Characteristics of Quinolone Resistance in Escherichia coli Isolates from Humans, Animals, and the Environment in the Czech Republic
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28119674
PubMed Central
PMC5220107
DOI
10.3389/fmicb.2016.02147
Knihovny.cz E-zdroje
- Klíčová slova
- Escherichia coli, MLST, PFGE, animals, human, quinolone resistance, wastewater,
- Publikační typ
- časopisecké články MeSH
Escherichia coli is a common commensal bacterial species of humans and animals that may become a troublesome pathogen causing serious diseases. The aim of this study was to characterize the quinolone resistance phenotypes and genotypes in E. coli isolates of different origin from one area of the Czech Republic. E. coli isolates were obtained from hospitalized patients and outpatients, chicken farms, retailed turkeys, rooks wintering in the area, and wastewaters. Susceptibility of the isolates grown on the MacConkey agar with ciprofloxacin (0.05 mg/L) to 23 antimicrobial agents was determined. The presence of plasmid-mediated quinolone resistance (PMQR) and ESBL genes was tested by PCR and sequencing. Specific mutations in gyrA, gyrB, parC, and parE were also examined. Multilocus sequence typing and pulsed-field gel electrophoresis were performed to assess the clonal relationship. In total, 1050 E. coli isolates were obtained, including 303 isolates from humans, 156 from chickens, 105 from turkeys, 114 from the rooks, and 372 from wastewater samples. PMQR genes were detected in 262 (25%) isolates. The highest occurrence was observed in isolates from retailed turkey (49% of the isolates were positive) and inpatients (32%). The qnrS1 gene was the most common PMQR determinant identified in 146 (56%) followed by aac(6')-Ib-cr in 77 (29%), qnrB19 in 41 (16%), and qnrB1 in 9 (3%) isolates. All isolates with high level of ciprofloxacin resistance (>32 mg/L) carried double or triple mutations in gyrA combined with single or double mutations in parC. The most frequently identified substitutions were Ser(83)Leu; Asp(87)Asn in GyrA, together with Ser(80)Ile, or Glu(84)Val in ParC. Majority of these isolates showed resistance to beta-lactams and multiresistance phenotype was found in 95% isolates. Forty-eight different sequence types among 144 isolates analyzed were found, including five major clones ST131 (26), ST355 (19), ST48 (13), ST95 (10), and ST10 (5). No isolates sharing 100% relatedness and originating from different areas were identified. In conclusion, our study identified PMQR genes in E. coli isolates in all areas studied, including highly virulent multiresistant clones such as ST131 producing CTX-M-15 beta-lactamases.
Zobrazit více v PubMed
Adams-Sapper S., Diep B. A., Perdreau-Remington F., Riley L. W. (2013). Clonal composition and community clustering of drug-susceptible and -resistant Escherichia coli isolates from bloodstream infections. Antimicrob. Agents Chemother. 57, 490–497. 10.1128/AAC.01025-12 PubMed DOI PMC
Adler A., Baraniak A., Izdebski R., Fiett J., Salvia A., Samso J. V., et al. . (2014). A multinational study of colonization with extended spectrum β-lactamase-producing Enterobacteriaceae in healthcare personnel and family members of carrier patients hospitalized in rehabilitation centres. Clin. Microbiol. Infect. 20, O516–O523. 10.1111/1469-0691.12560 PubMed DOI
Agabou A., Lezzar N., Ouchenane Z., Khemissi S., Satta D., Sotto A., et al. . (2016). Clonal relationship between human and avian ciprofloxacin-resistant Escherichia coli isolates in North-Eastern Algeria. Eur. J. Clin. Microbiol. Infect. Dis. 35, 227–234. 10.1007/s10096-015-2534-3 PubMed DOI
Alcalá L., Alonso C. A., Simón C., González-Esteban C., Orós J., Rezusta A., et al. . (2016). Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) producing Escherichia coli of CTX-M and SHV-12 Types. Microb. Ecol. 72, 861–869. 10.1007/s00248-015-0718-0 PubMed DOI
Aldred K. J., Kerns R. J., Osheroff N. (2014). Mechanism of quinolone action and resistance. Biochemistry 53, 1565–1574. 10.1021/bi5000564 PubMed DOI PMC
Andriole V. T. (2005). The quinolones: past, present, and future. Clin. Infect. Dis. 15(Suppl. 2), S113–S119. 10.1086/428051 PubMed DOI
Balakrishnan S., Antony P. X., Mukhopadhyay H. K., Pillai R. M., Thanislass J., Padmanaban V., et al. . (2016). Genetic characterization of fluoroquinolone-resistant Escherichia coli associated with bovine mastitis in India. Vet. World 9, 705–709. 10.14202/vetworld.2016.705-709 PubMed DOI PMC
