cultivation methods with direct culture-independent techniques and highlight the need for harmonized surveillance of plasmid-mediated colistin resistance. Our study confirmed the importance of livestock as a major reservoir of plasmid-mediated colistin resistance and pointed out the risks of poultry meat for the transmission of mcr genes toward humans. We identified several mcr-associated prevalent STs, especially ST1011, which should be monitored further as they represent zoonotic bacteria circulating between different environments.

Zobrazit více v PubMed

Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu L-F, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu J-H, Shen J. 2016. Emergence of plasmid-mediated colistin resistance mechanism mcr-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16:161–168. doi:10.1016/S1473-3099(15)00424-7 PubMed DOI

Prim N, Turbau M, Rivera A, Rodríguez-Navarro J, Coll P, Mirelis B. 2017. Prevalence of colistin resistance in clinical isolates of Enterobacteriaceae: a four-year cross-sectional study. J Infect 75:493–498. doi:10.1016/j.jinf.2017.09.008 PubMed DOI

Catry B, Cavaleri M, Baptiste K, Grave K, Grein K, Holm A, Jukes H, Liebana E, Lopez Navas A, Mackay D, Magiorakos A-P, Moreno Romo MA, Moulin G, Muñoz Madero C, Matias Ferreira Pomba MC, Powell M, Pyörälä S, Rantala M, Ružauskas M, Sanders P, Teale C, Threlfall EJ, Törneke K, van Duijkeren E, Torren Edo J. 2015. Use of colistin-containing products within the European Union and European Economic Area (EU/EEA): development of resistance in animals and possible impact on human and animal health. Int J Antimicrob Agents 46:297–306. doi:10.1016/j.ijantimicag.2015.06.005 PubMed DOI

Sammul M, Mõtus K, Kalmus P. 2021. The use of colistin in food-producing animals in estonia-vaccination as an effective alternative to consumption of critically important antimicrobials in pigs. Antibiotics (Basel) 10:499. doi:10.3390/antibiotics10050499 PubMed DOI PMC

ÚSKVBL . 2020. Spotřeba antimikrobik ve veterinární Medicíně v ČR: detailní komentované srovnání trendů ve spotřebách antimikrobik 2010-2018. www.uskvbl.cz.

Ling Z, Yin W, Shen Z, Wang Y, Shen J, Walsh TR. 2020. Epidemiology of mobile colistin resistance genes mcr-1 to mcr-9. J Antimicrob Chemother 75:3087–3095. doi:10.1093/jac/dkaa205 PubMed DOI

Javed H, Saleem S, Zafar A, Ghafoor A, Shahzad AB, Ejaz H, Junaid K, Jahan S. 2020. Emergence of plasmid-mediated mcr genes from Gram-negative bacteria at the human-animal interface. Gut Pathog 12:54. doi:10.1186/s13099-020-00392-3 PubMed DOI PMC

Wang C, Feng Y, Liu L, Wei L, Kang M, Zong Z. 2020. Identification of novel mobile colistin resistance gene mcr-10 Emerg Microbes Infect 9:508–516. doi:10.1080/22221751.2020.1732231 PubMed DOI PMC

Sun J, Zeng X, Li X-P, Liao X-P, Liu Y-H, Lin J. 2017. Plasmid-mediated colistin resistance in animals: current status and future directions. Anim Health Res Rev 18:136–152. doi:10.1017/S1466252317000111 PubMed DOI

Zelendova M, Papagiannitsis CC, Valcek A, Medvecky M, Bitar I, Hrabak J, Gelbicova T, Barakova A, Kutilova I, Karpiskova R, Dolejska M. 2020. Characterization of the complete nucleotide sequences of mcr-1-encoding plasmids from enterobacterales isolates in retailed raw meat products from the Czech Republic. Front Microbiol 11:604067. doi:10.3389/fmicb.2020.604067 PubMed DOI PMC

Dhaouadi S, Soufi L, Hamza A, Fedida D, Zied C, Awadhi E, Mtibaa M, Hassen B, Cherif A, Torres C, Abbassi MS, Landolsi RB. 2020. Co-occurrence of mcr-1 mediated colistin resistance and β-lactamase-encoding genes in multidrug-resistant Escherichia coli from broiler chickens with colibacillosis in Tunisia. J Glob Antimicrob Resist 22:538–545. doi:10.1016/j.jgar.2020.03.017 PubMed DOI

European Centre for Disease Prevention and Control . 2019. Expert consensus protocol on colistin resistance detection and characterisation for the survey of carbapenem and/or colistin-resistant Enterobacteriaceae – version 1.0. ECDC, Stockholm.

