A role for ColV plasmids in the evolution of pathogenic Escherichia coli ST58
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35115531
PubMed Central
PMC8813906
DOI
10.1038/s41467-022-28342-4
PII: 10.1038/s41467-022-28342-4
Knihovny.cz E-zdroje
- MeSH
- antibiotická rezistence genetika MeSH
- drůbež MeSH
- druhová specificita MeSH
- Escherichia coli klasifikace genetika patogenita MeSH
- faktory virulence genetika MeSH
- fylogeneze MeSH
- genom bakteriální genetika MeSH
- genomika metody MeSH
- genomové ostrovy genetika MeSH
- hostitelská specificita MeSH
- infekce vyvolané Escherichia coli diagnóza mikrobiologie veterinární MeSH
- lidé MeSH
- molekulární evoluce * MeSH
- plazmidy genetika MeSH
- prasata MeSH
- skot MeSH
- virulence genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktory virulence MeSH
Escherichia coli ST58 has recently emerged as a globally disseminated uropathogen that often progresses to sepsis. Unlike most pandemic extra-intestinal pathogenic E. coli (ExPEC), which belong to pathogenic phylogroup B2, ST58 belongs to the environmental/commensal phylogroup B1. Here, we present a pan-genomic analysis of a global collection of 752 ST58 isolates from diverse sources. We identify a large ST58 sub-lineage characterized by near ubiquitous carriage of ColV plasmids, which carry genes encoding virulence factors, and by a distinct accessory genome including genes typical of the Yersiniabactin High Pathogenicity Island. This sub-lineage includes three-quarters of all ExPEC sequences in our study and has a broad host range, although poultry and porcine sources predominate. By contrast, strains isolated from cattle often lack ColV plasmids. Our data indicate that ColV plasmid acquisition contributed to the divergence of the major ST58 sub-lineage, and different sub-lineages inhabit poultry, swine and cattle.
Biomedical Center Charles University Charles Czech Republic
CEITEC VETUNI University of Veterinary Sciences Brno Brno Czech Republic
Department of Bacteria Parasites and Fungi Statens Serum Institut Copenhagen S Denmark
Department of Microbiology Public Health Agency of Sweden 17182 Solna Sweden
Institute of Hydrobiology Technische Universität Dresden Dresden Germany
Institute of Microbiology Technische Universität Dresden Dresden Germany
iThree Institute University of Technology Sydney Ultimo NSW 2007 Australia
Université de Lyon ANSES Unité Antibiorésistance et Virulence Bactériennes Lyon France
Veterinary Centre for Resistance Research Freie Universität Berlin 14163 Berlin Germany
Zobrazit více v PubMed
Foxman B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010;7:653–660. PubMed
Manges AR, et al. Global extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Clin. Microbiol. Rev. 2019;32:1–25. PubMed PMC
Royer G, et al. Phylogroup stability contrasts with high within sequence type complex dynamics of Escherichia coli bloodstream infection isolates over a 12-year period. Genome Med. 2021;13:77. PubMed PMC
McKinnon J, Roy Chowdhury P, Djordjevic SP. Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int. J. Antimicrob. Agents. 2018;52:430–435. PubMed
Roer L, et al. WGS-based surveillance of third-generation cephalosporin-resistant Escherichia coli from bloodstream infections in Denmark. J. Antimicrob. Chemother. 2017;72:1922–1929. PubMed
Flament-Simon S-C, et al. High prevalence of ST131 subclades C2-H30Rx and C1-M27 among extended-spectrum β-lactamase-producing Escherichia coli causing human extraintestinal infections in patients from two hospitals of Spain and France during 2015. Front. Cell Infect. Microbiol. 2020;10:125. PubMed PMC
Mamani R, et al. Sequence types, clonotypes, serotypes, and virotypes of extended-spectrum β-lactamase-producing Escherichia coli causing bacteraemia in a Spanish hospital over a 12-year period (2000 to 2011) Front. Microbiol. 2019;10:1530. PubMed PMC
Pietsch M, et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genomics. 2018;19:601. PubMed PMC