Ben Said L., Jouini A., Alonso C. A., Klibi N., Dziri R., Boudabous A., et al. . (2016). Characteristics of extended-spectrum beta-lactamase (ESBL)- and pAmpC beta-lactamase-producing Enterobacteriaceae of water samples in Tunisia. Sci. Total. Environ. 550, 1103–1109. 10.1016/j.scitotenv.2016.01.042 PubMed DOI
Briñas L., Zarazaga M., Sáenz Y., Ruiz-Larrea F., Torres C. (2002). β-Lactamases in ampicillin-resistant Escherichia coli isolates from foods, humans, and healthy animals. Antimicrob. Agents Chemother. 46, 3156–3163. 10.1128/AAC.46.10.3156-3163.2002 PubMed DOI PMC
Castillo F. Y. R., González F. J. A., Garneau P., Díaz F. M., Barrera A. L. G., Harel J. (2013). Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico. Front. Microbiol. 4:147. 10.3389/fmicb.2013.00147 PubMed DOI PMC
Cattoir V., Poirel L., Nordmann P. (2007). Plasmid-mediated quinolone resistance determinant QnrB4 identified in France in an Enterobacter cloacae clinical isolate coexpressing a QnrS1 determinant. Antimicrob. Agents Chemother. 51, 2652–2653. 10.1128/AAC.01616-06 PubMed DOI PMC
Cavaco L. M., Hasman H., Xia S., Aarestrup F. M. (2009). qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbificans strains of human origin. Antimicrob. Agents Chemother. 53, 603–608. 10.1128/AAC.00997-08 PubMed DOI PMC
Cerquetti M., García-Fernández A., Giufré M., Fortini D., Accogli M., Graziani C., et al. . (2009). First report of plasmid-mediated quinolone resistance determinant qnrS1 in an Escherichia coli strain of animal origin in Italy. Antimicrob. Agents Chemother. 53, 3112–3114. 10.1128/AAC.00239-09 PubMed DOI PMC
Cerquetti M., Giufré M., García-Fernandez A., Accogli M., Fortini D., Luzzi I., et al. . (2010). Ciprofloxacin-resistant, CTX-M-15-producing Escherichia coli ST131 clone in extraintestinal infections in Italy. Clin. Microbiol. Infect. 16, 1555–1558. 10.1111/j.1469-0691.2010.03162.x PubMed DOI
Clinical and Laboratory Standards Institute (CLSI) (2015). Performance Standards for Antimicrobial Susceptibility Testing. Twenty Fifth Informational Supplement Update. CLSI document M100-S25 U. Wayne, PA: Clinical and Laboratory Standards Institute.
Colomer-Lluch M., Mora A., López C., Mamani R., Dahbi G., Marzoa J., et al. . (2013). Detection of quinolone-resistant Escherichia coli isolates belonging to clonal groups O25b:H4-B2-ST131 and O25b:H4-D-ST69 in raw sewage and river water in Barcelona, Spain. J. Antimicrob. Chemother. 68, 758–765. 10.1093/jac/dks477 PubMed DOI
Dalhoff A. (2012). Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip. Perspect Infect. Dis. 2012:976273. 10.1155/2012/976273 PubMed DOI PMC
Dolejska M., Brhelova E., Dobiasova H., Krivdova J., Jurankova J., Sevcikova A., et al. . (2012). Dissemination of IncFII(K)-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards. Int. J. Antimicrob. Agents 40, 510–515. 10.1016/j.ijantimicag.2012.07.016 PubMed DOI
Dolejska M., Duskova E., Rybarikova J., Janoszowska D., Roubalova E., Dibdakova K., et al. . (2011b). Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J. Antimicrob. Chemother. 66, 757–764. 10.1093/jac/dkq500 PubMed DOI
Dolejska M., Frolkova P., Florek M., Jamborova I., Purgertova M., Kutilova I., et al. . (2011a). CTX-M-15-producing Escherichia coli clone B2-O25b-ST131 and Klebsiella spp. isolates in municipal wastewater treatment plant effluents. J. Antimicrob. Chemother. 66, 2784–2790. 10.1093/jac/dkr363 PubMed DOI
Ewers C., Grobbel M., Stamm I., Kopp P. A., Diehl I., Semmler T., et al. . (2010). Emergence of human pandemic O25:H4-ST131 CTX-M-15 extended-spectrum-beta-lactamase-producing Escherichia coli among companion animals. J. Antimicrob. Chemother. 65, 651–660. 10.1093/jac/dkq004 PubMed DOI
ECDC (European Centre for Disease Prevention and Control), EFSA (European Food Safety Authority) and EMA (European Medicines Agency). (2015). ECDC/EFSA/EMA first joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistence in bacteria from humans and food-producing animals. Stockhom/parma/London: ECDC/EFSA/EMA. EFSA J. 13:4006 10.2903/j.efsa.2015.4006 DOI
European Centre for Disease Prevention and Control (2015). Antimicrobial Resistance Interactive Database (EARS-Net) [online]. Available online at: http://www.ecdc.europa.eu/en/Pages/home.aspx (Accessed on 10 July 2016).