Pomorska K, Jakubu V, Zelendova M, Dolejska M, Zemličkova H. 2018. Detection of Plasmid-determined Colistin resistance mediated by MCR genes in the Czech Republic. Zprávy Centra epidemiologie a mikrobiologie 27. https://archiv.szu.cz/uploads/documents/CeM/NRLs/atb/publikace/ZCEM_zachyt_mcr.pdf.

Valiakos G, Kapna I. 2021. Colistin resistant mcr genes prevalence in livestock animals (swine, bovine, poultry) from a multinational perspective. a systematic review. Vet Sci 8:265. doi:10.3390/vetsci8110265 PubMed DOI PMC

The European Committee on Antimicrobial Susceptibility Testing . 2021. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0. http://www.eucast.org.

Borowiak M, Hammerl JA, Deneke C, Fischer J, Szabo I, Malorny B. 2019. Characterization of mcr-5-harboring Salmonella enterica Subsp. enterica serovar typhimurium isolates from animal and food origin in Germany. Antimicrob Agents Chemother 63:e00063-19. doi:10.1128/AAC.00063-19 PubMed DOI PMC

Bauer AP, Dieckmann SM, Ludwig W, Schleifer K-H. 2007. Rapid identification of Escherichia coli safety and laboratory strain lineages based on multiplex-PCR. FEMS Microbiol Lett 269:36–40. doi:10.1111/j.1574-6968.2006.00594.x PubMed DOI

Maluta RP, Logue CM, Casas MRT, Meng T, Guastalli EAL, Rojas TCG, Montelli AC, Sadatsune T, de Carvalho Ramos M, Nolan LK, da Silveira WD. 2014. Overlapped sequence types (STs) and serogroups of avian pathogenic (APEC) and human extra-intestinal pathogenic (Expec) Escherichia coli isolated in Brazil. PLoS One 9:e105016. doi:10.1371/journal.pone.0105016 PubMed DOI PMC

Zelendova M, Papagiannitsis CC, Sismova P, Medvecky M, Pomorska K, Palkovicova J, Nesporova K, Jakubu V, Jamborova I, Zemlickova H, Dolejska M, Working Group for Monitoring of Antibiotic Resistance . 2023. Plasmid-mediated colistin resistance among human clinical enterobacterales isolates: national surveillance in the Czech Republic. Front Microbiol 14:1147846. doi:10.3389/fmicb.2023.1147846 PubMed DOI PMC

Whitmer GR, Moorthy G, Arshad M. 2019. The pandemic Escherichia coli sequence type 131 strain is acquired even in the absence of antibiotic exposure. PLoS Pathog 15:e1008162. doi:10.1371/journal.ppat.1008162 PubMed DOI PMC

Hung W-T, Cheng M-F, Tseng F-C, Chen Y-S, Shin-Jung Lee S, Chang T-H, Lin H-H, Hung C-H, Wang J-L. 2019. Bloodstream infection with extended-spectrum beta-lactamase-producing Escherichia coli: the role of virulence genes. J Microbiol Immunol Infect 52:947–955. doi:10.1016/j.jmii.2019.03.005 PubMed DOI

Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. 2021. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 12:765. doi:10.1038/s41467-021-20988-w PubMed DOI PMC

de Oliveira AL, Newman DM, Sato Y, Noel A, Rauk B, Nolan LK, Barbieri NL, Logue CM. 2020. Characterization of avian pathogenic Escherichia coli (APEC) associated with Turkey cellulitis in Iowa. Front Vet Sci 7:380. doi:10.3389/fvets.2020.00380 PubMed DOI PMC