Day MJ, et al. Population structure of Escherichia coli causing bacteraemia in the UK and Ireland between 2001 and 2010. J. Antimicrob. Chemother. 2016;71:2139–2142. PubMed PMC
Wang S, et al. Antimicrobial resistance and molecular epidemiology of Escherichia coli causing bloodstream infections in three hospitals in Shanghai, China. PLoS ONE. 2016;11:e0147740. PubMed PMC
Irenge LM, et al. Whole-genome sequences of multidrug-resistant Escherichia coli in South-Kivu Province, Democratic Republic of Congo: characterization of phylogenomic changes, virulence and resistance genes. BMC Infect. Dis. 2019;19:137. PubMed PMC
Paramita RI, et al. Genome-based characterization of Escherichia coli causing bloodstream infection through next-generation sequencing. PLoS ONE. 2020;15:e0244358. PubMed PMC
Dahmen S, Métayer V, Gay E, Madec J-Y, Haenni M. Characterization of extended-spectrum beta-lactamase (ESBL)-carrying plasmids and clones of Enterobacteriaceae causing cattle mastitis in France. Vet. Microbiol. 2013;162:793–799. PubMed
Nüesch-Inderbinen M, et al. Molecular types, virulence profiles and antimicrobial resistance of Escherichia coli causing bovine mastitis. Vet. Rec. Open. 2019;6:e000369. PubMed PMC
Ali A, Ali Q, Ali R, Mohsin M. Draft genome sequence of an extended-spectrum β-lactamase-producing Escherichia coli ST58 isolate from cattle in Pakistan. J. Glob. Antimicrob. Resist. 2020;21:303–305. PubMed
Borges CA, Tarlton NJ, Riley LW. Escherichia coli from commercial broiler and backyard chickens share sequence types, antimicrobial resistance profiles, and resistance genes with human extraintestinal pathogenic Escherichia coli. Foodborne Pathog. Dis. 2019;16:813–822. PubMed
Maamar E, et al. High prevalence of extended-spectrum and plasmidic AmpC beta-lactamase-producing Escherichia coli from poultry in Tunisia. Int. J. Food Microbiol. 2016;231:69–75. PubMed
Chah KF, et al. Detection and molecular characterisation of extended-spectrum β-lactamase-producing enteric bacteria from pigs and chickens in Nsukka, Nigeria. J. Glob. Antimicrob. Resist. 2018;15:36–40. PubMed
Song J, Oh S-S, Kim J, Park S, Shin J. Clinically relevant extended-spectrum β-lactamase-producing Escherichia coli isolates from food animals in South Korea. Front. Microbiol. 2020;11:604. PubMed PMC
Ahmed S, Olsen JE, Herrero-Fresno A. The genetic diversity of commensal Escherichia coli strains isolated from non-antimicrobial treated pigs varies according to age group. PLoS ONE. 2017;12:e0178623. PubMed PMC
Blaak H, et al. Detection of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli on flies at poultry farms. Appl. Environ. Microbiol. 2014;80:239–246. PubMed PMC
Vignaroli C, et al. Multidrug-resistant and epidemic clones of Escherichia coli from natural beds of Venus clam. Food Microbiol. 2016;59:1–6. PubMed
Cortés-Cortés G, et al. Detection and molecular characterization of Escherichia coli strains producers of extended-spectrum and CMY-2 type beta-lactamases, isolated from Turtles in Mexico. Vector Borne Zoonotic Dis. 2016;16:595–603. PubMed
Furlan, J. P. R., Lopes, R., Gonzalez, I. H. L., Ramos, P. L. & Stehling, E. G. Comparative analysis of multidrug resistance plasmids and genetic background of CTX-M-producing Escherichia coli recovered from captive wild animals. Appl. Microbiol. Biotechnol. 10.1007/s00253-020-10670-4 (2020). PubMed
Fuentes-Castillo D, et al. Genomic characterization of multidrug-resistant ESBL-producing Escherichia coli ST58 causing fatal colibacillosis in critically endangered Brazilian merganser (Mergus octosetaceus) Transbound. Emerg. Dis. 2021;68:258–266. PubMed PMC
Mattioni Marchetti V, et al. Deadly puppy infection caused by an MDR Escherichia coli O39 blaCTX-M-15, blaCMY-2, blaDHA-1, and aac(6)-Ib-cr - positive in a breeding Kennel in Central Italy. Front. Microbiol. 2020;11:584. PubMed PMC
de Carvalho, M. P. N. et al. International clones of extended-spectrum β-lactamase (CTX-M)-producing Escherichia coli in peri-urban wild animals, Brazil. Transbound Emerg. Dis. 10.1111/tbed.13558 (2020). PubMed PMC