Forcella C., Alessiani A., Perilli M., Zilli K., Di Giannatale E., Amicosante G. (2010). Characterization of quinolone resistance in Escherichia coli strains of animal origin from Italy. J. Chemother. 22, 165–168. 10.1179/joc.2010.22.3.165 PubMed DOI
Ghodousi A., Bonura C., Di Carlo P., van Leeuwen W. B., Mammina C. (2016). Extraintestinal pathogenic Escherichia coli sequence type 131 H30-R and H30-Rx subclones in retail chicken meat, Italy. Int. J. Food Microbiol. 228, 10–13. 10.1016/j.ijfoodmicro.2016.04.004 PubMed DOI
Gibreel T. M., Dodgson A. R., Cheesbrough J., Fox A. J., Bolton F. J., Upton M. (2012). Population structure, virulence potential and antibiotic susceptibility of uropathogenic Escherichia coli from Northwest England. J. Antimicrob. Chemother. 67, 346–356. 10.1093/jac/dkr451 PubMed DOI
Gosling R. J., Clouting C. S., Randall L. P., Horton R. A., Davies R. H. (2012). Ciprofloxacin resistance in E. coli isolated from turkeys in Great Britain. Avian Pathol. 41, 83–89. 10.1080/03079457.2011.640659 PubMed DOI
Hopkins K. L., Davies R. H., Threlfall E. J. (2005). Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int. J. Antimicrob. Agents 25, 358–373. 10.1016/j.ijantimicag.2005.02.006 PubMed DOI
Htoutou Sedlakova M., Hanulik V., Chroma M., Hricova K., Kolar M., Latal T., et al. . (2011). Phenotypic detection of broad-spectrum beta-lactamases in microbiological practice. Med. Sci. Monitor 17, BR 147–152. 10.12659/msm.881761 PubMed DOI PMC
Huijbers P. M., Graat E. A., Haenen A. P., van Santen M. G., van Essen-Zandbergen A., Mevius D. J., et al. . (2014). Extended-spectrum and AmpC beta-lactamase-producing Escherichia coli in broilers and people living and/or working on broiler farms: prevalence, risk factors and molecular characteristics. J. Antimicrob. Chemother. 69, 2669–2675. 10.1093/jac/dku178 PubMed DOI
Husickova V., Cekanova L., Chroma M., Htoutou-Sedlakova M., Hricova K., Kolar M. (2012). Carriage of ESBL- and AmpC-positive Enterobacteriaceae in the gastrointestinal tract of community subjects and hospitalized patients in the Czech Republic. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 156, 348–353. 10.5507/bp.2012.039 PubMed DOI
Hussain A., Ewers C., Nandanwar N., Guenther S., Jadhav S., Wieler L. H., et al. . (2012). Multiresistant uropathogenic Escherichia coli from a region in India where urinary tract infections are endemic: genotypic and phenotypic characteristics of sequence type 131 isolates of the CTX-M-15 extended-spectrum-beta-lactamase-producing lineage. Antimicrob. Agents Chemother. 56, 6358–6365. 10.1128/AAC.01099-12 PubMed DOI PMC
Jacoby G. A., Strahilevitz J., Hooper D. C. (2014). Plasmid-mediated quinolone resistance. Microbiol. Spectr. 2:PLAS-0006-2013. 10.1128/microbiolspec.plas-0006-2013 PubMed DOI PMC
Jamborova I., Dolejska M., Vojtech J., Guenther S., Uricariu R., Drozdowska J., et al. . (2015). Plasmid-mediated resistance to cephalosporins and fluoroquinolones in various Escherichia coli sequence types isolated from rooks wintering in Europe. Appl. Environ. Microbiol. 81, 648–657. 10.1128/AEM.02459-14 PubMed DOI PMC
Jarlier V., Nicolas M. H., Fournier G., Philippon A. (1988). Extended broad-spectrum beta-lactamases conferring transferable resistance to newer beta-lactam agents in Enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev. Infect. Dis. 10, 867–878. 10.1093/clinids/10.4.867 PubMed DOI
Jiménez Gómez P. A., García de los Rios J. E., Rojas Mendoza A., de Pedro Ramonet P., Garcia Albiach R., Reche Sainz M. P. (2004). Molecular basis of quinolone resistance in Escherichia coli from wild birds. Can. J. Vet. Res. 68, 229–231. PubMed PMC