Wang Z, Zheng X, Guo G, Hu Z, Miao J, Dong Y, Xu Z, Zhou Q, Wei X, Han X, Liu Y, Zhang W. 2022. O145 may be emerging as a predominant serogroup of avian pathogenic Escherichia coli (APEC) in China. Vet Microbiol 266:109358. doi:10.1016/j.vetmic.2022.109358 PubMed DOI

Shen C, Zhong L-L, Yang Y, Doi Y, Paterson DL, Stoesser N, Ma F, El-Sayed Ahmed MAE-G, Feng S, Huang S, Li H-Y, Huang X, Wen X, Zhao Z, Lin M, Chen G, Liang W, Liang Y, Xia Y, Dai M, Chen D-Q, Zhang L, Liao K, Tian G-B. 2020. Dynamics of mcr-1 prevalence and mcr-1-positive Escherichia coli after the cessation of colistin use as a feed additive for animals in China: a prospective cross-sectional and whole genome sequencing-based molecular epidemiological study. Lancet Microbe 1:e34–e43. doi:10.1016/S2666-5247(20)30005-7 PubMed DOI

Van Gompel L, Luiken REC, Sarrazin S, Munk P, Knudsen BE, Hansen RB, Bossers A, Aarestrup FM, Dewulf J, Wagenaar JA, Mevius DJ, Schmitt H, Heederik DJJ, Dorado-García A, Smit LAM, EFFORT consortium . 2019. The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. J Antimicrob Chemother 74:865–876. doi:10.1093/jac/dky518 PubMed DOI

Meinersmann RJ, Ladely SR, Plumblee JR, Cook KL, Thacker E. 2017. Prevalence of mcr-1 in the cecal contents of food animals in the United States. Antimicrob Agents Chemother 61:e02244-16. doi:10.1128/AAC.02244-16 PubMed DOI PMC

Irrgang A, Roschanski N, Tenhagen B-A, Grobbel M, Skladnikiewicz-Ziemer T, Thomas K, Roesler U, Käsbohrer A. 2016. Prevalence of mcr-1 in E. coli from livestock and food in Germany, 2010-2015. PLoS One 11:e0159863. doi:10.1371/journal.pone.0159863 PubMed DOI PMC

Kluytmans-van den Bergh MFQ, Rossen JWA, Bruijning-Verhagen PCJ, Bonten MJM, Friedrich AW, Vandenbroucke-Grauls CMJE, Willems RJL, Kluytmans JAJW. 2016. Whole-genome multilocus sequence typing of extended-spectrum-beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol 54:2919–2927. doi:10.1128/JCM.01648-16 PubMed DOI PMC

Gelbíčová T, Baráková A, Florianová M, Jamborová I, Zelendová M, Pospíšilová L, Koláčková I, Karpíšková R. 2019. Dissemination and comparison of genetic determinants of Mcr-mediated colistin resistance in Enterobacteriaceae via retailed raw meat products. Front Microbiol 10:2824. doi:10.3389/fmicb.2019.02824 PubMed DOI PMC

Perrin-Guyomard A, Bruneau M, Houée P, Deleurme K, Legrandois P, Poirier C, Soumet C, Sanders P. 2016. Prevalence of mcr-1 in commensal Escherichia coli from French livestock, 2007 to 2014. Euro Surveill 21. doi:10.2807/1560-7917.ES.2016.21.6.30135 PubMed DOI

Perrin-Guyomard A, Granier SA, Slettemeås JS, Anjum M, Randall L, AbuOun M, Pauly N, Irrgang A, Hammerl JA, Kjeldgaard JS, Hammerum A, Franco A, Skarżyńska M, Kamińska E, Wasyl D, Dierikx C, Börjesson S, Geurts Y, Haenni M, Veldman K. 2022. Multicentre evaluation of a selective isolation protocol for detection of mcr-positive E. coli and Salmonella spp. In food-producing animals and meat. Lett Appl Microbiol 75:224–233. doi:10.1111/lam.13717 PubMed DOI PMC