Batalha de Jesus AA, et al. High-level multidrug-resistant Escherichia coli isolates from wild birds in a large urban environment. Microb. Drug Resist. 2019;25:167–172. PubMed
Wyrsch ER, et al. Whole-genome sequence analysis of environmental Escherichia coli from the faeces of straw-necked ibis (Threskiornis spinicollis) nesting on inland wetlands. Microb. Genom. 2020;6:1–16. PubMed PMC
Wyrsch, E. R., Chowdhury, P. R., Jarocki, V. M., Brandis, K. J. & Djordjevic, S. P. Duplication and diversification of a unique chromosomal virulence island hosting the subtilase cytotoxin in Escherichia coli ST58. Microb. Genom. 6, (2020). PubMed PMC
Zurfluh K, et al. Antimicrobial resistant and extended-spectrum β-lactamase producing Escherichia coli in common wild bird species in Switzerland. Microbiologyopen. 2019;8:e845. PubMed PMC
Jamborova I, et al. Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl. Environ. Microbiol. 2015;81:648–657. PubMed PMC
Skurnik D, et al. Emergence of antimicrobial-resistant Escherichia coli of animal origin spreading in humans. Mol. Biol. Evol. 2016;33:898–914. PubMed PMC
Zurfluh K, et al. Key features of mcr-1-bearing plasmids from Escherichia coli isolated from humans and food. Antimicrob. Resist. Infect. Control. 2017;6:91. PubMed PMC
Ben Said L, et al. Detection of extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in vegetables, soil and water of the farm environment in Tunisia. Int. J. Food Microbiol. 2015;203:86–92. PubMed
Nüesch-Inderbinen M, Treier A, Zurfluh K, Stephan R. Raw meat-based diets for companion animals: a potential source of transmission of pathogenic and antimicrobial-resistant Enterobacteriaceae. R. Soc. Open Sci. 2019;6:191170. PubMed PMC
Reid CJ, Blau K, Jechalke S, Smalla K, Djordjevic SP. Whole genome sequencing of Escherichia coli from store-bought produce. Front. Microbiol. 2019;10:3050. PubMed PMC
Ferjani S, et al. Community fecal carriage of broad-spectrum cephalosporin-resistant Escherichia coli in Tunisian children. Diagn. Microbiol. Infect. Dis. 2017;87:188–192. PubMed
Ben Sallem R, et al. IncI1 plasmids carrying bla(CTX-M-1) or bla(CMY-2) genes in Escherichia coli from healthy humans and animals in Tunisia. Microb. Drug Resist. 2014;20:495–500. PubMed
Sütterlin S, et al. Silver resistance genes are overrepresented among Escherichia coli isolates with CTX-M production. Appl. Environ. Microbiol. 2014;80:6863–6869. PubMed PMC
Teunis PFM, et al. Time to acquire and lose carriership of ESBL/pAmpC producing E. coli in humans in the Netherlands. PLoS ONE. 2018;13:e0193834. PubMed PMC
Chen P-A, et al. Characteristics of CTX-M extended-spectrum β-lactamase-producing Escherichia coli strains isolated from multiple rivers in Southern Taiwan. Appl. Environ. Microbiol. 2016;82:1889–1897. PubMed PMC
Sacramento AG, et al. Genomic analysis of MCR-1 and CTX-M-8 co-producing Escherichia coli ST58 isolated from a polluted mangrove ecosystem in Brazil. J. Glob. Antimicrob. Resist. 2018;15:288–289. PubMed
Ben Said L, et al. Characteristics of extended-spectrum β-lactamase (ESBL)- and pAmpC beta-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Sci. Total Environ. 2016;550:1103–1109. PubMed
Denamur, E., Clermont, O., Bonacorsi, S. & Gordon, D. The population genetics of pathogenic Escherichia coli. Nat. Rev. Microbiol.10.1038/s41579-020-0416-x (2020). PubMed
Galardini M, et al. Major role of iron uptake systems in the intrinsic extra-intestinal virulence of the genus Escherichia revealed by a genome-wide association study. PLoS Genet. 2020;16:e1009065. PubMed PMC
Manges AR. Escherichia coli causing bloodstream and other extraintestinal infections: tracking the next pandemic. Lancet Infect. Dis. 2019;19:1269–1270. PubMed
Moran RA, Hall RM. Evolution of regions containing antibiotic resistance genes in FII-2-FIB-1 ColV-Colla virulence plasmids. Microb. Drug Resist. 2018;24:411–421. PubMed