Johnning A., Kristiansson E., Fick J., Weijdegård B., Larsson D. G. (2015). Resistance mutations in gyrA and parC are common in escherichia communities of both fluoroquinolone-polluted and uncontaminated aquatic environments. Front. Microbiol. 6:1355. 10.3389/fmicb.2015.01355 PubMed DOI PMC
Johnson J. R., Gajewski A., Lesse A. J., Russo T. A. (2003). Extraintestinal pathogenic Escherichia coli as a cause of invasive nonurinary infections. J. Clin. Microbiol. 41, 5798–5802. 10.1128/JCM.41.12.5798-5802.2003 PubMed DOI PMC
Kim H. B., Park C. H., Kim C. J., Kim E. C., Jacoby G. A., Hooper D. C. (2009). Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob. Agents Chemother. 53, 639–645. 10.1128/AAC.01051-08 PubMed DOI PMC
Koboldt D. C., Chen K., Wylie T., Larsen D. E., McLellan M. D., Mardis E. R., et al. . (2009). VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25, 2283–2285. 10.1093/bioinformatics/btp373 PubMed DOI PMC
Lautenbach E., Strom B. L., Nachamkin I., Bilker W. B., Marr A. M., Larosa L. A., et al. . (2004). Longitudinal trends in fluoroquinolone resistance among Enterobacteriaceae isolates from inpatients and outpatients, 1989-2000: differences in the emergence and epidemiology of resistance across organisms. Clin. Infect. Dis. 38, 655–662. 10.1086/381549 PubMed DOI
Lee M. Y., Choi H. J., Choi J. Y., Song M., Song Y., Kim S. W., et al. . (2010). Dissemination of ST131 and ST393 community-onset, ciprofloxacin-resistant Escherichia coli clones causing urinary tract infections in Korea. J. Infect. 60, 146–153. 10.1016/j.jinf.2009.11.004 PubMed DOI
Lewis J. S., Herrera M., Wickes B., Patterson J. E., Jorgensen J. H. (2007). First report of the emergence of CTX-M-type extended-spectrum β-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob. Agents Chemother. 51, 4015–4021. 10.1128/AAC.00576-07 PubMed DOI PMC
Li H., Durbin R. (2010). Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Literak I., Micudova M., Tausova D., Cizek A., Dolejska M., Papousek I., et al. . (2012). Plasmid-mediated quinolone resistance genes in fecal bacteria from rooks commonly wintering throughout Europe. Microb. Drug. Resist. 18, 567–573. 10.1089/mdr.2012.0075 PubMed DOI
Literak I., Reitschmied T., Bujnakova D., Dolejska M., Cizek A., Bardon J., et al. . (2013). Broilers as a source of quinolone-resistant and extraintestinal pathogenic Escherichia coli in the Czech Republic. Microb. Drug. Resist. 19, 57–63. 10.1089/mdr.2012.0124 PubMed DOI
Liu B. T., Liao X. P., Yang S. S., Wang X. M., Li L. L., Sun J., et al. . (2012). Detection of mutations in the gyrA and parC genes in Escherichia coli isolates carrying plasmid-mediated quinolone resistance genes from diseased food-producing animals. J. Med. Microbiol. 61(Pt 11), 1591–1599. 10.1099/jmm.0.043307-0 PubMed DOI
Manges A. R., Johnson J. R. (2012). Food-borne origins of Escherichia coli causing extraintestinal infections. Clin. Infect. Dis. 55, 712–719. 10.1093/cid/cis502 PubMed DOI
Martínez-Martínez L., Pascual A., Jacoby G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet. 351, 797–799. PubMed
Micenková L., Sišková P., Bosák J., Jamborová I., Cernohorská L., Smajs D. (2014). Characterization of human uropathogenic ESBL-producing Escherichia coli in the Czech Republic: spread of CTX-M-27-producing strains in a university hospital. Microb. Drug Resist. 20, 610–617. 10.1089/mdr.2014.0013 PubMed DOI
Moore B., Perry E. L., Chard S. T. (1952). A survey by the sewage swab method of latent enteric infection in an urban area. J. Hyg. 50, 137–156. 10.1017/S0022172400019501 PubMed DOI PMC