Lima T, Loureiro D, Henriques A, Ramos F, Pomba C, Domingues S, da Silva GJ. 2022. Occurrence and biological cost of mcr-1-carrying plasmids co-harbouring beta-lactamase resistance genes in zoonotic pathogens from intensive animal production. Antibiotics (Basel) 11:1356. doi:10.3390/antibiotics11101356 PubMed DOI PMC

Dang STT, Truong DTQ, Olsen JE, Tran NT, Truong GTH, Vu HTK, Dalsgaard A. 2020. Research note: occurrence of mcr-encoded colistin resistance in Escherichia coli from pigs and pig farm workers in Vietnam. FEMS Microbes 1:xtaa003. doi:10.1093/femsmc/xtaa003 PubMed DOI PMC

Aerts M, Battisti A, Hendriksen R, Kempf I, Teale C, Tenhagen B-A, Veldman K, Wasyl D, Guerra B, Liébana E, Thomas-López D, Belœil P-A, European Food Safety Authority (EFSA) . 2019. Scientific report on the technical specifications on harmonised monitoring of antimicrobial resistance in zoonotic and indicator bacteria from food-producing animals and food. EFSA J 17:e05709. doi:10.2903/j.efsa.2019.5709 PubMed DOI PMC

Hasman H, Hammerum AM, Hansen F, Hendriksen RS, Olesen B, Agersø Y, Zankari E, Leekitcharoenphon P, Stegger M, Kaas RS, Cavaco LM, Hansen DS, Aarestrup FM, Skov RL. 2015. Detection of mcr-1 encoding plasmid-mediated colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken meat, Denmark 2015. Euro Surveill 20. doi:10.2807/1560-7917.ES.2015.20.49.30085 PubMed DOI

Grami R, Mansour W, Mehri W, Bouallègue O, Boujaâfar N, Madec J-Y, Haenni M. 2016. Impact of food animal trade on the spread of mcr-1-mediated colistin resistance, Tunisia, July 2015. Euro Surveill 21:30144. doi:10.2807/1560-7917.ES.2016.21.8.30144 PubMed DOI

Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. 2019. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrug-resistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio 10:e00853-19. doi:10.1128/mBio.00853-19 PubMed DOI PMC

Schrauwen EJA, Huizinga P, van Spreuwel N, Verhulst C, Kluytmans-van den Bergh MFQ, Kluytmans JAJW. 2017. High prevalence of the mcr-1 gene in retail chicken meat in the Netherlands in 2015. Antimicrob Resist Infect Control 6:83. doi:10.1186/s13756-017-0242-8 PubMed DOI PMC

Shen Y, Xu C, Sun Q, Schwarz S, Ou Y, Yang L, Huang Z, Eichhorn I, Walsh TR, Wang Y, Zhang R, Shen J. 2018. Prevalence and genetic analysis of mcr-3-positive aeromonas species from humans, retail meat, and environmental water samples. Antimicrob Agents Chemother 62:e00404-18. doi:10.1128/AAC.00404-18 PubMed DOI PMC

Tyson GH, Li C, Hsu C-H, Ayers S, Borenstein S, Mukherjee S, Tran T-T, McDermott PF, Zhao S. 2020. The mcr-9 gene of Salmonella and Escherichia coli is not associated with colistin resistance in the United States. Antimicrob Agents Chemother 64:e00573-20. doi:10.1128/AAC.00573-20 PubMed DOI PMC

Hesp A, Veldman K, Brouwer MSM, Wagenaar JA, Mevius D, van Schaik G. 2021. Latent class analysis to assess whole-genome sequencing versus broth microdilution for monitoring antimicrobial resistance in livestock. Prev Vet Med 193:105406. doi:10.1016/j.prevetmed.2021.105406 PubMed DOI

Wyrsch ER, Nesporova K, Tarabai H, Jamborova I, Bitar I, Literak I, Dolejska M, Djordjevic SP. 2022. Urban wildlife crisis: australian silver gull is a bystander host to widespread clinical antibiotic resistance. mSystems 7:e0015822. doi:10.1128/msystems.00158-22 PubMed DOI PMC

