Deadly Puppy Infection Caused by an MDR Escherichia coli O39 bla CTX-M-15, bla CMY-2, bla DHA-1, and aac(6)-Ib-cr - Positive in a Breeding Kennel in Central Italy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32351465
PubMed Central
PMC7174561
DOI
10.3389/fmicb.2020.00584
Knihovny.cz E-zdroje
- Klíčová slova
- CMY-2, CTX-M-15, DHA-1, E. coli, plasmids, whole genome sequencing,
- Publikační typ
- časopisecké články MeSH
Antimicrobial consumption in veterinary medicine has led to the spread of multi drug-resistance in clinically important bacteria, with the companion animals and their environment involved as emerging reservoirs. While CTX-M-15 and CMY-2 acquired β-lactamases have been widely detected in the bacterial population of companion and breeding animals in European area, DHA-1 enzymes have been rarely reported in veterinary medicine. The aim of the study was to characterize the Escherichia coli associated with mortality of a litter of Bulldog puppies in a breeding kennel located in Pesaro area, Central Italy. The E. coli strains O39 serotype were resistant to 3rd/4th generation cephalosporins, chloramphenicol, aminoglycosides, trimethoprim-sulfamethoxazole, and ciprofloxacin, retaining susceptibility to carbapenems, colistin, fosfomycin, and levofloxacin (by Microscan Autoscan4, EUCAST clinical breakpoints). Pulse field gel electrophoreses (PFGE-XbaI) on five E. coli strains revealed the presence of a single profile. Whole genome sequencing (WGS) analysis revealed a complex resistome, harboring bla TEM-1b, bla CTX-M-15, bla OXA-1, aph(6)-Ib, aac(6')Ib-cr, aac(3)-Ila, aph(6)-Id, aadA1, qnrB1, sul2, catA1, catB3, tetA, and dfrA14 genes located on a 302597 bp IncHI2/HI2A plasmid. Moreover, bla DHA-1, qnrB4, mph(A), sul1, and dfrA17 determinants were carried on an 83,429 bp IncFII plasmid. A bla CMY-2 determinant was carried on a 90,249 bp IncI1 plasmid. Two IncX1 and IncX4 plasmids without antimicrobial resistance genes were also detected. The presence of lpfA, iss, astA, and gad virulence factors was highlighted. This is the first report in Italy on an invasive infection in eight 2-weeks old dogs caused by the same MDR E. coli O39 bla CTX-M-15, bla CMY-2, bla DHA-1, and aac(6')-Ib-cr positive strain. The above MDR E. coli clone caused the death of the entire litter, despite amoxicillin-clavulanate and enrofloxacin administration. The tank for storage of the water used to prepare the milk-based meal for the litter was the suspected reservoir.
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Department of Microbiology Faculty of Medicine in Pilsen Charles University Pilsen Czechia
Zobrazit více v PubMed
Barton B. M., Gordon P. H., Anthony J. Z. (1995). A general method for detecting and sizing large plasmids. Anal. Biochem. 226 235–240. 10.1006/abio.1995.1220 PubMed DOI
Belas A., Salazar A. S., Gama L. T., Couto N., Pomba C. (2014). Risk factors for faecal colonisation with Escherichia coli producing extended-spectrum and plasmid-mediated AmpC β-lactamases in dogs. Vet. Rec. 30 175, 202. 10.1136/vr.101978 PubMed DOI
Bitar I., Caltagirone M., Villa L., Marchetti V. M., Nucleo E., Sarti M., et al. (2019a). Interplay among IncA and blaKPC-Carrying Plasmids in Citrobacter freundii. Antimicrob. Agents Chemother. 63 e2609–e2618. PubMed PMC
Bitar I., Matej M., Tereza G., Vladislav J., Jaroslav H., Helena Z., et al. (2019b). Complete nucleotide sequences of mcr-4.3-carrying plasmids in Acinetobacter baumannii sequence type 345 of human and food origin from the czech republic, the first case in Europe. Antimicrob. Agents Chemother. 63:e01166-19. PubMed PMC
Blanco J., Rosalia M., Saskia C. F. S., Vanesa G., Azucena M. G., María P. A., et al. (2019). Sequence types, clonotypes, serotypes and virotypes of extended-spectrum β-lactamase-producing Escherichia coli causing bacteraemia in a Spanish hospital over a 12-year period (2000 to 2011). Front. Microbiol. 10:1530 10.3389/fmicb.2019.01530 PubMed DOI PMC
Bogaerts P., Cuzon G., Evrard S., Hoebeke M., Naas T., Glupczynski Y. (2016). Evaluation of a DNA microarray for rapid detection of the most prevalent extended-spectrum β-lactamases, plasmid-mediated cephalosporinases and carbapenemases in Enterobacteriaceae, Pseudomonas and Acinetobacter. Int. J. Antimicrob. Agents 48 189–193. 10.1016/j.ijantimicag.2016.05.006 PubMed DOI
Brettin T., James J. D., Terry D., Robert A. E., Svetlana G., Gary J. O., et al. (2015). RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 5:8365. PubMed PMC
Caltagirone M., Nucleo E., Spalla M., Zara F., Novazzi F., Marchetti V. M., et al. (2017). Occurrence of extended spectrum β-Lactamases, KPC-type, and MCR-1.2-producing enterobacteriaceae from wells, river water, and wastewater treatment plants in oltrepò pavese area, Northern Italy. Front. Microbiol. 10:2232 10.3389/fmicb.2017.02232 PubMed DOI PMC
Camacho C., George C., Vahram A., Ning M., Jason P., Kevin B., et al. (2009). BLAST+: architecture and applications. BMC Bioinforma. 10:421. 10.1186/1471-2105-10-421 PubMed DOI PMC
Carattoli A., Ea Z., Aurora G. F., Mette V. L., Ole L., Laura V., et al. (2014). In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58 3895–3903. 10.1128/aac.02412-14 PubMed DOI PMC
Chen P. A., Chih-Hsin H., Huang P. C., Chen J. R., Huang I. F., Chen W. L., et al. (2016). Characteristics of CTX-M extended-spectrum β-lactamase-producing Escherichia coli strains isolated from multiple rivers in Southern Taiwan. Appl. Environ. Microbiol. 82 1889–1897. 10.1128/aem.03222-15 PubMed DOI PMC
Chirila F., Tabaran A., Fit N., Nadas G., Mihaiu M., Tabaran F., et al. (2017). Concerning increase in antimicrobial resistance in shiga toxin-producing Escherichia coli isolated from young animals during 1980-2016. Microbes Environ. 27 252–259. 10.1264/jsme2.me17023 PubMed DOI PMC
Constantiniu S. (2002). Escherichia coli enterohemoragic–an emerged pathogen of human infections Part II. Non-o157 Escherichia coli enterohemorrhagic. J. Prev. Med. 10 57–73.
Dolejska M., Papagiannitsis C. C. (2018). Plasmid-mediated resistance is going wild. Plasmid 99 99–111. 10.1016/j.plasmid.2018.09.010 PubMed DOI
Ewing W. H. (1986). “The genus Escherichia,” in Edwards and Ewing’s Identification of Enterobacteriaceae,4th Edn ed Ewing EH. (New York, NY: Elsevier; ), 93–134.
Findlay J., Gould V. C., North P., Bowker K. E., Williams M. O., MacGowan A. P., et al. (2019). Characterization of cefotaxime-resistant urinary Escherichia coli from primary care in South-West England 2017–18. J. Antimicrob. Chemother. 75 65–71. PubMed
Guardabassi L., Schwarz S., Lloyd D. H. (2004). Pet animals as reservoirs of antimicrobial-resistant bacteria. J. Antimicrob. Chemother. 54 321–332. 10.1093/jac/dkh332 PubMed DOI
Harada K., Morimoto E., Kataoka Y., Takahashi T. (2011). Clonal spread of antimicrobial-resistant Escherichia coli isolates among pups in two kennels. Acta Vet. Scand. 17:11. PubMed PMC
Hidalgo L., Gutierrez B., Ovejero C. M., Carrilero L., Matrat S., Saba C. K., et al. (2013). Klebsiella pneumoniae sequence type 11 from companion animals bearing ArmA methyltransferase, DHA-1 β- lactamase, and QnrB4. Antimicrob. Agents Chemother. 57 4532–4534. 10.1128/aac.00491-13 PubMed DOI PMC
Joensen K. G., Flemming S., Ole L., Henrik H., Rolf S. K., Eva M. N., et al. (2014). “Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52 1501–1510. 10.1128/jcm.03617-13 PubMed DOI PMC
Jones-Dias D., Manageiro V., Graça R., Sampaio D. A., Albuquerque T., Themudo P., et al. (2016). QnrS1- and Aac(6’)-Ib-cr-Producing Escherichia coli among isolates from animals of different sources: susceptibility and genomic characterization. Front. Microbiol. 23:671 10.3389/fmicb.2016.00671 PubMed DOI PMC
Kariuki S., Melita A. G., Nicholas F., Christopher M. P. (2015). Antimicrobial resistance and management of invasive Salmonella disease. Vaccine 33 C21–C29. PubMed PMC
King C., Smith M., Currie K., Dickson A., Smith F., Davis M., et al. (2018). Exploring the behavioural drivers of veterinary surgeon antibiotic prescribing: a qualitative study of companion animal veterinary surgeons in the UK. BMC Vet. Res. 14:332. 10.1186/s12917-018-1646-2 PubMed DOI PMC
Larsen M. V., Salvatore C., Simon R., Carsten F., Henrik H., Rasmus L. M., et al. (2012). Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50 1355–1361. 10.1128/jcm.06094-11 PubMed DOI PMC
Liu X., Liu H., Li Y., Hao C. (2016). High prevalence of β-lactamase, and plasmid- mediated quinolone resistance genes in extended-spectrum cephalosporin-resistant Escherichia coli from dogs in shaanxi. China. Front Microbiol. 16:1843 10.3389/fmicb.2016.01843 PubMed DOI PMC
Liu X., Liu Y. (2016). Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli. Biomed. Rep. 4 687–690. 10.3892/br.2016.661 PubMed DOI PMC
Madec J. Y., Haenni M., Nordmann P., Poirel L. (2017). Extended-spectrum β-lactamase/AmpC-and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin. Microbiol. Infect. 23 826–833. 10.1016/j.cmi.2017.01.013 PubMed DOI
Manaia C. M., Macedo G., Fatta-Kassinos D., Nunes O. C. (2016). Antibiotic resistance in urban aquatic environments: can it be controlled? Appl. Microbiol. Biotechnol. 100 1543–1557. 10.1007/s00253-015-7202-0 PubMed DOI
Marshall B. M., Levy S. B. (2011). Food animals and antimicrobials: impacts on human health. Clin. Microbiol. Rev. 24 718–733. 10.1128/cmr.00002-11 PubMed DOI PMC
Mavrodi D. V., Loper J. E., Paulsen I. T., Thomashow L. S. (2009). Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol. 9:8. 10.1186/1471-2180-9-8 PubMed DOI PMC
McKinnon J., Chowdhury P. R., Djordjevic S. P. (2018). Genomic analysis of multidrug-resistant Escherichia coli ST58 causing urosepsis. Int. J. Antimicrob. Agents 52 430–435. 10.1016/j.ijantimicag.2018.06.017 PubMed DOI
Michael G. B. L., Freitag C., Wendlandt S., Eidam C., Feßler A. T., Lopes G. V., et al. (2015). Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol. 10 427–443. 10.2217/fmb.14.93 PubMed DOI
Mohsin M., Raza S., Schaufler K., Roschanski N., Sarwar F., Semmler T., et al. (2017). High prevalence of CTX-M-15-Type ESBL-producing E. coli from migratory avian species in Pakistan. Front. Microbiol. 8:2476 10.3389/fmicb.2017.02476 PubMed DOI PMC
Pagani L., Dell’Amico E., Migliavacca R., D’Andrea M. M., Giacobone E., Amicosante G., et al. (2003). Multiple CTX-M-type extended-spectrum β-lactamases in nosocomial isolates of Enterobacteriaceae from a hospital in northern Italy. J. Clin. Microbiol. 41 4264–4269. PubMed PMC
Pehlivanlar Ö., Aslantaş Ö., Şebnem Y. E., Kürekci C. (2015). Prevalence of β-Lactamase producing Escherichia coli from retail meat in Turkey. J. Food Sci. 80 M2023–M2029. PubMed
Peymani A., Naserpour-Farivar T., Yeylagh-Beygi M., Bolori S. (2016). Emergence of CMY- 2- and DHA-1-type AmpC β-lactamases in Enterobacter cloacae isolated from several hospitals of Qazvin and Tehran, Iran. Iran. J. Microbiol. 8 168–174. PubMed PMC
Piazza A., Caltagirone M., Bitar I., Nucleo E., Spalla M., Fogato E., et al. (2015). Emergence of Escherichia coli Sequence Type 131 (ST131) and ST3948 with KPC-2, KPC-3 and KPC-8 carbapenemases from a long-term care and rehabilitation facility (LTCRF) in Northern Italy. Adv. Microbiol. Infect. Dis. Public Health 901 77–89. PubMed
Qrskov F., Orskov I. (1984). Serotyping of Escherichia coli. Methods in Microbiology. London: Academic Press, 43–112.
Robicsek A., Strahilevitz J., Jacoby G. A., Macielag M., Abbanat D., Park C. H., et al. (2006). Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12 83–88. PubMed
Röderova M., Dana H., Papousek I., Dolejska M., Masarikova M., Hanulik V., et al. (2017). Characteristics of quinolone resistance in Escherichia coli isolates from humans, animals, and the environment in the Czech Republic. Front. Microbiol. 7:2147 10.3389/fmicb.2016.02147 PubMed DOI PMC
Rozwandowicz M., Brouwer M. S. M., Fischer J., Wagenaar J. A., Gonzalez-Zorn B., Guerra B., et al. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J. Antimicrob. Chemother. 73 1121–1137. PubMed
Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., et al. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33 2233–2239. PubMed PMC
The European Centre for Disease Prevention Control [ECDC], European Food Safety Authority [EFSA], and European Medicines Agency [EMA] (2017). ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: joint interagency antimicrobial consumption and resistance analysis (jiacra) report. EFSA J. 15:e04872 PubMed PMC
The European Committee on Anti-microbial Susceptibility Testing – EUCAST (2019). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 9.0. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf
Wang J., Zhen-Bao M., Zhen-Ling Z., Yang X. W., Huang Y., Jian-Hua L. (2017). The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool. Res. 38 55–80. PubMed PMC
Weill F. X., Perrier-Gros-Claude J. D., Demartin M., Coignard S., Grimont P. A. (2004). Characterization of extended-spectrum-beta-lactamase (CTX-M-15)-producing strains of Salmonella enterica isolated in France and Senegal. FEMS Microbiol. Lett. 15 353–358. PubMed
Yang F., Zhang S., Shang X., Wang L., Li H., Wang X. (2018). Characteristics of quinolone-resistant Escherichia coli isolated from bovine mastitis in China. J. Dairy Sci. 101 6244–6252. PubMed
Yilmaz N. O., Agus N., Bozcal E., Oner O., Uzel A. (2013). Detection of plasmid- mediated AmpC β-lactamase in Escherichia coli and Klebsiella pneumoniae. Indian J. Med. Microbiol. 31 53–59. PubMed
Zankari E., Henrik H., Salvatore C., Martin V., Simon R., Ole L., et al. (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67 2640–2644. PubMed PMC
Zogg A. L., Simmen S., Zurfluh K., Stephan R., Schmitt S. N., Nüesch-Inderbinen M. (2018). High prevalence of extended-spectrum β-Lactamase producing Enterobacteriaceae among clinical isolates from cats, and dogs admitted to a veterinary hospital in Switzerland. Front. Vet. Sci. 27:62 10.3389/fvets.2018.00062 PubMed DOI PMC