Mora A., Viso S., López C., Alonso M. P., García-Garrote F., Dabhi G., et al. . (2013). Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans. Vet. Microbiol. 167, 506–512. 10.1016/j.vetmic.2013.08.007 PubMed DOI
Nicolas-Chanoine M. H., Bertrand X., Madec J. Y. (2014). Escherichia coli ST131, an intriguing clonal group. Clin. Microbiol. Rev. 27, 543–574. 10.1128/CMR.00125-13 PubMed DOI PMC
Nüesch-Inderbinen M., Stephan R. (2016). Epidemiology of extended-spectrum β-lactamase-producing Escherichia coli in the human-livestock environment. Curr. Clin. Micro Rpt. 3, 1–9 10.1007/s40588-016-0027-5 DOI
Oh J. Y., Kwon Y. K., Tamang M. D., Jang H. K., Jeong O. M., Lee H. S., et al. . (2016). Plasmid-mediated quinolone resistance in Escherichia coli isolates from wild birds and chickens in South Korea. Microb. Drug. Resist. 22, 69–79. 10.1089/mdr.2015.0090 PubMed DOI
Oram M., Fisher L. M. (1991). 4-Quinolone resistance mutations in the DNA gyrase of Escherichia coli clinical isolates identified by using the polymerase chain reaction. Antimicrob. Agents Chemother. 35, 387–389. 10.1128/AAC.35.2.387 PubMed DOI PMC
Paltansing S., Kraakman M. E., Ras J. M., Wessels E., Bernards A. T. (2013). Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J. Antimicrob. Chemother. 68, 40–45. 10.1093/jac/dks365 PubMed DOI
Papagiannitsis C. C., Študentová V., Jakubu V., Španelová P., Urbášková P., Žemlicková H., et al. . (2015). High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb. Drug Resist. 21, 74–84. 10.1089/mdr.2014.0070 PubMed DOI
Park C. H., Robicsek A., Jacoby G. A., Sahm D., Hooper D. C. (2006). Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob. Agents Chemother. 50, 3953–3955. 10.1128/AAC.00915-06 PubMed DOI PMC
Peirano G., Costello M., Pitout J. D. (2010). Molecular characteristics of extended-spectrum beta-lactamase-producing Escherichia coli from the Chicago area: high prevalence of ST131 producing CTX-M-15 in community hospitals. Int. J. Antimicrob. Agents. 36, 19–23. 10.1016/j.ijantimicag.2010.02.016 PubMed DOI
Périchon B., Courvalin P., Galimand M. (2007). Transferable resistance to aminoglycosides by methylation of G1405 in 16S rRNA and to hydrophilic fluoroquinolones by QepA-mediated efflux in Escherichia coli. Antimicrob. Agents Chemother. 51, 2464–2469. 10.1128/AAC.00143-07 PubMed DOI PMC
Pitout J. D., Hossain A., Hanson N. D. (2004). Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 42, 5715–5721. 10.1128/JCM.42.12.5715-5721.2004 PubMed DOI PMC
Platell J. L., Cobbold R. N., Johnson J. R., Heisig A., Heisig Clabots, C., et al. . (2011). Commonality among Fluoroquinolone-resistant sequence type st131 extraintestinal Escherichia coli isolates from humans and companion animals in Australia. Antimicrob. Agents Chemother. 55, 3782–3787. 10.1128/AAC.00306-11 PubMed DOI PMC
Riley L. W. (2014). Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin. Microbiol. Infect. 20, 380–390. 10.1111/1469-0691.12646 PubMed DOI
Robicsek A., Jacoby G. A., Hooper D. C. (2006). The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect. Dis. 6, 629–640. 10.1016/S1473-3099(06)70599-0 PubMed DOI
Ruiz J. (2003). Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51, 1109–1117. 10.1093/jac/dkg222 PubMed DOI
Ruiz J., Casellas S., Jimenez de Anta M. T., Vila J. (1997). The region of the parE gene, homologous to the quinolone-resistant determining region of the gyrB gene, is not linked with the acquisition of quinolone resistance in Escherichia coli clinical isolates. J. Antimicrob. Chemother. 39, 839–840. 10.1093/jac/39.6.839 PubMed DOI