VanOeffelen M, Nguyen M, Aytan-Aktug D, Brettin T, Dietrich EM, Kenyon RW, Machi D, Mao C, Olson R, Pusch GD, Shukla M, Stevens R, Vonstein V, Warren AS, Wattam AR, Yoo H, Davis JJ. 2021. A genomic data resource for predicting antimicrobial resistance from laboratory-derived antimicrobial susceptibility phenotypes. Brief Bioinform 22:bbab313. doi:10.1093/bib/bbab313 PubMed DOI PMC

de Carvalho MPN, Fernandes MR, Sellera FP, Lopes R, Monte DF, Hippólito AG, Milanelo L, Raso TF, Lincopan N. 2020. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg Dis 67:1804–1815. doi:10.1111/tbed.13558 PubMed DOI PMC

Fuentes-Castillo D, Navas-Suárez PE, Gondim MF, Esposito F, Sacristán C, Fontana H, Fuga B, Piovani C, Kooij R, Lincopan N, Catão-Dias JL. 2021. Genomic characterization of multidrug-resistant ESBL-producing Escherichia coli ST58 causing fatal colibacillosis in critically endangered Brazilian merganser (Mergus octosetaceus). Transbound Emerg Dis 68:258–266. doi:10.1111/tbed.13686 PubMed DOI PMC

Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. 2019. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin Microbiol Rev 32:e00135-18. doi:10.1128/CMR.00135-18 PubMed DOI PMC

Al-Mir H, Osman M, Drapeau A, Hamze M, Madec J-Y, Haenni M. 2021. WGS analysis of clonal and plasmidic epidemiology of colistin-resistance mediated by mcr genes in the poultry sector in Lebanon. Front Microbiol 12:624194. doi:10.3389/fmicb.2021.624194 PubMed DOI PMC

Elnahriry SS, Khalifa HO, Soliman AM, Ahmed AM, Hussein AM, Shimamoto T, Shimamoto T. 2016. Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrob Agents Chemother 60:3249–3250. doi:10.1128/AAC.00269-16 PubMed DOI PMC

Sellera FP, Cardoso B, Fuentes-Castillo D, Esposito F, Sano E, Fontana H, Fuga B, Goldberg DW, Seabra LAV, Antonelli M, Sandri S, Kolesnikovas CKM, Lincopan N. 2022. Genomic analysis of a highly virulent NDM-1-producing Escherichia coli ST162 infecting a pygmy sperm whale (Kogia breviceps) in South America. Front Microbiol 13:915375. doi:10.3389/fmicb.2022.915375 PubMed DOI PMC

Haenni M, Beyrouthy R, Lupo A, Châtre P, Madec J-Y, Bonnet R. 2018. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J Antimicrob Chemother 73:533–536. doi:10.1093/jac/dkx418 PubMed DOI PMC

Ćwiek K, Woźniak-Biel A, Karwańska M, Siedlecka M, Lammens C, Rebelo AR, Hendriksen RS, Kuczkowski M, Chmielewska-Władyka M, Wieliczko A. 2021. Phenotypic and genotypic characterization of mcr-1-positive multidrug-resistant Escherichia coli ST93, ST117, ST156, ST10, and ST744 isolated from poultry in Poland. Braz J Microbiol 52:1597–1609. doi:10.1007/s42770-021-00538-8 PubMed DOI PMC

Matamoros S, van Hattem JM, Arcilla MS, Willemse N, Melles DC, Penders J, Vinh TN, Thi Hoa N, Bootsma MCJ, van Genderen PJ, Goorhuis A, Grobusch M, Molhoek N, Oude Lashof AML, Stobberingh EE, Verbrugh HA, de Jong MD, Schultsz C. 2017. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci Rep 7:15364. doi:10.1038/s41598-017-15539-7 PubMed DOI PMC

Guenther S, Falgenhauer L, Semmler T, Imirzalioglu C, Chakraborty T, Roesler U, Roschanski N. 2017. Environmental emission of multiresistant Escherichia coli carrying the colistin resistance gene mcr-1 from German swine farms. J Antimicrob Chemother 72:1289–1292. doi:10.1093/jac/dkw585 PubMed DOI

Liang G, Rao Y, Wang S, Chi X, Xu H, Shen Y. 2021. Co-occurrence of NDM-9 and MCR-1 in a human gut colonized Escherichia coli ST1011. Infect Drug Resist 14:3011–3017. doi:10.2147/IDR.S321732 PubMed DOI PMC