Johnson TJ. Role of plasmids in the ecology and evolution of “High-Risk” extraintestinal pathogenic Escherichia coli clones. Ecosal Plus. 2021;9:1–17. PubMed PMC
Johnson TJ, et al. Horizontal gene transfer of a ColV plasmid has resulted in a dominant avian clonal type of Salmonella enterica serovar Kentucky. PLoS ONE. 2010;5:e15524. PubMed PMC
Skyberg JA, et al. Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect. Immun. 2006;74:6287–6292. PubMed PMC
Xu W-Y, Li Y-J, Fan C. Different loci and mRNA copy number of the increased serum survival gene of Escherichia coli. Can. J. Microbiol. 2018;64:147–154. PubMed
Lemaître C, et al. A conserved virulence plasmidic region contributes to the virulence of the multiresistant Escherichia coli meningitis strain S286 belonging to phylogenetic group C. PLoS ONE. 2013;8:e74423. PubMed PMC
Cummins ML, et al. Whole genome sequence analysis of Australian avian pathogenic Escherichia coli that carry the class 1 integrase gene. Microb. Genom. 2019;5:1–13. PubMed PMC
Clermont O, et al. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 2019;21:3107–3117. PubMed
Dunn SJ, Connor C, McNally A. The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: the complexity of clones and plasmids. Curr. Opin. Microbiol. 2019;51:51–56. PubMed
Tyson GH, et al. WGS accurately predicts antimicrobial resistance in Escherichia coli. J. Antimicrob. Chemother. 2015;70:2763–2769. PubMed PMC
Feldgarden, M. et al. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 63, (2019). PubMed PMC
Cummins, M. L., Reid, C. J. & Djordjevic, S. P. F Plasmid Lineages in Escherichia coli ST95: Implications for Host Range, Antibiotic Resistance, and Zoonoses. mSystems. 10.1128/msystems.01212-21, e0121221 (2022) Epub ahead of print. PubMed PMC
Koraimann, G. Spread and persistence of virulence and antibiotic resistance genes: a ride on the F plasmid conjugation module. Ecosal Plus8, 1–23 (2018). PubMed PMC
Aguero ME, de la Fuente G, Vivaldi E, Cabello F. ColV increases the virulence of Escherichia coli K1 strains in animal models of neonatal meningitis and urinary infection. Med. Microbiol. Immunol. 1989;178:211–216. PubMed
Johnson JR. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 1991;4:80–128. PubMed PMC
Smith HW, Huggins MB. Further observations on the association of the colicine V plasmid of Escherichia coli with pathogenicity and with survival in the alimentary tract. J. Gen. Microbiol. 1976;92:335–350. PubMed
Nowrouzian F, Adlerberth I, Wold AE. P fimbriae, capsule and aerobactin characterize colonic resident Escherichia coli. Epidemiol. Infect. 2001;126:11–18. PubMed PMC
Nowrouzian F, Wold AE, Adlerberth I. P fimbriae and aerobactin as intestinal colonization factors for Escherichia coli in Pakistani infants. Epidemiol. Infect. 2001;126:19–23. PubMed PMC
Searle LJ, Méric G, Porcelli I, Sheppard SK, Lucchini S. Variation in siderophore biosynthetic gene distribution and production across environmental and faecal populations of Escherichia coli. PLoS ONE. 2015;10:e0117906. PubMed PMC
Dawes FE, et al. Distribution of class 1 integrons with IS26-mediated deletions in their 3′-conserved segments in Escherichia coli of human and animal origin. PLoS ONE. 2010;5:e12754. PubMed PMC
Harmer CJ, Moran RA, Hall RM. Movement of IS26-associated antibiotic resistance genes occurs via a translocatable unit that includes a single IS26 and preferentially inserts adjacent to another IS26. MBio. 2014;5:e01801–e01814. PubMed PMC
Harmer, C. J. & Hall, R. M. IS26-mediated formation of transposons carrying antibiotic resistance genes. mSphere1, 1–8 (2016). PubMed PMC
Partridge SR, Zong Z, Iredell JR. Recombination in IS26 and Tn2 in the evolution of multiresistance regions carrying blaCTX-M-15 on conjugative IncF plasmids from Escherichia coli. Antimicrob. Agents Chemother. 2011;55:4971–4978. PubMed PMC
Moran RA, Anantham S, Pinyon JL, Hall RM. Plasmids in antibiotic susceptible and antibiotic resistant commensal Escherichia coli from healthy Australian adults. Plasmid. 2015;80:24–31. PubMed