Sáenz Y., Zarazaga M., Briñas L., Ruiz-Larrea F., Torres C. (2003). Mutations in gyrA and parC genes in nalidixic acid-resistant Escherichia coli strains from food products, humans and animals. J. Antimicrob. Chemother. 51, 1001–1005. 10.1093/jac/dkg168 PubMed DOI
Strahilevitz J., Jacoby G. A., Hooper D. C., Robicsek A. (2009). Plasmid-mediated quinolone resistance: a multifaceted threat. Clin. Microbiol. Rev. 22, 664–689. 10.1128/CMR.00016-09 PubMed DOI PMC
Tamang M. D., Seol S. Y., Oh J. Y., Kang H. Y., Lee J. C., Lee Y. C., et al. . (2008). Plasmid-mediated quinolone resistance determinants qnrA, qnrB, and qnrS among clinical isolates of Enterobacteriaceae in a Korean hospital. Antimicrob. Agents Chemother. 52, 4159–4162. 10.1128/AAC.01633-07 PubMed DOI PMC
Tartof S. Y., Solberg O. D., Riley L. W. (2007). Genotypic analyses of uropathogenic Escherichia coli based on fimH single nucleotide polymorphisms (SNPs). J. Med. Microbiol. 56(Pt 10), 1363–1369. 10.1099/jmm.0.47262-0 PubMed DOI
Tenover F. C., Arbeit R. D., Goering R. V., Mickelsen P. A., Murray B. E., Persing D. H., et al. . (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33, 2233–2239. PubMed PMC
Varela A. R., Macedo G. N., Nunes O. C., Manaia C. M. (2015). Genetic characterization of fluoroquinolone resistant Escherichia coli from urban streams and municipal and hospital effluents. FEMS Microbiol. Ecol. 91:fiv015. 10.1093/femsec/fiv015 PubMed DOI
Veldman K., Cavaco L. M., Mevius D., Battisti A., Franco A., Botteldoorn N., et al. . (2011). International collaborative study on the occurrence of plasmid-mediated quinolone resistance in Salmonella enterica and Escherichia coli isolated from animals, humans, food and the environment in 13 European countries. J. Antimicrob. Chemother. 66, 1278–1286. 10.1093/jac/dkr084 PubMed DOI
Vila J., Ruiz J., Goñi P., De Anta M. T. (1996). Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40, 491–493. PubMed PMC
Vila J., Ruiz J., Marco F., Barcelo A., Goñi P., Giralt E., et al. . (1994). Association between double mutation in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob. Agents Chemother. 38, 2477–2479. 10.1128/AAC.38.10.2477 PubMed DOI PMC
Vincent C., Boerlin P., Daignault D., Dozois C. M., Dutil L., Galanakis C., et al. . (2010). Food reservoir for Escherichia coli causing urinary tract infections. Emerg. Infect. Dis. 16, 88–95. 10.3201/eid1601.091118 PubMed DOI PMC
Wang J., Gibbons J. F., McGrath K., Bai L., Li F., Leonard F. C., et al. . (2016). Molecular characterization of blaESBL-producing Escherichia coli cultured from pig farms in Ireland. J. Antimicrob. Chemother. 71. 3062–3065. 10.1093/jac/dkw278 PubMed DOI
World Health Organization (2012). WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Critically important antimicrobials for human medicine 3rd Revision 2011. WHO Document Production Services, Geneva, Switzerland. Clin. Infect. Dis. 55, 712–719. PubMed
Woodford N., Carattoli A., Karisik E., Underwood A., Ellington M. J., Livermore D. M. (2009). Complete nucleotide sequences of plasmids pEK204, pEK499, and pEK516, encoding CTX-M enzymes in three major Escherichia coli lineages from the United Kingdom, all belonging to the international O25:H4-ST131 clone. Antimicrob. Agents Chemother. 53, 4472–4482. 10.1128/AAC.00688-09 PubMed DOI PMC
Yamane K., Wachino J., Suzuki S., Kimura K., Shibata N., Kato H., et al. . (2008). New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 51, 3354–3360. 10.1128/AAC.00339-07 PubMed DOI PMC
Bacterial Pathogens and Evaluation of a Cut-Off for Defining Early and Late Neonatal Infection