Ramadan H, Jackson CR, Frye JG, Hiott LM, Samir M, Awad A, Woodley TA. 2020. Antimicrobial resistance, genetic diversity and multilocus sequence typing of Escherichia coli from humans, retail chicken and ground beef in Egypt. Pathogens 9:357. doi:10.3390/pathogens9050357 PubMed DOI PMC

Randall LP, Horton RA, Lemma F, Martelli F, Duggett NAD, Smith RP, Kirchner MJ, Ellis RJ, Rogers JP, Williamson SM, Simons RRL, Brena CM, Evans SJ, Anjum MF, Teale CJ. 2018. Longitudinal study on the occurrence in pigs of colistin-resistant Escherichia coli carrying mcr-1 following the cessation of use of colistin. J Appl Microbiol 125:596–608. doi:10.1111/jam.13907 PubMed DOI

Nesporova K, Valcek A, Papagiannitsis C, Kutilova I, Jamborova I, Davidova-Gerzova L, Bitar I, Hrabak J, Literak I, Dolejska M. 2021. Multi-drug resistant plasmids with ESBL/Ampc and mcr-5.1 in paraguayan poultry farms: the linkage of antibiotic resistance and hatcheries. Microorganisms 9:866. doi:10.3390/microorganisms9040866 PubMed DOI PMC

Bonnet R, Beyrouthy R, Haenni M, Nicolas-Chanoine M-H, Dalmasso G, Madec J-Y. 2021. Host colonization as a major evolutionary force favoring the diversity and the emergence of the worldwide multidrug-resistant Escherichia coli ST131. mBio 12:e0145121. doi:10.1128/mBio.01451-21 PubMed DOI PMC

Gregova G, Kmet V. 2020. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci Rep 10:17108. doi:10.1038/s41598-020-72851-5 PubMed DOI PMC

Kathayat D, Lokesh D, Ranjit S, Rajashekara G. 2021. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies. Pathogens 10:467. doi:10.3390/pathogens10040467 PubMed DOI PMC

de Oliveira AL, Rocha DA, Finkler F, de Moraes LB, Barbieri NL, Pavanelo DB, Winkler C, Grassotti TT, de Brito KCT, de Brito BG, Horn F. 2015. Prevalence of ColV plasmid-linked genes and in vivo pathogenicity of avian strains of Escherichia coli. Foodborne Pathog Dis 12:679–685. doi:10.1089/fpd.2014.1934 PubMed DOI

Reid CJ, Cummins ML, Börjesson S, Brouwer MSM, Hasman H, Hammerum AM, Roer L, Hess S, Berendonk T, Nešporová K, Haenni M, Madec JY, Bethe A, Michael GB, Schink AK, Schwarz S, Dolejska M, Djordjevic SP. 2022. A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58. Nat Commun 13:683. doi:10.1038/s41467-022-28342-4 PubMed DOI PMC

Cao L, Li X, Xu Y, Shen J. 2018. Prevalence and molecular characteristics of mcr-1 colistin resistance in Escherichia coli: isolates of clinical infection from a Chinese university hospital. Infect Drug Resist 11:1597–1603. doi:10.2147/IDR.S166726 PubMed DOI PMC

Boueroy P, Wongsurawat T, Jenjaroenpun P, Chopjitt P, Hatrongjit R, Jittapalapong S, Kerdsin A. 2022. Plasmidome in mcr-1 harboring carbapenem-resistant enterobacterales isolates from human in Thailand. Sci Rep 12:19051. doi:10.1038/s41598-022-21836-7 PubMed DOI PMC

Zurfluh K, Nüesch-Inderbinen M, Klumpp J, Poirel L, Nordmann P, Stephan R. 2017. Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food. Antimicrob Resist Infect Control 6:91. doi:10.1186/s13756-017-0250-8 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

VIM-1-producing Enterobacter asburiae with mobile colistin resistance genes from wastewaters

. 2024 Sep 17 ; 25 (1) : 870. [epub] 20240917

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...