Moran RA, Holt KE, Hall RM. pCERC3 from a commensal ST95 Escherichia coli: a ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid. 2016;84–85:11–19. PubMed
Hayer, S. S. et al. Genetic determinants of resistance to extended-spectrum cephalosporin and fluoroquinolone in Escherichia coli isolated from diseased pigs in the United States. mSphere5, 1–24 (2020). PubMed PMC
Lopes R, Furlan JPR, Dos Santos LDR, Gallo IFL, Stehling EG. Colistin-resistant mcr-1-positive Escherichia coli ST131-H22 carrying blaCTX-M-15 and qnrB19 in agricultural soil. Front. Microbiol. 2021;12:659900. PubMed PMC
Liu CM, et al. Escherichia coli ST131-H22 as a Foodborne Uropathogen. MBio. 2018;9:1–11. PubMed PMC
Reid, C. J., McKinnon, J. & Djordjevic, S. P. Clonal ST131-H22 Escherichia coli strains from a healthy pig and a human urinary tract infection carry highly similar resistance and virulence plasmids. Microb. Genom. 5, 1–12 (2019). PubMed PMC
Flament-Simon S-C, et al. Whole genome sequencing and characteristics of mcr-1-harboring plasmids of porcine Escherichia coli isolates belonging to the high-risk clone O25b:H4-ST131 clade B. Front. Microbiol. 2020;11:387. PubMed PMC
Matsui Y, et al. Multilocus sequence typing of Escherichia coli isolates from urinary tract infection patients and from fecal samples of healthy subjects in a college community. Microbiologyopen. 2020;9:1225–1233. PubMed PMC
Thänert R, et al. Comparative genomics of antibiotic-resistant uropathogens implicates three routes for recurrence of urinary tract infections. MBio. 2019;10:1–16. PubMed PMC
Niehus R, Mitri S, Fletcher AG, Foster KR. Migration and horizontal gene transfer divide microbial genomes into multiple niches. Nat. Commun. 2015;6:8924. PubMed PMC
Touchon M, et al. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. 2020;16:e1008866. PubMed PMC
Shaw, L. P. et al. Niche and local geography shape the pangenome of wastewater- and livestock-associated Enterobacteriaceae. BioRxiv10.1101/2020.07.23.215756 (2020). PubMed PMC
Matlock, W. et al. Genomic network analysis of environmental and livestock F-type plasmid populations. ISME J.10.1038/s41396-021-00926-w (2021) PubMed PMC
Milkman R, Jaeger E, McBride RD. Molecular evolution of the Escherichia coli chromosome. VI. Two regions of high effective recombination. Genetics. 2003;163:475–483. PubMed PMC
Sokurenko EV, et al. Selection footprint in the FimH adhesin shows pathoadaptive niche differentiation in Escherichia coli. Mol. Biol. Evol. 2004;21:1373–1383. PubMed
McNally A, et al. Combined analysis of variation in core, accessory and regulatory genome regions provides a super-resolution view into the evolution of bacterial populations. PLoS Genet. 2016;12:e1006280. PubMed PMC
Page AJ, et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. PubMed PMC
Tonkin-Hill G, Lees JA, Bentley SD, Frost SDW, Corander J. Fast hierarchical Bayesian analysis of population structure. Nucleic Acids Res. 2019;47:5539–5549. PubMed PMC
Hunt M, et al. ARIBA: rapid antimicrobial resistance genotyping directly from sequencing reads. Microb. Genom. 2017;3:e000131. PubMed PMC
Zankari E, et al. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012;67:2640–2644. PubMed PMC
Joensen KG, et al. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014;52:1501–1510. PubMed PMC
Carattoli A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014;58:3895–3903. PubMed PMC
Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 2015;53:2410–2426. PubMed PMC
Reid, C. J., DeMaere, M. Z. & Djordjevic, S. P. Australian porcine clonal complex 10 (CC10) Escherichia coli belong to multiple sublineages of a highly diverse global CC10 phylogeny. Microb. Genom. 5, 1–10 (2018). PubMed PMC
Zankari E, et al. PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017;72:2764–2768. PubMed PMC
Global Map of Specialized Metabolites Encoded in Prokaryotic Plasmids
Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli